File size: 25,209 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
import torch
import torchvision.transforms.functional as F
import io
import os
import matplotlib
matplotlib.use('Agg')   
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from PIL import Image, ImageDraw, ImageColor, ImageFont
import random
import numpy as np
import re
from pathlib import Path

#workaround for unnecessary flash_attn requirement
from unittest.mock import patch
from transformers.dynamic_module_utils import get_imports

def fixed_get_imports(filename: str | os.PathLike) -> list[str]:
    try:
        if not str(filename).endswith("modeling_florence2.py"):
            return get_imports(filename)
        imports = get_imports(filename)
        imports.remove("flash_attn")
    except:
        print(f"No flash_attn import to remove")
        pass
    return imports


import comfy.model_management as mm
from comfy.utils import ProgressBar
import folder_paths

script_directory = os.path.dirname(os.path.abspath(__file__))

from transformers import AutoModelForCausalLM, AutoProcessor, set_seed

class DownloadAndLoadFlorence2Model:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "model": (
                    [ 
                    'microsoft/Florence-2-base',
                    'microsoft/Florence-2-base-ft',
                    'microsoft/Florence-2-large',
                    'microsoft/Florence-2-large-ft',
                    'HuggingFaceM4/Florence-2-DocVQA',
                    'thwri/CogFlorence-2.1-Large',
                    'thwri/CogFlorence-2.2-Large',
                    'gokaygokay/Florence-2-SD3-Captioner',
                    'gokaygokay/Florence-2-Flux-Large',
                    'MiaoshouAI/Florence-2-base-PromptGen-v1.5',
                    'MiaoshouAI/Florence-2-large-PromptGen-v1.5',
                    'MiaoshouAI/Florence-2-base-PromptGen-v2.0',
                    'MiaoshouAI/Florence-2-large-PromptGen-v2.0'
                    ],
                    {
                    "default": 'microsoft/Florence-2-base'
                    }),
            "precision": ([ 'fp16','bf16','fp32'],
                    {
                    "default": 'fp16'
                    }),
            "attention": (
                    [ 'flash_attention_2', 'sdpa', 'eager'],
                    {
                    "default": 'sdpa'
                    }),
            },
            "optional": {
                "lora": ("PEFTLORA",),
            }
        }

    RETURN_TYPES = ("FL2MODEL",)
    RETURN_NAMES = ("florence2_model",)
    FUNCTION = "loadmodel"
    CATEGORY = "Florence2"

    def loadmodel(self, model, precision, attention, lora=None):
        device = mm.get_torch_device()
        offload_device = mm.unet_offload_device()
        dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[precision]

        model_name = model.rsplit('/', 1)[-1]
        model_path = os.path.join(folder_paths.models_dir, "LLM", model_name)
        
        if not os.path.exists(model_path):
            print(f"Downloading Florence2 model to: {model_path}")
            from huggingface_hub import snapshot_download
            snapshot_download(repo_id=model,
                            local_dir=model_path,
                            local_dir_use_symlinks=False)
            
        print(f"using {attention} for attention")
        with patch("transformers.dynamic_module_utils.get_imports", fixed_get_imports): #workaround for unnecessary flash_attn requirement
            model = AutoModelForCausalLM.from_pretrained(model_path, attn_implementation=attention, device_map=device, torch_dtype=dtype,trust_remote_code=True)
        processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)

        if lora is not None:
            from peft import PeftModel
            adapter_name = lora
            model = PeftModel.from_pretrained(model, adapter_name, trust_remote_code=True)
        
        florence2_model = {
            'model': model, 
            'processor': processor,
            'dtype': dtype
            }

        return (florence2_model,)
    
class DownloadAndLoadFlorence2Lora:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "model": (
                    [ 
                    'NikshepShetty/Florence-2-pixelprose',
                    ],
                  ),            
            },
          
        }

    RETURN_TYPES = ("PEFTLORA",)
    RETURN_NAMES = ("lora",)
    FUNCTION = "loadmodel"
    CATEGORY = "Florence2"

    def loadmodel(self, model):
        model_name = model.rsplit('/', 1)[-1]
        model_path = os.path.join(folder_paths.models_dir, "LLM", model_name)
        
        if not os.path.exists(model_path):
            print(f"Downloading Florence2 lora model to: {model_path}")
            from huggingface_hub import snapshot_download
            snapshot_download(repo_id=model,
                            local_dir=model_path,
                            local_dir_use_symlinks=False)
        return (model_path,)
    
class Florence2ModelLoader:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "model": ([item.name for item in Path(folder_paths.models_dir, "LLM").iterdir() if item.is_dir()], {"tooltip": "models are expected to be in Comfyui/models/LLM folder"}),
            "precision": (['fp16','bf16','fp32'],),
            "attention": (
                    [ 'flash_attention_2', 'sdpa', 'eager'],
                    {
                    "default": 'sdpa'
                    }),
            },
            "optional": {
                "lora": ("PEFTLORA",),
            }
        }

