File size: 31,189 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
import os, torch
from pathlib import Path
from PIL import Image, ImageDraw, ImageFont
from .utils import easySave, get_sd_version
from .adv_encode import advanced_encode
from .controlnet import easyControlnet
from .log import log_node_warn
from ..layer_diffuse import LayerDiffuse
from ..config import RESOURCES_DIR
from nodes import CLIPTextEncode
try:
    from comfy_extras.nodes_flux import FluxGuidance
except:
    FluxGuidance = None

class easyXYPlot():

    def __init__(self, xyPlotData, save_prefix, image_output, prompt, extra_pnginfo, my_unique_id, sampler, easyCache):
        self.x_node_type, self.x_type = sampler.safe_split(xyPlotData.get("x_axis"), ': ')
        self.y_node_type, self.y_type = sampler.safe_split(xyPlotData.get("y_axis"), ': ')
        self.x_values = xyPlotData.get("x_vals") if self.x_type != "None" else []
        self.y_values = xyPlotData.get("y_vals") if self.y_type != "None" else []
        self.custom_font = xyPlotData.get("custom_font")

        self.grid_spacing = xyPlotData.get("grid_spacing")
        self.latent_id = 0
        self.output_individuals = xyPlotData.get("output_individuals")

        self.x_label, self.y_label = [], []
        self.max_width, self.max_height = 0, 0
        self.latents_plot = []
        self.image_list = []

        self.num_cols = len(self.x_values) if len(self.x_values) > 0 else 1
        self.num_rows = len(self.y_values) if len(self.y_values) > 0 else 1

        self.total = self.num_cols * self.num_rows
        self.num = 0

        self.save_prefix = save_prefix
        self.image_output = image_output
        self.prompt = prompt
        self.extra_pnginfo = extra_pnginfo
        self.my_unique_id = my_unique_id

        self.sampler = sampler
        self.easyCache = easyCache

    # Helper Functions
    @staticmethod
    def define_variable(plot_image_vars, value_type, value, index):

        plot_image_vars[value_type] = value
        if value_type in ["seed", "Seeds++ Batch"]:
            value_label = f"{value}"
        else:
            value_label = f"{value_type}: {value}"

        if "ControlNet" in value_type:
            value_label = f"ControlNet {index + 1}"

        if value_type in ['Lora', 'Checkpoint']:
            arr = value.split(',')
            model_name = os.path.basename(os.path.splitext(arr[0])[0])
            trigger_words = ' ' + arr[3] if len(arr[3]) > 2 else ''
            value_label = f"{model_name}{trigger_words}"

        if value_type in ["ModelMergeBlocks"]:
            if ":" in value:
                line = value.split(':')
                value_label = f"{line[0]}"
            elif len(value) > 16:
                value_label = f"ModelMergeBlocks {index + 1}"
            else:
                value_label = f"MMB: {value}"

        if value_type in ["Pos Condition"]:
            value_label = f"pos cond {index + 1}" if index>0 else f"pos cond"
        if value_type in ["Neg Condition"]:
            value_label = f"neg cond {index + 1}" if index>0 else f"neg cond"

        if value_type in ["Positive Prompt S/R"]:
            value_label = f"pos prompt {index + 1}" if index>0 else f"pos prompt"
        if value_type in ["Negative Prompt S/R"]:
            value_label = f"neg prompt {index + 1}" if index>0 else f"neg prompt"

        if value_type in ["steps", "cfg", "denoise", "clip_skip",
                          "lora_model_strength", "lora_clip_strength"]:
            value_label = f"{value_type}: {value}"

        if value_type == "positive":
            value_label = f"pos prompt {index + 1}"
        elif value_type == "negative":
            value_label = f"neg prompt {index + 1}"

        return plot_image_vars, value_label

    @staticmethod
    def get_font(font_size, font_path=None):
        if font_path is None:
            font_path = str(Path(os.path.join(RESOURCES_DIR, 'OpenSans-Medium.ttf')))
        return ImageFont.truetype(font_path, font_size)

