File size: 24,989 Bytes
82ea528 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 |
import os
import json
import comfy
import folder_paths
from .config import RESOURCES_DIR
from .libs.utils import getMetadata
def load_preset(filename):
path = os.path.join(RESOURCES_DIR, filename)
path = os.path.abspath(path)
preset_list = []
if os.path.exists(path):
with open(path, 'r') as file:
for line in file:
preset_list.append(line.strip())
return preset_list
else:
return []
def generate_floats(batch_count, first_float, last_float):
if batch_count > 1:
interval = (last_float - first_float) / (batch_count - 1)
values = [str(round(first_float + i * interval, 3)) for i in range(batch_count)]
else:
values = [str(first_float)] if batch_count == 1 else []
return "; ".join(values)
def generate_ints(batch_count, first_int, last_int):
if batch_count > 1:
interval = (last_int - first_int) / (batch_count - 1)
values = [str(int(first_int + i * interval)) for i in range(batch_count)]
else:
values = [str(first_int)] if batch_count == 1 else []
# values = list(set(values)) # Remove duplicates
# values.sort() # Sort in ascending order
return "; ".join(values)
# Seed++ Batch
class XYplot_SeedsBatch:
@classmethod
def INPUT_TYPES(cls):
return {"required": {
"batch_count": ("INT", {"default": 3, "min": 1, "max": 50}), },
}
RETURN_TYPES = ("X_Y",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "EasyUse/XY Inputs"
def xy_value(self, batch_count):
axis = "advanced: Seeds++ Batch"
xy_values = {"axis": axis, "values": batch_count}
return (xy_values,)
# Step Values
class XYplot_Steps:
parameters = ["steps", "start_at_step", "end_at_step",]
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"target_parameter": (cls.parameters,),
"batch_count": ("INT", {"default": 3, "min": 0, "max": 50}),
"first_step": ("INT", {"default": 10, "min": 1, "max": 10000}),
"last_step": ("INT", {"default": 20, "min": 1, "max": 10000}),
"first_start_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
"last_start_step": ("INT", {"default": 10, "min": 0, "max": 10000}),
"first_end_step": ("INT", {"default": 10, "min": 0, "max": 10000}),
"last_end_step": ("INT", {"default": 20, "min": 0, "max": 10000}),
}
}
RETURN_TYPES = ("X_Y",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "EasyUse/XY Inputs"
def xy_value(self, target_parameter, batch_count, first_step, last_step, first_start_step, last_start_step,
first_end_step, last_end_step,):
axis, xy_first, xy_last = None, None, None
if target_parameter == "steps":
axis = "advanced: Steps"
xy_first = first_step
xy_last = last_step
elif target_parameter == "start_at_step":
axis = "advanced: StartStep"
xy_first = first_start_step
xy_last = last_start_step
elif target_parameter == "end_at_step":
axis = "advanced: EndStep"
xy_first = first_end_step
xy_last = last_end_step
values = generate_ints(batch_count, xy_first, xy_last)
return ({"axis": axis, "values": values},) if values is not None else (None,)
class XYplot_CFG:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"batch_count": ("INT", {"default": 3, "min": 0, "max": 50}),
"first_cfg": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0}),
"last_cfg": ("FLOAT", {"default": 9.0, "min": 0.0, "max": 100.0}),
}
}
RETURN_TYPES = ("X_Y",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "EasyUse/XY Inputs"
def xy_value(self, batch_count, first_cfg, last_cfg):
axis = "advanced: CFG Scale"
values = generate_floats(batch_count, first_cfg, last_cfg)
return ({"axis": axis, "values": values},) if values else (None,)
class XYplot_FluxGuidance:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"batch_count": ("INT", {"default": 3, "min": 0, "max": 50}),
"first_guidance": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0}),
"last_guidance": ("FLOAT", {"default": 3.5, "min": 0.0, "max": 100.0}),
}
}
RETURN_TYPES = ("X_Y",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "EasyUse/XY Inputs"
def xy_value(self, batch_count, first_guidance, last_guidance):
axis = "advanced: Flux Guidance"
values = generate_floats(batch_count, first_guidance, last_guidance)
return ({"axis": axis, "values": values},) if values else (None,)
# Step Values
class XYplot_Sampler_Scheduler:
parameters = ["sampler", "scheduler", "sampler & scheduler"]
@classmethod
def INPUT_TYPES(cls):
samplers = ["None"] + comfy.samplers.KSampler.SAMPLERS