    RETURN_TYPES = ("FL2MODEL",)
    RETURN_NAMES = ("florence2_model",)
    FUNCTION = "loadmodel"
    CATEGORY = "Florence2"

    def loadmodel(self, model, precision, attention, lora=None):
        device = mm.get_torch_device()
        dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[precision]
        model_path = Path(folder_paths.models_dir, "LLM", model)
        print(f"Loading model from {model_path}")
        print(f"using {attention} for attention")
        with patch("transformers.dynamic_module_utils.get_imports", fixed_get_imports): #workaround for unnecessary flash_attn requirement
            model = AutoModelForCausalLM.from_pretrained(model_path, attn_implementation=attention, device_map=device, torch_dtype=dtype,trust_remote_code=True)
        processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)

        if lora is not None:
            from peft import PeftModel
            adapter_name = lora
            model = PeftModel.from_pretrained(model, adapter_name, trust_remote_code=True)
        
        florence2_model = {
            'model': model, 
            'processor': processor,
            'dtype': dtype
            }
   
        return (florence2_model,)
    
class Florence2Run:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE", ),
                "florence2_model": ("FL2MODEL", ),
                "text_input": ("STRING", {"default": "", "multiline": True}),
                "task": (
                    [ 
                    'region_caption',
                    'dense_region_caption',
                    'region_proposal',
                    'caption',
                    'detailed_caption',
                    'more_detailed_caption',
                    'caption_to_phrase_grounding',
                    'referring_expression_segmentation',
                    'ocr',
                    'ocr_with_region',
                    'docvqa',
                    'prompt_gen_tags',
                    'prompt_gen_mixed_caption',
                    'prompt_gen_analyze',
                    'prompt_gen_mixed_caption_plus',
                    ],
                   ),
                "fill_mask": ("BOOLEAN", {"default": True}),
            },
            "optional": {
                "keep_model_loaded": ("BOOLEAN", {"default": False}),
                "max_new_tokens": ("INT", {"default": 1024, "min": 1, "max": 4096}),
                "num_beams": ("INT", {"default": 3, "min": 1, "max": 64}),
                "do_sample": ("BOOLEAN", {"default": True}),
                "output_mask_select": ("STRING", {"default": ""}),
                "seed": ("INT", {"default": 1, "min": 1, "max": 0xffffffffffffffff}),
            }
        }
    
    RETURN_TYPES = ("IMAGE", "MASK", "STRING", "JSON")
    RETURN_NAMES =("image", "mask", "caption", "data") 
    FUNCTION = "encode"
    CATEGORY = "Florence2"

    def hash_seed(self, seed):
        import hashlib
        # Convert the seed to a string and then to bytes
        seed_bytes = str(seed).encode('utf-8')
        # Create a SHA-256 hash of the seed bytes
        hash_object = hashlib.sha256(seed_bytes)
        # Convert the hash to an integer
        hashed_seed = int(hash_object.hexdigest(), 16)
        # Ensure the hashed seed is within the acceptable range for set_seed
        return hashed_seed % (2**32)

    def encode(self, image, text_input, florence2_model, task, fill_mask, keep_model_loaded=False, 
            num_beams=3, max_new_tokens=1024, do_sample=True, output_mask_select="", seed=None):
        device = mm.get_torch_device()
        _, height, width, _ = image.shape
        offload_device = mm.unet_offload_device()
        annotated_image_tensor = None
        mask_tensor = None
        processor = florence2_model['processor']
        model = florence2_model['model']
        dtype = florence2_model['dtype']
        model.to(device)
        
        if seed:
            set_seed(self.hash_seed(seed))

        colormap = ['blue','orange','green','purple','brown','pink','olive','cyan','red',
                    'lime','indigo','violet','aqua','magenta','gold','tan','skyblue']