    @staticmethod
    def update_label(label, value, num_items):
        if len(label) < num_items:
            return [*label, value]
        return label

    @staticmethod
    def rearrange_tensors(latent, num_cols, num_rows):
        new_latent = []
        for i in range(num_rows):
            for j in range(num_cols):
                index = j * num_rows + i
                new_latent.append(latent[index])
        return new_latent

    def calculate_background_dimensions(self):
        border_size = int((self.max_width // 8) * 1.5) if self.y_type != "None" or self.x_type != "None" else 0
        bg_width = self.num_cols * (self.max_width + self.grid_spacing) - self.grid_spacing + border_size * (
                    self.y_type != "None")
        bg_height = self.num_rows * (self.max_height + self.grid_spacing) - self.grid_spacing + border_size * (
                    self.x_type != "None")

        x_offset_initial = border_size if self.y_type != "None" else 0
        y_offset = border_size if self.x_type != "None" else 0

        return bg_width, bg_height, x_offset_initial, y_offset

    def adjust_font_size(self, text, initial_font_size, label_width):
        font = self.get_font(initial_font_size, self.custom_font)
        text_width = font.getbbox(text)
        if text_width and text_width[2]:
            text_width = text_width[2]

        scaling_factor = 0.9
        if text_width > (label_width * scaling_factor):
            return int(initial_font_size * (label_width / text_width) * scaling_factor)
        else:
            return initial_font_size

    def textsize(self, d, text, font):
        _, _, width, height = d.textbbox((0, 0), text=text, font=font)
        return width, height

    def create_label(self, img, text, initial_font_size, is_x_label=True, max_font_size=70, min_font_size=10):
        label_width = img.width if is_x_label else img.height

        # Adjust font size
        font_size = self.adjust_font_size(text, initial_font_size, label_width)
        font_size = min(max_font_size, font_size)  # Ensure font isn't too large
        font_size = max(min_font_size, font_size)  # Ensure font isn't too small

        label_height = int(font_size * 1.5) if is_x_label else font_size

        label_bg = Image.new('RGBA', (label_width, label_height), color=(255, 255, 255, 0))
        d = ImageDraw.Draw(label_bg)

        font = self.get_font(font_size, self.custom_font)

        # Check if text will fit, if not insert ellipsis and reduce text
        if self.textsize(d, text, font=font)[0] > label_width:
            while self.textsize(d, text + '...', font=font)[0] > label_width and len(text) > 0:
                text = text[:-1]
            text = text + '...'

        # Compute text width and height for multi-line text
        text_lines = text.split('\n')
        text_widths, text_heights = zip(*[self.textsize(d, line, font=font) for line in text_lines])
        max_text_width = max(text_widths)
        total_text_height = sum(text_heights)

        # Compute position for each line of text
        lines_positions = []
        current_y = 0
        for line, line_width, line_height in zip(text_lines, text_widths, text_heights):
            text_x = (label_width - line_width) // 2
            text_y = current_y + (label_height - total_text_height) // 2
            current_y += line_height
            lines_positions.append((line, (text_x, text_y)))

        # Draw each line of text
        for line, (text_x, text_y) in lines_positions:
            d.text((text_x, text_y), line, fill='black', font=font)

        return label_bg

    def sample_plot_image(self, plot_image_vars, samples, preview_latent, latents_plot, image_list, disable_noise,
                          start_step, last_step, force_full_denoise, x_value=None, y_value=None):
        model, clip, vae, positive, negative, seed, steps, cfg = None, None, None, None, None, None, None, None
        sampler_name, scheduler, denoise = None, None, None

        a1111_prompt_style = plot_image_vars['a1111_prompt_style'] if "a1111_prompt_style" in plot_image_vars else False
        clip = clip if clip is not None else plot_image_vars["clip"]
        steps = plot_image_vars['steps'] if "steps" in plot_image_vars else 1

        sd_version = get_sd_version(plot_image_vars['model'])

