File size: 25,209 Bytes
82ea528 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 |
import torch
import torchvision.transforms.functional as F
import io
import os
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from PIL import Image, ImageDraw, ImageColor, ImageFont
import random
import numpy as np
import re
from pathlib import Path
#workaround for unnecessary flash_attn requirement
from unittest.mock import patch
from transformers.dynamic_module_utils import get_imports
def fixed_get_imports(filename: str | os.PathLike) -> list[str]:
try:
if not str(filename).endswith("modeling_florence2.py"):
return get_imports(filename)
imports = get_imports(filename)
imports.remove("flash_attn")
except:
print(f"No flash_attn import to remove")
pass
return imports
import comfy.model_management as mm
from comfy.utils import ProgressBar
import folder_paths
script_directory = os.path.dirname(os.path.abspath(__file__))
from transformers import AutoModelForCausalLM, AutoProcessor, set_seed
class DownloadAndLoadFlorence2Model:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": (
[
'microsoft/Florence-2-base',
'microsoft/Florence-2-base-ft',
'microsoft/Florence-2-large',
'microsoft/Florence-2-large-ft',
'HuggingFaceM4/Florence-2-DocVQA',
'thwri/CogFlorence-2.1-Large',
'thwri/CogFlorence-2.2-Large',
'gokaygokay/Florence-2-SD3-Captioner',
'gokaygokay/Florence-2-Flux-Large',
'MiaoshouAI/Florence-2-base-PromptGen-v1.5',
'MiaoshouAI/Florence-2-large-PromptGen-v1.5',
'MiaoshouAI/Florence-2-base-PromptGen-v2.0',
'MiaoshouAI/Florence-2-large-PromptGen-v2.0'
],
{
"default": 'microsoft/Florence-2-base'
}),
"precision": ([ 'fp16','bf16','fp32'],
{
"default": 'fp16'
}),
"attention": (
[ 'flash_attention_2', 'sdpa', 'eager'],
{
"default": 'sdpa'
}),
},
"optional": {
"lora": ("PEFTLORA",),
}
}
RETURN_TYPES = ("FL2MODEL",)
RETURN_NAMES = ("florence2_model",)
FUNCTION = "loadmodel"
CATEGORY = "Florence2"
def loadmodel(self, model, precision, attention, lora=None):
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[precision]
model_name = model.rsplit('/', 1)[-1]
model_path = os.path.join(folder_paths.models_dir, "LLM", model_name)
if not os.path.exists(model_path):
print(f"Downloading Florence2 model to: {model_path}")
from huggingface_hub import snapshot_download
snapshot_download(repo_id=model,
local_dir=model_path,
local_dir_use_symlinks=False)
print(f"using {attention} for attention")
with patch("transformers.dynamic_module_utils.get_imports", fixed_get_imports): #workaround for unnecessary flash_attn requirement
model = AutoModelForCausalLM.from_pretrained(model_path, attn_implementation=attention, device_map=device, torch_dtype=dtype,trust_remote_code=True)
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
if lora is not None:
from peft import PeftModel
adapter_name = lora
model = PeftModel.from_pretrained(model, adapter_name, trust_remote_code=True)
florence2_model = {
'model': model,
'processor': processor,
'dtype': dtype
}
return (florence2_model,)
class DownloadAndLoadFlorence2Lora:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": (
[
'NikshepShetty/Florence-2-pixelprose',
],
),
},
}
RETURN_TYPES = ("PEFTLORA",)
RETURN_NAMES = ("lora",)
FUNCTION = "loadmodel"
CATEGORY = "Florence2"
def loadmodel(self, model):
model_name = model.rsplit('/', 1)[-1]
model_path = os.path.join(folder_paths.models_dir, "LLM", model_name)
if not os.path.exists(model_path):
print(f"Downloading Florence2 lora model to: {model_path}")
from huggingface_hub import snapshot_download
snapshot_download(repo_id=model,
local_dir=model_path,
local_dir_use_symlinks=False)
return (model_path,)
class Florence2ModelLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ([item.name for item in Path(folder_paths.models_dir, "LLM").iterdir() if item.is_dir()], {"tooltip": "models are expected to be in Comfyui/models/LLM folder"}),
"precision": (['fp16','bf16','fp32'],),
"attention": (
[ 'flash_attention_2', 'sdpa', 'eager'],
{
"default": 'sdpa'
}),
},
"optional": {
"lora": ("PEFTLORA",),
}
}
RETURN_TYPES = ("FL2MODEL",)
RETURN_NAMES = ("florence2_model",)
FUNCTION = "loadmodel"
CATEGORY = "Florence2"