        prompts = {
            'region_caption': '<OD>',
            'dense_region_caption': '<DENSE_REGION_CAPTION>',
            'region_proposal': '<REGION_PROPOSAL>',
            'caption': '<CAPTION>',
            'detailed_caption': '<DETAILED_CAPTION>',
            'more_detailed_caption': '<MORE_DETAILED_CAPTION>',
            'caption_to_phrase_grounding': '<CAPTION_TO_PHRASE_GROUNDING>',
            'referring_expression_segmentation': '<REFERRING_EXPRESSION_SEGMENTATION>',
            'ocr': '<OCR>',
            'ocr_with_region': '<OCR_WITH_REGION>',
            'docvqa': '<DocVQA>',
            'prompt_gen_tags': '<GENERATE_TAGS>',
            'prompt_gen_mixed_caption': '<MIXED_CAPTION>',
            'prompt_gen_analyze': '<ANALYZE>',
            'prompt_gen_mixed_caption_plus': '<MIXED_CAPTION_PLUS>',
        }
        task_prompt = prompts.get(task, '<OD>')

        if (task not in ['referring_expression_segmentation', 'caption_to_phrase_grounding', 'docvqa']) and text_input:
            raise ValueError("Text input (prompt) is only supported for 'referring_expression_segmentation', 'caption_to_phrase_grounding', and 'docvqa'")

        if text_input != "":
            prompt = task_prompt + " " + text_input
        else:
            prompt = task_prompt

        image = image.permute(0, 3, 1, 2)
        
        out = []
        out_masks = []
        out_results = []
        out_data = []
        pbar = ProgressBar(len(image))
        for img in image:
            image_pil = F.to_pil_image(img)
            inputs = processor(text=prompt, images=image_pil, return_tensors="pt", do_rescale=False).to(dtype).to(device)

            generated_ids = model.generate(
                input_ids=inputs["input_ids"],
                pixel_values=inputs["pixel_values"],
                max_new_tokens=max_new_tokens,
                do_sample=do_sample,
                num_beams=num_beams,
            )

            results = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
            print(results)
            # cleanup the special tokens from the final list
            if task == 'ocr_with_region':
                clean_results = str(results)       
                cleaned_string = re.sub(r'</?s>|<[^>]*>', '\n',  clean_results)
                clean_results = re.sub(r'\n+', '\n', cleaned_string)
            else:
                clean_results = str(results)       
                clean_results = clean_results.replace('</s>', '')
                clean_results = clean_results.replace('<s>', '')

             #return single string if only one image for compatibility with nodes that can't handle string lists
            if len(image) == 1:
                out_results = clean_results
            else:
                out_results.append(clean_results)

            W, H = image_pil.size
            
            parsed_answer = processor.post_process_generation(results, task=task_prompt, image_size=(W, H))

            if task == 'region_caption' or task == 'dense_region_caption' or task == 'caption_to_phrase_grounding' or task == 'region_proposal':           
                fig, ax = plt.subplots(figsize=(W / 100, H / 100), dpi=100)
                fig.subplots_adjust(left=0, right=1, top=1, bottom=0)
                ax.imshow(image_pil)
                bboxes = parsed_answer[task_prompt]['bboxes']
                labels = parsed_answer[task_prompt]['labels']

                mask_indexes = []
                # Determine mask indexes outside the loop
                if output_mask_select != "":
                    mask_indexes = [n for n in output_mask_select.split(",")]
                    print(mask_indexes)
                else:
                    mask_indexes = [str(i) for i in range(len(bboxes))]

                # Initialize mask_layer only if needed
                if fill_mask:
                    mask_layer = Image.new('RGB', image_pil.size, (0, 0, 0))
                    mask_draw = ImageDraw.Draw(mask_layer)

                for index, (bbox, label) in enumerate(zip(bboxes, labels)):
                    # Modify the label to include the index
                    indexed_label = f"{index}.{label}"
                    
                    if fill_mask:
                        if str(index) in mask_indexes:
                            print("match index:", str(index), "in mask_indexes:", mask_indexes)
                            mask_draw.rectangle([bbox[0], bbox[1], bbox[2], bbox[3]], fill=(255, 255, 255))
                        if label in mask_indexes:
                            print("match label")
                            mask_draw.rectangle([bbox[0], bbox[1], bbox[2], bbox[3]], fill=(255, 255, 255))

                    # Create a Rectangle patch
                    rect = patches.Rectangle(
                        (bbox[0], bbox[1]),  # (x,y) - lower left corner
                        bbox[2] - bbox[0],   # Width
                        bbox[3] - bbox[1],   # Height
                        linewidth=1,
                        edgecolor='r',
                        facecolor='none',
                        label=indexed_label
                    )
                     # Calculate text width with a rough estimation
                    text_width = len(label) * 6  # Adjust multiplier based on your font size
                    text_height = 12  # Adjust based on your font size