        # 高级用法
        if plot_image_vars["x_node_type"] == "advanced" or plot_image_vars["y_node_type"] == "advanced":
            if self.x_type == "Seeds++ Batch" or self.y_type == "Seeds++ Batch":
                seed = int(x_value) if self.x_type == "Seeds++ Batch" else int(y_value)
            if self.x_type == "Steps" or self.y_type == "Steps":
                steps = int(x_value) if self.x_type == "Steps" else int(y_value)
            if self.x_type == "StartStep" or self.y_type == "StartStep":
                start_step = int(x_value) if self.x_type == "StartStep" else int(y_value)
            if self.x_type == "EndStep" or self.y_type == "EndStep":
                last_step = int(x_value) if self.x_type == "EndStep" else int(y_value)
            if self.x_type == "CFG Scale" or self.y_type == "CFG Scale":
                cfg = float(x_value) if self.x_type == "CFG Scale" else float(y_value)
            if self.x_type == "Sampler" or self.y_type == "Sampler":
                sampler_name = x_value if self.x_type == "Sampler" else y_value
            if self.x_type == "Scheduler" or self.y_type == "Scheduler":
                scheduler = x_value if self.x_type == "Scheduler" else y_value
            if self.x_type == "Sampler&Scheduler" or self.y_type == "Sampler&Scheduler":
                arr = x_value.split(',') if self.x_type == "Sampler&Scheduler" else y_value.split(',')
                if arr[0] and arr[0]!= 'None':
                    sampler_name = arr[0]
                if arr[1] and arr[1]!= 'None':
                    scheduler = arr[1]
            if self.x_type == "Denoise" or self.y_type == "Denoise":
                denoise = float(x_value) if self.x_type == "Denoise" else float(y_value)
            if self.x_type == "Pos Condition" or self.y_type == "Pos Condition":
                positive = plot_image_vars['positive_cond_stack'][int(x_value)] if self.x_type == "Pos Condition" else plot_image_vars['positive_cond_stack'][int(y_value)]
            if self.x_type == "Neg Condition" or self.y_type == "Neg Condition":
                negative = plot_image_vars['negative_cond_stack'][int(x_value)] if self.x_type == "Neg Condition" else plot_image_vars['negative_cond_stack'][int(y_value)]
            # 模型叠加
            if self.x_type == "ModelMergeBlocks" or self.y_type == "ModelMergeBlocks":
                ckpt_name_1, ckpt_name_2 = plot_image_vars['models']
                model1, clip1, vae1, clip_vision = self.easyCache.load_checkpoint(ckpt_name_1)
                model2, clip2, vae2, clip_vision = self.easyCache.load_checkpoint(ckpt_name_2)
                xy_values = x_value if self.x_type == "ModelMergeBlocks" else y_value
                if ":" in xy_values:
                    xy_line = xy_values.split(':')
                    xy_values = xy_line[1]

                xy_arrs = xy_values.split(',')
                # ModelMergeBlocks
                if len(xy_arrs) == 3:
                    input, middle, out = xy_arrs
                    kwargs = {
                        "input": input,
                        "middle": middle,
                        "out": out
                    }
                elif len(xy_arrs) == 30:
                    kwargs = {}
                    kwargs["time_embed."] = xy_arrs[0]
                    kwargs["label_emb."] = xy_arrs[1]

                    for i in range(12):
                        kwargs["input_blocks.{}.".format(i)] = xy_arrs[2+i]

                    for i in range(3):
                        kwargs["middle_block.{}.".format(i)] = xy_arrs[14+i]

                    for i in range(12):
                        kwargs["output_blocks.{}.".format(i)] = xy_arrs[17+i]

                    kwargs["out."] = xy_arrs[29]
                else:
                    raise Exception("ModelMergeBlocks weight length error")
                default_ratio = next(iter(kwargs.values()))

                m = model1.clone()
                kp = model2.get_key_patches("diffusion_model.")