def loadmodel(self, model, precision, attention, lora=None):
device = mm.get_torch_device()
dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[precision]
model_path = Path(folder_paths.models_dir, "LLM", model)
print(f"Loading model from {model_path}")
print(f"using {attention} for attention")
with patch("transformers.dynamic_module_utils.get_imports", fixed_get_imports): #workaround for unnecessary flash_attn requirement
model = AutoModelForCausalLM.from_pretrained(model_path, attn_implementation=attention, device_map=device, torch_dtype=dtype,trust_remote_code=True)
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
if lora is not None:
from peft import PeftModel
adapter_name = lora
model = PeftModel.from_pretrained(model, adapter_name, trust_remote_code=True)
florence2_model = {
'model': model,
'processor': processor,
'dtype': dtype
}
return (florence2_model,)
class Florence2Run:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE", ),
"florence2_model": ("FL2MODEL", ),
"text_input": ("STRING", {"default": "", "multiline": True}),
"task": (
[
'region_caption',
'dense_region_caption',
'region_proposal',
'caption',
'detailed_caption',
'more_detailed_caption',
'caption_to_phrase_grounding',
'referring_expression_segmentation',
'ocr',
'ocr_with_region',
'docvqa',
'prompt_gen_tags',
'prompt_gen_mixed_caption',
'prompt_gen_analyze',
'prompt_gen_mixed_caption_plus',
],
),
"fill_mask": ("BOOLEAN", {"default": True}),
},
"optional": {
"keep_model_loaded": ("BOOLEAN", {"default": False}),
"max_new_tokens": ("INT", {"default": 1024, "min": 1, "max": 4096}),
"num_beams": ("INT", {"default": 3, "min": 1, "max": 64}),
"do_sample": ("BOOLEAN", {"default": True}),
"output_mask_select": ("STRING", {"default": ""}),
"seed": ("INT", {"default": 1, "min": 1, "max": 0xffffffffffffffff}),
}
}
RETURN_TYPES = ("IMAGE", "MASK", "STRING", "JSON")
RETURN_NAMES =("image", "mask", "caption", "data")
FUNCTION = "encode"
CATEGORY = "Florence2"
def hash_seed(self, seed):
import hashlib
# Convert the seed to a string and then to bytes
seed_bytes = str(seed).encode('utf-8')
# Create a SHA-256 hash of the seed bytes
hash_object = hashlib.sha256(seed_bytes)
# Convert the hash to an integer
hashed_seed = int(hash_object.hexdigest(), 16)
# Ensure the hashed seed is within the acceptable range for set_seed
return hashed_seed % (2**32)
def encode(self, image, text_input, florence2_model, task, fill_mask, keep_model_loaded=False,
num_beams=3, max_new_tokens=1024, do_sample=True, output_mask_select="", seed=None):
device = mm.get_torch_device()
_, height, width, _ = image.shape
offload_device = mm.unet_offload_device()
annotated_image_tensor = None
mask_tensor = None
processor = florence2_model['processor']
model = florence2_model['model']
dtype = florence2_model['dtype']
model.to(device)
if seed:
set_seed(self.hash_seed(seed))
colormap = ['blue','orange','green','purple','brown','pink','olive','cyan','red',
'lime','indigo','violet','aqua','magenta','gold','tan','skyblue']
prompts = {
'region_caption': '<OD>',
'dense_region_caption': '<DENSE_REGION_CAPTION>',
'region_proposal': '<REGION_PROPOSAL>',
'caption': '<CAPTION>',
'detailed_caption': '<DETAILED_CAPTION>',
'more_detailed_caption': '<MORE_DETAILED_CAPTION>',
'caption_to_phrase_grounding': '<CAPTION_TO_PHRASE_GROUNDING>',
'referring_expression_segmentation': '<REFERRING_EXPRESSION_SEGMENTATION>',
'ocr': '<OCR>',
'ocr_with_region': '<OCR_WITH_REGION>',
'docvqa': '<DocVQA>',
'prompt_gen_tags': '<GENERATE_TAGS>',
'prompt_gen_mixed_caption': '<MIXED_CAPTION>',
'prompt_gen_analyze': '<ANALYZE>',
'prompt_gen_mixed_caption_plus': '<MIXED_CAPTION_PLUS>',
}
task_prompt = prompts.get(task, '<OD>')
if (task not in ['referring_expression_segmentation', 'caption_to_phrase_grounding', 'docvqa']) and text_input:
raise ValueError("Text input (prompt) is only supported for 'referring_expression_segmentation', 'caption_to_phrase_grounding', and 'docvqa'")
if text_input != "":
prompt = task_prompt + " " + text_input
else:
prompt = task_prompt
image = image.permute(0, 3, 1, 2)
out = []
out_masks = []
out_results = []
out_data = []