                    # Initial text position
                    text_x = bbox[0]
                    text_y = bbox[1] - text_height  # Position text above the top-left of the bbox

                    # Adjust text_x if text is going off the left or right edge
                    if text_x < 0:
                        text_x = 0
                    elif text_x + text_width > W:
                        text_x = W - text_width

                    # Adjust text_y if text is going off the top edge
                    if text_y < 0:
                        text_y = bbox[3]  # Move text below the bottom-left of the bbox if it doesn't overlap with bbox

                    # Add the rectangle to the plot
                    ax.add_patch(rect)
                    facecolor = random.choice(colormap) if len(image) == 1 else 'red'
                    # Add the label
                    plt.text(
                        text_x,
                        text_y,
                        indexed_label,
                        color='white',
                        fontsize=12,
                        bbox=dict(facecolor=facecolor, alpha=0.5)
                    )
                if fill_mask:             
                    mask_tensor = F.to_tensor(mask_layer)
                    mask_tensor = mask_tensor.unsqueeze(0).permute(0, 2, 3, 1).cpu().float()
                    mask_tensor = mask_tensor.mean(dim=0, keepdim=True)
                    mask_tensor = mask_tensor.repeat(1, 1, 1, 3)
                    mask_tensor = mask_tensor[:, :, :, 0]
                    out_masks.append(mask_tensor)           

                # Remove axis and padding around the image
                ax.axis('off')
                ax.margins(0,0)
                ax.get_xaxis().set_major_locator(plt.NullLocator())
                ax.get_yaxis().set_major_locator(plt.NullLocator())
                fig.canvas.draw() 
                buf = io.BytesIO()
                plt.savefig(buf, format='png', pad_inches=0)
                buf.seek(0)
                annotated_image_pil = Image.open(buf)

                annotated_image_tensor = F.to_tensor(annotated_image_pil)
                out_tensor = annotated_image_tensor[:3, :, :].unsqueeze(0).permute(0, 2, 3, 1).cpu().float()
                out.append(out_tensor)
               
                out_data.append(bboxes)

                
                pbar.update(1)
    
                plt.close(fig)

            elif task == 'referring_expression_segmentation':
                # Create a new black image
                mask_image = Image.new('RGB', (W, H), 'black')
                mask_draw = ImageDraw.Draw(mask_image)
  
                predictions = parsed_answer[task_prompt]
    
                # Iterate over polygons and labels  
                for polygons, label in zip(predictions['polygons'], predictions['labels']):
                    color = random.choice(colormap)
                    for _polygon in polygons:  
                        _polygon = np.array(_polygon).reshape(-1, 2)
                        # Clamp polygon points to image boundaries
                        _polygon = np.clip(_polygon, [0, 0], [W - 1, H - 1])
                        if len(_polygon) < 3:  
                            print('Invalid polygon:', _polygon)
                            continue  
                        
                        _polygon = _polygon.reshape(-1).tolist()
                        
                        # Draw the polygon
                        if fill_mask:
                            overlay = Image.new('RGBA', image_pil.size, (255, 255, 255, 0))
                            image_pil = image_pil.convert('RGBA')
                            draw = ImageDraw.Draw(overlay)
                            color_with_opacity = ImageColor.getrgb(color) + (180,)
                            draw.polygon(_polygon, outline=color, fill=color_with_opacity, width=3)
                            image_pil = Image.alpha_composite(image_pil, overlay)
                        else:
                            draw = ImageDraw.Draw(image_pil)
                            draw.polygon(_polygon, outline=color, width=3)

                        #draw mask
                        mask_draw.polygon(_polygon, outline="white", fill="white")
                        
                image_tensor = F.to_tensor(image_pil)
                image_tensor = image_tensor[:3, :, :].unsqueeze(0).permute(0, 2, 3, 1).cpu().float() 
                out.append(image_tensor)

                mask_tensor = F.to_tensor(mask_image)
                mask_tensor = mask_tensor.unsqueeze(0).permute(0, 2, 3, 1).cpu().float()
                mask_tensor = mask_tensor.mean(dim=0, keepdim=True)
                mask_tensor = mask_tensor.repeat(1, 1, 1, 3)
                mask_tensor = mask_tensor[:, :, :, 0]
                out_masks.append(mask_tensor)
                pbar.update(1)

            elif task == 'ocr_with_region':
                try:
                    font = ImageFont.load_default().font_variant(size=24)
                except:
                    font = ImageFont.load_default()
                predictions = parsed_answer[task_prompt]
                scale = 1
                image_pil = image_pil.convert('RGBA')
                overlay = Image.new('RGBA', image_pil.size, (255, 255, 255, 0))
                draw = ImageDraw.Draw(overlay)
                bboxes, labels = predictions['quad_boxes'], predictions['labels']
                