                for k in kp:
                    ratio = float(default_ratio)
                    k_unet = k[len("diffusion_model."):]

                    last_arg_size = 0
                    for arg in kwargs:
                        if k_unet.startswith(arg) and last_arg_size < len(arg):
                            ratio = float(kwargs[arg])
                            last_arg_size = len(arg)

                    m.add_patches({k: kp[k]}, 1.0 - ratio, ratio)

                vae_use = plot_image_vars['vae_use']

                clip = clip2 if vae_use == 'Use Model 2' else clip1
                if vae_use == 'Use Model 2':
                    vae = vae2
                elif vae_use == 'Use Model 1':
                    vae = vae1
                else:
                    vae = self.easyCache.load_vae(vae_use)
                model = m

                # 如果存在lora_stack叠加lora
                optional_lora_stack = plot_image_vars['lora_stack']
                if optional_lora_stack is not None and optional_lora_stack != []:
                    for lora in optional_lora_stack:
                        model, clip = self.easyCache.load_lora(lora)

                # 处理clip
                clip = clip.clone()
                if plot_image_vars['clip_skip'] != 0:
                    clip.clip_layer(plot_image_vars['clip_skip'])

            # CheckPoint
            if self.x_type == "Checkpoint" or self.y_type == "Checkpoint":
                xy_values = x_value if self.x_type == "Checkpoint" else y_value
                ckpt_name, clip_skip, vae_name = xy_values.split(",")
                ckpt_name = ckpt_name.replace('*', ',')
                vae_name = vae_name.replace('*', ',')
                model, clip, vae, clip_vision = self.easyCache.load_checkpoint(ckpt_name)
                if vae_name != 'None':
                    vae = self.easyCache.load_vae(vae_name)

                # 如果存在lora_stack叠加lora
                optional_lora_stack = plot_image_vars['lora_stack']
                if optional_lora_stack is not None and optional_lora_stack != []:
                    for lora in optional_lora_stack:
                        lora['model'] = model
                        lora['clip'] = clip
                        model, clip = self.easyCache.load_lora(lora)

                # 处理clip
                clip = clip.clone()
                if clip_skip != 'None':
                    clip.clip_layer(int(clip_skip))
                    positive = plot_image_vars['positive']
                    negative = plot_image_vars['negative']
                    a1111_prompt_style = plot_image_vars['a1111_prompt_style']
                    steps = plot_image_vars['steps']
                    clip = clip if clip is not None else plot_image_vars["clip"]
                    positive = advanced_encode(clip, positive,
                                               plot_image_vars['positive_token_normalization'],
                                               plot_image_vars['positive_weight_interpretation'],
                                               w_max=1.0,
                                               apply_to_pooled="enable",
                                               a1111_prompt_style=a1111_prompt_style, steps=steps)

                    negative = advanced_encode(clip, negative,
                                               plot_image_vars['negative_token_normalization'],
                                               plot_image_vars['negative_weight_interpretation'],
                                               w_max=1.0,
                                               apply_to_pooled="enable",
                                               a1111_prompt_style=a1111_prompt_style, steps=steps)
                    if "positive_cond" in plot_image_vars:
                        positive = positive + plot_image_vars["positive_cond"]
                    if "negative_cond" in plot_image_vars:
                        negative = negative + plot_image_vars["negative_cond"]

            # Lora
            if self.x_type == "Lora" or self.y_type == "Lora":
                model = model if model is not None else plot_image_vars["model"]
                clip = clip if clip is not None else plot_image_vars["clip"]

                xy_values = x_value if self.x_type == "Lora" else y_value
                lora_name, lora_model_strength, lora_clip_strength, _ = xy_values.split(",")
                lora_stack = [{"lora_name": lora_name, "model": model, "clip" :clip, "model_strength": float(lora_model_strength), "clip_strength": float(lora_clip_strength)}]
                if 'lora_stack' in plot_image_vars:
                    lora_stack = lora_stack + plot_image_vars['lora_stack']

                if lora_stack is not None and lora_stack != []:
                    for lora in lora_stack:
                        model, clip = self.easyCache.load_lora(lora)