schedulers = ["None"] + comfy.samplers.KSampler.SCHEDULERS
inputs = {
"required": {
"target_parameter": (cls.parameters,),
"input_count": ("INT", {"default": 1, "min": 1, "max": 30, "step": 1})
}
}
for i in range(1, 30 + 1):
inputs["required"][f"sampler_{i}"] = (samplers,)
inputs["required"][f"scheduler_{i}"] = (schedulers,)
return inputs
RETURN_TYPES = ("X_Y",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "EasyUse/XY Inputs"
def xy_value(self, target_parameter, input_count, **kwargs):
axis, values, = None, None,
if target_parameter == "scheduler":
axis = "advanced: Scheduler"
schedulers = [kwargs.get(f"scheduler_{i}") for i in range(1, input_count + 1)]
values = [scheduler for scheduler in schedulers if scheduler != "None"]
elif target_parameter == "sampler":
axis = "advanced: Sampler"
samplers = [kwargs.get(f"sampler_{i}") for i in range(1, input_count + 1)]
values = [sampler for sampler in samplers if sampler != "None"]
else:
axis = "advanced: Sampler&Scheduler"
samplers = [kwargs.get(f"sampler_{i}") for i in range(1, input_count + 1)]
schedulers = [kwargs.get(f"scheduler_{i}") for i in range(1, input_count + 1)]
values = []
for sampler, scheduler in zip(samplers, schedulers):
sampler = sampler if sampler else 'None'
scheduler = scheduler if scheduler else 'None'
values.append(sampler +','+ scheduler)
values = "; ".join(values)
return ({"axis": axis, "values": values},) if values else (None,)
class XYplot_Denoise:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"batch_count": ("INT", {"default": 3, "min": 0, "max": 50}),
"first_denoise": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.1}),
"last_denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.1}),
}
}
RETURN_TYPES = ("X_Y",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "EasyUse/XY Inputs"
def xy_value(self, batch_count, first_denoise, last_denoise):
axis = "advanced: Denoise"
values = generate_floats(batch_count, first_denoise, last_denoise)
return ({"axis": axis, "values": values},) if values else (None,)
# PromptSR
class XYplot_PromptSR:
@classmethod
def INPUT_TYPES(cls):
inputs = {
"required": {
"target_prompt": (["positive", "negative"],),
"search_txt": ("STRING", {"default": "", "multiline": False}),
"replace_all_text": ("BOOLEAN", {"default": False}),
"replace_count": ("INT", {"default": 3, "min": 1, "max": 30 - 1}),
}
}
# Dynamically add replace_X inputs
for i in range(1, 30):
replace_key = f"replace_{i}"
inputs["required"][replace_key] = ("STRING", {"default": "", "multiline": False, "placeholder": replace_key})
return inputs
RETURN_TYPES = ("X_Y",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "EasyUse/XY Inputs"
def xy_value(self, target_prompt, search_txt, replace_all_text, replace_count, **kwargs):
axis = None
if target_prompt == "positive":
axis = "advanced: Positive Prompt S/R"
elif target_prompt == "negative":
axis = "advanced: Negative Prompt S/R"
# Create base entry
values = [(search_txt, None, replace_all_text)]
if replace_count > 0:
# Append additional entries based on replace_count
values.extend([(search_txt, kwargs.get(f"replace_{i+1}"), replace_all_text) for i in range(replace_count)])
return ({"axis": axis, "values": values},) if values is not None else (None,)
# XYPlot Pos Condition
class XYplot_Positive_Cond:
@classmethod
def INPUT_TYPES(cls):
inputs = {
"optional": {
"positive_1": ("CONDITIONING",),
"positive_2": ("CONDITIONING",),
"positive_3": ("CONDITIONING",),
"positive_4": ("CONDITIONING",),
}
}
return inputs
RETURN_TYPES = ("X_Y",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "EasyUse/XY Inputs"
def xy_value(self, positive_1=None, positive_2=None, positive_3=None, positive_4=None):
axis = "advanced: Pos Condition"
values = []
cond = []
# Create base entry
if positive_1 is not None:
values.append("0")
cond.append(positive_1)
if positive_2 is not None:
values.append("1")
cond.append(positive_2)
if positive_3 is not None:
values.append("2")
cond.append(positive_3)
if positive_4 is not None:
values.append("3")
cond.append(positive_4)
return ({"axis": axis, "values": values, "cond": cond},) if values is not None else (None,)
# XYPlot Neg Condition
class XYplot_Negative_Cond:
@classmethod
def INPUT_TYPES(cls):
inputs = {
"optional": {
"negative_1": ("CONDITIONING",),
"negative_2": ("CONDITIONING",),