pbar = ProgressBar(len(image))
for img in image:
image_pil = F.to_pil_image(img)
inputs = processor(text=prompt, images=image_pil, return_tensors="pt", do_rescale=False).to(dtype).to(device)
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=max_new_tokens,
do_sample=do_sample,
num_beams=num_beams,
)
results = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
print(results)
# cleanup the special tokens from the final list
if task == 'ocr_with_region':
clean_results = str(results)
cleaned_string = re.sub(r'</?s>|<[^>]*>', '\n', clean_results)
clean_results = re.sub(r'\n+', '\n', cleaned_string)
else:
clean_results = str(results)
clean_results = clean_results.replace('</s>', '')
clean_results = clean_results.replace('<s>', '')
#return single string if only one image for compatibility with nodes that can't handle string lists
if len(image) == 1:
out_results = clean_results
else:
out_results.append(clean_results)
W, H = image_pil.size
parsed_answer = processor.post_process_generation(results, task=task_prompt, image_size=(W, H))
if task == 'region_caption' or task == 'dense_region_caption' or task == 'caption_to_phrase_grounding' or task == 'region_proposal':
fig, ax = plt.subplots(figsize=(W / 100, H / 100), dpi=100)
fig.subplots_adjust(left=0, right=1, top=1, bottom=0)
ax.imshow(image_pil)
bboxes = parsed_answer[task_prompt]['bboxes']
labels = parsed_answer[task_prompt]['labels']
mask_indexes = []
# Determine mask indexes outside the loop
if output_mask_select != "":
mask_indexes = [n for n in output_mask_select.split(",")]
print(mask_indexes)
else:
mask_indexes = [str(i) for i in range(len(bboxes))]
# Initialize mask_layer only if needed
if fill_mask:
mask_layer = Image.new('RGB', image_pil.size, (0, 0, 0))
mask_draw = ImageDraw.Draw(mask_layer)
for index, (bbox, label) in enumerate(zip(bboxes, labels)):
# Modify the label to include the index
indexed_label = f"{index}.{label}"
if fill_mask:
if str(index) in mask_indexes:
print("match index:", str(index), "in mask_indexes:", mask_indexes)
mask_draw.rectangle([bbox[0], bbox[1], bbox[2], bbox[3]], fill=(255, 255, 255))
if label in mask_indexes:
print("match label")
mask_draw.rectangle([bbox[0], bbox[1], bbox[2], bbox[3]], fill=(255, 255, 255))
# Create a Rectangle patch
rect = patches.Rectangle(
(bbox[0], bbox[1]), # (x,y) - lower left corner
bbox[2] - bbox[0], # Width
bbox[3] - bbox[1], # Height
linewidth=1,
edgecolor='r',
facecolor='none',
label=indexed_label
)
# Calculate text width with a rough estimation
text_width = len(label) * 6 # Adjust multiplier based on your font size
text_height = 12 # Adjust based on your font size
# Initial text position
text_x = bbox[0]
text_y = bbox[1] - text_height # Position text above the top-left of the bbox
# Adjust text_x if text is going off the left or right edge
if text_x < 0:
text_x = 0
elif text_x + text_width > W:
text_x = W - text_width
# Adjust text_y if text is going off the top edge
if text_y < 0:
text_y = bbox[3] # Move text below the bottom-left of the bbox if it doesn't overlap with bbox
# Add the rectangle to the plot
ax.add_patch(rect)
facecolor = random.choice(colormap) if len(image) == 1 else 'red'
# Add the label
plt.text(
text_x,
text_y,
indexed_label,
color='white',
fontsize=12,
bbox=dict(facecolor=facecolor, alpha=0.5)
)
if fill_mask:
mask_tensor = F.to_tensor(mask_layer)
mask_tensor = mask_tensor.unsqueeze(0).permute(0, 2, 3, 1).cpu().float()
mask_tensor = mask_tensor.mean(dim=0, keepdim=True)
mask_tensor = mask_tensor.repeat(1, 1, 1, 3)
mask_tensor = mask_tensor[:, :, :, 0]
out_masks.append(mask_tensor)
# Remove axis and padding around the image
ax.axis('off')
ax.margins(0,0)
ax.get_xaxis().set_major_locator(plt.NullLocator())
ax.get_yaxis().set_major_locator(plt.NullLocator())
fig.canvas.draw()
buf = io.BytesIO()
plt.savefig(buf, format='png', pad_inches=0)
buf.seek(0)
annotated_image_pil = Image.open(buf)
annotated_image_tensor = F.to_tensor(annotated_image_pil)
out_tensor = annotated_image_tensor[:3, :, :].unsqueeze(0).permute(0, 2, 3, 1).cpu().float()
out.append(out_tensor)
out_data.append(bboxes)
pbar.update(1)
plt.close(fig)