                # Create a new black image for the mask
                mask_image = Image.new('RGB', (W, H), 'black')
                mask_draw = ImageDraw.Draw(mask_image)
                
                for box, label in zip(bboxes, labels):
                    scaled_box = [v / (width if idx % 2 == 0 else height) for idx, v in enumerate(box)]
                    out_data.append({"label": label, "box": scaled_box})
                    
                    color = random.choice(colormap)
                    new_box = (np.array(box) * scale).tolist()
                    
                    if fill_mask:
                        color_with_opacity = ImageColor.getrgb(color) + (180,)
                        draw.polygon(new_box, outline=color, fill=color_with_opacity, width=3)
                    else:
                        draw.polygon(new_box, outline=color, width=3)
                    
                    draw.text((new_box[0]+8, new_box[1]+2),
                              "{}".format(label),
                              align="right",
                              font=font,
                              fill=color)
                    
                    # Draw the mask
                    mask_draw.polygon(new_box, outline="white", fill="white")
                
                image_pil = Image.alpha_composite(image_pil, overlay)
                image_pil = image_pil.convert('RGB')
                
                image_tensor = F.to_tensor(image_pil)
                image_tensor = image_tensor[:3, :, :].unsqueeze(0).permute(0, 2, 3, 1).cpu().float()
                out.append(image_tensor)

                # Process the mask
                mask_tensor = F.to_tensor(mask_image)
                mask_tensor = mask_tensor.unsqueeze(0).permute(0, 2, 3, 1).cpu().float()
                mask_tensor = mask_tensor.mean(dim=0, keepdim=True)
                mask_tensor = mask_tensor.repeat(1, 1, 1, 3)
                mask_tensor = mask_tensor[:, :, :, 0]
                out_masks.append(mask_tensor)

                pbar.update(1)
            
            elif task == 'docvqa':
                if text_input == "":
                    raise ValueError("Text input (prompt) is required for 'docvqa'")
                prompt = "<DocVQA> " + text_input

                inputs = processor(text=prompt, images=image_pil, return_tensors="pt", do_rescale=False).to(dtype).to(device)
                generated_ids = model.generate(
                    input_ids=inputs["input_ids"],
                    pixel_values=inputs["pixel_values"],
                    max_new_tokens=max_new_tokens,
                    do_sample=do_sample,
                    num_beams=num_beams,
                )

                results = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
                clean_results = results.replace('</s>', '').replace('<s>', '')
                
                if len(image) == 1:
                    out_results = clean_results
                else:
                    out_results.append(clean_results)
                    
                out.append(F.to_tensor(image_pil).unsqueeze(0).permute(0, 2, 3, 1).cpu().float())

                pbar.update(1)
            
        if len(out) > 0:
            out_tensor = torch.cat(out, dim=0)
        else:
            out_tensor = torch.zeros((1, 64,64, 3), dtype=torch.float32, device="cpu")
        if len(out_masks) > 0:
            out_mask_tensor = torch.cat(out_masks, dim=0)
        else:
            out_mask_tensor = torch.zeros((1,64,64), dtype=torch.float32, device="cpu")

        if not keep_model_loaded:
            print("Offloading model...")
            model.to(offload_device)
            mm.soft_empty_cache()
        
        return (out_tensor, out_mask_tensor, out_results, out_data)
     
NODE_CLASS_MAPPINGS = {
    "DownloadAndLoadFlorence2Model": DownloadAndLoadFlorence2Model,
    "DownloadAndLoadFlorence2Lora": DownloadAndLoadFlorence2Lora,
    "Florence2ModelLoader": Florence2ModelLoader,
    "Florence2Run": Florence2Run,
}
NODE_DISPLAY_NAME_MAPPINGS = {
    "DownloadAndLoadFlorence2Model": "DownloadAndLoadFlorence2Model",
    "DownloadAndLoadFlorence2Lora": "DownloadAndLoadFlorence2Lora",
    "Florence2ModelLoader": "Florence2ModelLoader",
    "Florence2Run": "Florence2Run",
}