"negative_3": ("CONDITIONING",),
"negative_4": ("CONDITIONING",),
}
}
return inputs
RETURN_TYPES = ("X_Y",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "EasyUse/XY Inputs"
def xy_value(self, negative_1=None, negative_2=None, negative_3=None, negative_4=None):
axis = "advanced: Neg Condition"
values = []
cond = []
# Create base entry
if negative_1 is not None:
values.append(0)
cond.append(negative_1)
if negative_2 is not None:
values.append(1)
cond.append(negative_2)
if negative_3 is not None:
values.append(2)
cond.append(negative_3)
if negative_4 is not None:
values.append(3)
cond.append(negative_4)
return ({"axis": axis, "values": values, "cond": cond},) if values is not None else (None,)
# XYPlot Pos Condition List
class XYplot_Positive_Cond_List:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"positive": ("CONDITIONING",),
}
}
INPUT_IS_LIST = True
RETURN_TYPES = ("X_Y",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "EasyUse/XY Inputs"
def xy_value(self, positive):
axis = "advanced: Pos Condition"
values = []
cond = []
for index, c in enumerate(positive):
values.append(str(index))
cond.append(c)
return ({"axis": axis, "values": values, "cond": cond},) if values is not None else (None,)
# XYPlot Neg Condition List
class XYplot_Negative_Cond_List:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"negative": ("CONDITIONING",),
}
}
INPUT_IS_LIST = True
RETURN_TYPES = ("X_Y",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "EasyUse/XY Inputs"
def xy_value(self, negative):
axis = "advanced: Neg Condition"
values = []
cond = []
for index, c in enumerate(negative):
values.append(index)
cond.append(c)
return ({"axis": axis, "values": values, "cond": cond},) if values is not None else (None,)
# XY Plot: ControlNet
class XYplot_Control_Net:
parameters = ["strength", "start_percent", "end_percent"]
@classmethod
def INPUT_TYPES(cls):
def get_file_list(filenames):
return [file for file in filenames if file != "put_models_here.txt" and "lllite" not in file]
return {
"required": {
"control_net_name": (get_file_list(folder_paths.get_filename_list("controlnet")),),
"image": ("IMAGE",),
"target_parameter": (cls.parameters,),
"batch_count": ("INT", {"default": 3, "min": 1, "max": 30}),
"first_strength": ("FLOAT", {"default": 0.0, "min": 0.00, "max": 10.0, "step": 0.01}),
"last_strength": ("FLOAT", {"default": 1.0, "min": 0.00, "max": 10.0, "step": 0.01}),
"first_start_percent": ("FLOAT", {"default": 0.0, "min": 0.00, "max": 1.0, "step": 0.01}),
"last_start_percent": ("FLOAT", {"default": 1.0, "min": 0.00, "max": 1.0, "step": 0.01}),
"first_end_percent": ("FLOAT", {"default": 0.0, "min": 0.00, "max": 1.0, "step": 0.01}),
"last_end_percent": ("FLOAT", {"default": 1.0, "min": 0.00, "max": 1.0, "step": 0.01}),
"strength": ("FLOAT", {"default": 1.0, "min": 0.00, "max": 10.0, "step": 0.01}),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.00, "max": 1.0, "step": 0.01}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.00, "max": 1.0, "step": 0.01}),
},
}
RETURN_TYPES = ("X_Y",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "EasyUse/XY Inputs"
def xy_value(self, control_net_name, image, target_parameter, batch_count, first_strength, last_strength, first_start_percent,
last_start_percent, first_end_percent, last_end_percent, strength, start_percent, end_percent):
axis, = None,
values = []
if target_parameter == "strength":
axis = "advanced: ControlNetStrength"
values.append([(control_net_name, image, first_strength, start_percent, end_percent)])
strength_increment = (last_strength - first_strength) / (batch_count - 1) if batch_count > 1 else 0
for i in range(1, batch_count - 1):
values.append([(control_net_name, image, first_strength + i * strength_increment, start_percent,
end_percent)])
if batch_count > 1:
values.append([(control_net_name, image, last_strength, start_percent, end_percent)])
elif target_parameter == "start_percent":
axis = "advanced: ControlNetStart%"
percent_increment = (last_start_percent - first_start_percent) / (batch_count - 1) if batch_count > 1 else 0
values.append([(control_net_name, image, strength, first_start_percent, end_percent)])
for i in range(1, batch_count - 1):
values.append([(control_net_name, image, strength, first_start_percent + i * percent_increment,
end_percent)])