            # 提示词
            if "Positive" in self.x_type or "Positive" in self.y_type:
                if self.x_type == 'Positive Prompt S/R' or self.y_type == 'Positive Prompt S/R':
                    positive = x_value if self.x_type == "Positive Prompt S/R" else y_value

                if sd_version == 'flux':
                    positive, = CLIPTextEncode().encode(clip, positive)
                else:
                    positive = advanced_encode(clip, positive,
                                                plot_image_vars['positive_token_normalization'],
                                                plot_image_vars['positive_weight_interpretation'],
                                                w_max=1.0,
                                                apply_to_pooled="enable", a1111_prompt_style=a1111_prompt_style, steps=steps)

                # if "positive_cond" in plot_image_vars:
                #     positive = positive + plot_image_vars["positive_cond"]

            if "Negative" in self.x_type or "Negative" in self.y_type:
                if self.x_type == 'Negative Prompt S/R' or self.y_type == 'Negative Prompt S/R':
                    negative = x_value if self.x_type == "Negative Prompt S/R" else y_value

                if sd_version == 'flux':
                    negative, = CLIPTextEncode().encode(clip, negative)
                else:
                    negative = advanced_encode(clip, negative,
                                                plot_image_vars['negative_token_normalization'],
                                                plot_image_vars['negative_weight_interpretation'],
                                                w_max=1.0,
                                                apply_to_pooled="enable", a1111_prompt_style=a1111_prompt_style, steps=steps)
                # if "negative_cond" in plot_image_vars:
                #     negative = negative + plot_image_vars["negative_cond"]

            # ControlNet
            if "ControlNet" in self.x_type or "ControlNet" in self.y_type:
                cnet = plot_image_vars["cnet"] if "cnet" in plot_image_vars else None
                positive = plot_image_vars["positive_cond"] if "positive" in plot_image_vars else None
                negative = plot_image_vars["negative_cond"] if "negative" in plot_image_vars else None
                if cnet:
                    index = x_value if "ControlNet" in self.x_type else y_value
                    controlnet = cnet[index]
                    for index, item in enumerate(controlnet):
                        control_net_name = item[0]
                        image = item[1]
                        strength = item[2]
                        start_percent = item[3]
                        end_percent = item[4]
                        positive, negative = easyControlnet().apply(control_net_name, image, positive, negative, strength, start_percent, end_percent, None, 1)
            # Flux guidance
            if self.x_type == "Flux Guidance" or self.y_type == "Flux Guidance":
                positive = plot_image_vars["positive_cond"] if "positive" in plot_image_vars else None
                flux_guidance = float(x_value) if self.x_type == "Flux Guidance" else float(y_value)
                positive, = FluxGuidance().append(positive, flux_guidance)

        # 简单用法
        if plot_image_vars["x_node_type"] == "loader" or plot_image_vars["y_node_type"] == "loader":
            model, clip, vae, clip_vision = self.easyCache.load_checkpoint(plot_image_vars['ckpt_name'])

            if plot_image_vars['lora_name'] != "None":
                lora = {"lora_name": plot_image_vars['lora_name'], "model": model, "clip": clip, "model_strength": plot_image_vars['lora_model_strength'], "clip_strength": plot_image_vars['lora_clip_strength']}
                model, clip = self.easyCache.load_lora(lora)

            # Check for custom VAE
            if plot_image_vars['vae_name'] not in ["Baked-VAE", "Baked VAE"]:
                vae = self.easyCache.load_vae(plot_image_vars['vae_name'])