# Always add the last start_percent if batch_count is more than 1.
if batch_count > 1:
values.append((control_net_name, image, strength, last_start_percent, end_percent))
elif target_parameter == "end_percent":
axis = "advanced: ControlNetEnd%"
percent_increment = (last_end_percent - first_end_percent) / (batch_count - 1) if batch_count > 1 else 0
values.append([(control_net_name, image, image, strength, start_percent, first_end_percent)])
for i in range(1, batch_count - 1):
values.append([(control_net_name, image, strength, start_percent,
first_end_percent + i * percent_increment)])
if batch_count > 1:
values.append([(control_net_name, image, strength, start_percent, last_end_percent)])
return ({"axis": axis, "values": values},)
#Checkpoints
class XYplot_Checkpoint:
modes = ["Ckpt Names", "Ckpt Names+ClipSkip", "Ckpt Names+ClipSkip+VAE"]
@classmethod
def INPUT_TYPES(cls):
checkpoints = ["None"] + folder_paths.get_filename_list("checkpoints")
vaes = ["Baked VAE"] + folder_paths.get_filename_list("vae")
inputs = {
"required": {
"input_mode": (cls.modes,),
"ckpt_count": ("INT", {"default": 3, "min": 0, "max": 10, "step": 1}),
}
}
for i in range(1, 10 + 1):
inputs["required"][f"ckpt_name_{i}"] = (checkpoints,)
inputs["required"][f"clip_skip_{i}"] = ("INT", {"default": -1, "min": -24, "max": -1, "step": 1})
inputs["required"][f"vae_name_{i}"] = (vaes,)
inputs["optional"] = {
"optional_lora_stack": ("LORA_STACK",)
}
return inputs
RETURN_TYPES = ("X_Y",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "EasyUse/XY Inputs"
def xy_value(self, input_mode, ckpt_count, **kwargs):
axis = "advanced: Checkpoint"
checkpoints = [kwargs.get(f"ckpt_name_{i}") for i in range(1, ckpt_count + 1)]
clip_skips = [kwargs.get(f"clip_skip_{i}") for i in range(1, ckpt_count + 1)]
vaes = [kwargs.get(f"vae_name_{i}") for i in range(1, ckpt_count + 1)]
# Set None for Clip Skip and/or VAE if not correct modes
for i in range(ckpt_count):
if "ClipSkip" not in input_mode:
clip_skips[i] = 'None'
if "VAE" not in input_mode:
vaes[i] = 'None'
# Extend each sub-array with lora_stack if it's not None
values = [checkpoint.replace(',', '*')+','+str(clip_skip)+','+vae.replace(',', '*') for checkpoint, clip_skip, vae in zip(checkpoints, clip_skips, vaes) if
checkpoint != "None"]
optional_lora_stack = kwargs.get("optional_lora_stack") if "optional_lora_stack" in kwargs else []
xy_values = {"axis": axis, "values": values, "lora_stack": optional_lora_stack}
return (xy_values,)
#Loras
class XYplot_Lora:
modes = ["Lora Names", "Lora Names+Weights"]
@classmethod
def INPUT_TYPES(cls):
loras = ["None"] + folder_paths.get_filename_list("loras")
inputs = {
"required": {
"input_mode": (cls.modes,),
"lora_count": ("INT", {"default": 3, "min": 0, "max": 10, "step": 1}),
"model_strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"clip_strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
}
}
for i in range(1, 10 + 1):
inputs["required"][f"lora_name_{i}"] = (loras,)
inputs["required"][f"model_str_{i}"] = ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01})
inputs["required"][f"clip_str_{i}"] = ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01})
inputs["optional"] = {
"optional_lora_stack": ("LORA_STACK",),
"display_trigger_word": ("BOOLEAN", {"display_trigger_word": True, "tooltip": "Trigger words showing lora model pass through the model's metadata, but not necessarily accurately."}),
}
return inputs
RETURN_TYPES = ("X_Y",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "EasyUse/XY Inputs"