            # CLIP skip
            if not clip:
                raise Exception("No CLIP found")
            clip = clip.clone()
            clip.clip_layer(plot_image_vars['clip_skip'])

            if sd_version == 'flux':
                positive, = CLIPTextEncode().encode(clip, positive)
            else:
                positive = advanced_encode(clip, plot_image_vars['positive'],
                                                            plot_image_vars['positive_token_normalization'],
                                                            plot_image_vars['positive_weight_interpretation'], w_max=1.0,
                                                            apply_to_pooled="enable",a1111_prompt_style=a1111_prompt_style, steps=steps)

            if sd_version == 'flux':
                negative, = CLIPTextEncode().encode(clip, negative)
            else:
                negative = advanced_encode(clip, plot_image_vars['negative'],
                                                            plot_image_vars['negative_token_normalization'],
                                                            plot_image_vars['negative_weight_interpretation'], w_max=1.0,
                                                            apply_to_pooled="enable", a1111_prompt_style=a1111_prompt_style, steps=steps)

        model = model if model is not None else plot_image_vars["model"]
        vae = vae if vae is not None else plot_image_vars["vae"]
        positive = positive if positive is not None else plot_image_vars["positive_cond"]
        negative = negative if negative is not None else plot_image_vars["negative_cond"]

        seed = seed if seed is not None else plot_image_vars["seed"]
        steps = steps if steps is not None else plot_image_vars["steps"]
        cfg = cfg if cfg is not None else plot_image_vars["cfg"]
        sampler_name = sampler_name if sampler_name is not None else plot_image_vars["sampler_name"]
        scheduler = scheduler if scheduler is not None else plot_image_vars["scheduler"]
        denoise = denoise if denoise is not None else plot_image_vars["denoise"]

        noise_device = plot_image_vars["noise_device"] if "noise_device" in plot_image_vars else 'cpu'

        # LayerDiffuse
        layer_diffusion_method = plot_image_vars["layer_diffusion_method"] if "layer_diffusion_method" in plot_image_vars else None
        empty_samples = plot_image_vars["empty_samples"] if "empty_samples" in plot_image_vars else None

        if layer_diffusion_method:
            samp_blend_samples = plot_image_vars["blend_samples"] if "blend_samples" in plot_image_vars else None
            additional_cond = plot_image_vars["layer_diffusion_cond"] if "layer_diffusion_cond" in plot_image_vars else None

            images = plot_image_vars["images"].movedim(-1, 1) if "images" in plot_image_vars else None
            weight = plot_image_vars['layer_diffusion_weight'] if 'layer_diffusion_weight' in plot_image_vars else 1.0
            model, positive, negative = LayerDiffuse().apply_layer_diffusion(model, layer_diffusion_method, weight, samples,
                                                                                  samp_blend_samples, positive,
                                                                                  negative, images, additional_cond)

        samples = empty_samples if layer_diffusion_method is not None and empty_samples is not None else samples
        # Sample
        samples = self.sampler.common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, samples,
                                          denoise=denoise, disable_noise=disable_noise, preview_latent=preview_latent,
                                          start_step=start_step, last_step=last_step,
                                          force_full_denoise=force_full_denoise, noise_device=noise_device)

        # Decode images and store
        latent = samples["samples"]

        # Add the latent tensor to the tensors list
        latents_plot.append(latent)

        # Decode the image
        image = vae.decode(latent).cpu()

        if self.output_individuals in [True, "True"]:
            easySave(image, self.save_prefix, self.image_output)

        # Convert the image from tensor to PIL Image and add it to the list
        pil_image = self.sampler.tensor2pil(image)
        image_list.append(pil_image)

        # Update max dimensions
        self.max_width = max(self.max_width, pil_image.width)
        self.max_height = max(self.max_height, pil_image.height)

        # Return the touched variables
        return image_list, self.max_width, self.max_height, latents_plot

    # Process Functions
    def validate_xy_plot(self):
        if self.x_type == 'None' and self.y_type == 'None':
            log_node_warn(f'#{self.my_unique_id}','No Valid Plot Types - Reverting to default sampling...')
            return False
        else:
            return True

    def get_latent(self, samples):
        # Extract the 'samples' tensor from the dictionary
        latent_image_tensor = samples["samples"]

        # Split the tensor into individual image tensors
        image_tensors = torch.split(latent_image_tensor, 1, dim=0)

        # Create a list of dictionaries containing the individual image tensors
        latent_list = [{'samples': image} for image in image_tensors]