def sort_tags_by_frequency(self, meta_tags):
if meta_tags is None:
return []
if "ss_tag_frequency" in meta_tags:
meta_tags = meta_tags["ss_tag_frequency"]
meta_tags = json.loads(meta_tags)
sorted_tags = {}
for _, dataset in meta_tags.items():
for tag, count in dataset.items():
tag = str(tag).strip()
if tag in sorted_tags:
sorted_tags[tag] = sorted_tags[tag] + count
else:
sorted_tags[tag] = count
# sort tags by training frequency. Most seen tags firsts
sorted_tags = dict(sorted(sorted_tags.items(), key=lambda item: item[1], reverse=True))
return list(sorted_tags.keys())
else:
return []
def get_trigger_words(self, lora_name, display=False):
if not display:
return ""
file_path = folder_paths.get_full_path('loras', lora_name)
if not file_path:
return ''
header = getMetadata(file_path)
header_json = json.loads(header)
meta = header_json["__metadata__"] if "__metadata__" in header_json else None
tags = self.sort_tags_by_frequency(meta)
return ' '+ tags[0] if len(tags) > 0 else ''
def xy_value(self, input_mode, lora_count, model_strength, clip_strength, display_trigger_words=True, **kwargs):
axis = "advanced: Lora"
# Extract values from kwargs
loras = [kwargs.get(f"lora_name_{i}") for i in range(1, lora_count + 1)]
model_strs = [kwargs.get(f"model_str_{i}", model_strength) for i in range(1, lora_count + 1)]
clip_strs = [kwargs.get(f"clip_str_{i}", clip_strength) for i in range(1, lora_count + 1)]
# Use model_strength and clip_strength for the loras where values are not provided
if "Weights" not in input_mode:
for i in range(lora_count):
model_strs[i] = model_strength
clip_strs[i] = clip_strength
# Extend each sub-array with lora_stack if it's not None
values = [lora.replace(',', '*')+','+str(model_str)+','+str(clip_str) +',' + self.get_trigger_words(lora, display_trigger_words) for lora, model_str, clip_str
in zip(loras, model_strs, clip_strs) if lora != "None"]
optional_lora_stack = kwargs.get("optional_lora_stack") if "optional_lora_stack" in kwargs else []
xy_values = {"axis": axis, "values": values, "lora_stack": optional_lora_stack}
return (xy_values,)
# 模型叠加
class XYplot_ModelMergeBlocks:
@classmethod
def INPUT_TYPES(s):
checkpoints = folder_paths.get_filename_list("checkpoints")
vae = ["Use Model 1", "Use Model 2"] + folder_paths.get_filename_list("vae")
preset = ["Preset"] # 20
preset += load_preset("mmb-preset.txt")
preset += load_preset("mmb-preset.custom.txt")
default_vectors = "1,0,0; \n0,1,0; \n0,0,1; \n1,1,0; \n1,0,1; \n0,1,1; "
return {
"required": {
"ckpt_name_1": (checkpoints,),
"ckpt_name_2": (checkpoints,),
"vae_use": (vae, {"default": "Use Model 1"}),
"preset": (preset, {"default": "preset"}),
"values": ("STRING", {"default": default_vectors, "multiline": True, "placeholder": 'Support 2 methods:\n\n1.input, middle, out in same line and insert values seperated by "; "\n\n2.model merge block number seperated by ", " in same line and insert values seperated by "; "'}),
},
"hidden": {"my_unique_id": "UNIQUE_ID"}
}
RETURN_TYPES = ("X_Y",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "EasyUse/XY Inputs"
def xy_value(self, ckpt_name_1, ckpt_name_2, vae_use, preset, values, my_unique_id=None):
axis = "advanced: ModelMergeBlocks"
if ckpt_name_1 is None:
raise Exception("ckpt_name_1 is not found")
if ckpt_name_2 is None:
raise Exception("ckpt_name_2 is not found")
models = (ckpt_name_1, ckpt_name_2)
xy_values = {"axis":axis, "values":values, "models":models, "vae_use": vae_use}
return (xy_values,) |