        # Set latent only to the first latent of batch
        if self.latent_id >= len(latent_list):
            log_node_warn(f'#{self.my_unique_id}',f'The selected latent_id ({self.latent_id}) is out of range.')
            log_node_warn(f'#{self.my_unique_id}', f'Automatically setting the latent_id to the last image in the list (index: {len(latent_list) - 1}).')

            self.latent_id = len(latent_list) - 1

        return latent_list[self.latent_id]

    def get_labels_and_sample(self, plot_image_vars, latent_image, preview_latent, start_step, last_step,
                              force_full_denoise, disable_noise):
        for x_index, x_value in enumerate(self.x_values):
            plot_image_vars, x_value_label = self.define_variable(plot_image_vars, self.x_type, x_value,
                                                                  x_index)
            self.x_label = self.update_label(self.x_label, x_value_label, len(self.x_values))
            if self.y_type != 'None':
                for y_index, y_value in enumerate(self.y_values):
                    plot_image_vars, y_value_label = self.define_variable(plot_image_vars, self.y_type, y_value,
                                                                          y_index)
                    self.y_label = self.update_label(self.y_label, y_value_label, len(self.y_values))
                    # ttNl(f'{CC.GREY}X: {x_value_label}, Y: {y_value_label}').t(
                    #     f'Plot Values {self.num}/{self.total} ->').p()

                    self.image_list, self.max_width, self.max_height, self.latents_plot = self.sample_plot_image(
                        plot_image_vars, latent_image, preview_latent, self.latents_plot, self.image_list,
                        disable_noise, start_step, last_step, force_full_denoise, x_value, y_value)
                    self.num += 1
            else:
                # ttNl(f'{CC.GREY}X: {x_value_label}').t(f'Plot Values {self.num}/{self.total} ->').p()
                self.image_list, self.max_width, self.max_height, self.latents_plot = self.sample_plot_image(
                    plot_image_vars, latent_image, preview_latent, self.latents_plot, self.image_list, disable_noise,
                    start_step, last_step, force_full_denoise, x_value)
                self.num += 1

        # Rearrange latent array to match preview image grid
        self.latents_plot = self.rearrange_tensors(self.latents_plot, self.num_cols, self.num_rows)

        # Concatenate the tensors along the first dimension (dim=0)
        self.latents_plot = torch.cat(self.latents_plot, dim=0)

        return self.latents_plot

    def plot_images_and_labels(self):
        # Calculate the background dimensions
        bg_width, bg_height, x_offset_initial, y_offset = self.calculate_background_dimensions()

        # Create the white background image
        background = Image.new('RGBA', (int(bg_width), int(bg_height)), color=(255, 255, 255, 255))

        output_image = []
        for row_index in range(self.num_rows):
            x_offset = x_offset_initial

            for col_index in range(self.num_cols):
                index = col_index * self.num_rows + row_index
                img = self.image_list[index]
                output_image.append(self.sampler.pil2tensor(img))
                background.paste(img, (x_offset, y_offset))

                # Handle X label
                if row_index == 0 and self.x_type != "None":
                    label_bg = self.create_label(img, self.x_label[col_index], int(48 * img.width / 512))
                    label_y = (y_offset - label_bg.height) // 2
                    background.alpha_composite(label_bg, (x_offset, label_y))

                # Handle Y label
                if col_index == 0 and self.y_type != "None":
                    label_bg = self.create_label(img, self.y_label[row_index], int(48 * img.height / 512), False)
                    label_bg = label_bg.rotate(90, expand=True)

                    label_x = (x_offset - label_bg.width) // 2
                    label_y = y_offset + (img.height - label_bg.height) // 2
                    background.alpha_composite(label_bg, (label_x, label_y))

                x_offset += img.width + self.grid_spacing

            y_offset += img.height + self.grid_spacing

        return (self.sampler.pil2tensor(background), output_image)