elif task == 'referring_expression_segmentation':
# Create a new black image
mask_image = Image.new('RGB', (W, H), 'black')
mask_draw = ImageDraw.Draw(mask_image)
predictions = parsed_answer[task_prompt]
# Iterate over polygons and labels
for polygons, label in zip(predictions['polygons'], predictions['labels']):
color = random.choice(colormap)
for _polygon in polygons:
_polygon = np.array(_polygon).reshape(-1, 2)
# Clamp polygon points to image boundaries
_polygon = np.clip(_polygon, [0, 0], [W - 1, H - 1])
if len(_polygon) < 3:
print('Invalid polygon:', _polygon)
continue
_polygon = _polygon.reshape(-1).tolist()
# Draw the polygon
if fill_mask:
overlay = Image.new('RGBA', image_pil.size, (255, 255, 255, 0))
image_pil = image_pil.convert('RGBA')
draw = ImageDraw.Draw(overlay)
color_with_opacity = ImageColor.getrgb(color) + (180,)
draw.polygon(_polygon, outline=color, fill=color_with_opacity, width=3)
image_pil = Image.alpha_composite(image_pil, overlay)
else:
draw = ImageDraw.Draw(image_pil)
draw.polygon(_polygon, outline=color, width=3)
#draw mask
mask_draw.polygon(_polygon, outline="white", fill="white")
image_tensor = F.to_tensor(image_pil)
image_tensor = image_tensor[:3, :, :].unsqueeze(0).permute(0, 2, 3, 1).cpu().float()
out.append(image_tensor)
mask_tensor = F.to_tensor(mask_image)
mask_tensor = mask_tensor.unsqueeze(0).permute(0, 2, 3, 1).cpu().float()
mask_tensor = mask_tensor.mean(dim=0, keepdim=True)
mask_tensor = mask_tensor.repeat(1, 1, 1, 3)
mask_tensor = mask_tensor[:, :, :, 0]
out_masks.append(mask_tensor)
pbar.update(1)
elif task == 'ocr_with_region':
try:
font = ImageFont.load_default().font_variant(size=24)
except:
font = ImageFont.load_default()
predictions = parsed_answer[task_prompt]
scale = 1
image_pil = image_pil.convert('RGBA')
overlay = Image.new('RGBA', image_pil.size, (255, 255, 255, 0))
draw = ImageDraw.Draw(overlay)
bboxes, labels = predictions['quad_boxes'], predictions['labels']
# Create a new black image for the mask
mask_image = Image.new('RGB', (W, H), 'black')
mask_draw = ImageDraw.Draw(mask_image)
for box, label in zip(bboxes, labels):
scaled_box = [v / (width if idx % 2 == 0 else height) for idx, v in enumerate(box)]
out_data.append({"label": label, "box": scaled_box})
color = random.choice(colormap)
new_box = (np.array(box) * scale).tolist()
if fill_mask:
color_with_opacity = ImageColor.getrgb(color) + (180,)
draw.polygon(new_box, outline=color, fill=color_with_opacity, width=3)
else:
draw.polygon(new_box, outline=color, width=3)
draw.text((new_box[0]+8, new_box[1]+2),
"{}".format(label),
align="right",
font=font,
fill=color)
# Draw the mask
mask_draw.polygon(new_box, outline="white", fill="white")
image_pil = Image.alpha_composite(image_pil, overlay)
image_pil = image_pil.convert('RGB')
image_tensor = F.to_tensor(image_pil)
image_tensor = image_tensor[:3, :, :].unsqueeze(0).permute(0, 2, 3, 1).cpu().float()
out.append(image_tensor)
# Process the mask
mask_tensor = F.to_tensor(mask_image)
mask_tensor = mask_tensor.unsqueeze(0).permute(0, 2, 3, 1).cpu().float()
mask_tensor = mask_tensor.mean(dim=0, keepdim=True)
mask_tensor = mask_tensor.repeat(1, 1, 1, 3)
mask_tensor = mask_tensor[:, :, :, 0]
out_masks.append(mask_tensor)
pbar.update(1)
elif task == 'docvqa':
if text_input == "":
raise ValueError("Text input (prompt) is required for 'docvqa'")
prompt = "<DocVQA> " + text_input
inputs = processor(text=prompt, images=image_pil, return_tensors="pt", do_rescale=False).to(dtype).to(device)
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=max_new_tokens,
do_sample=do_sample,
num_beams=num_beams,
)
results = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
clean_results = results.replace('</s>', '').replace('<s>', '')
if len(image) == 1:
out_results = clean_results
else:
out_results.append(clean_results)
out.append(F.to_tensor(image_pil).unsqueeze(0).permute(0, 2, 3, 1).cpu().float())
pbar.update(1)
if len(out) > 0:
out_tensor = torch.cat(out, dim=0)
else:
out_tensor = torch.zeros((1, 64,64, 3), dtype=torch.float32, device="cpu")
if len(out_masks) > 0:
out_mask_tensor = torch.cat(out_masks, dim=0)
else:
out_mask_tensor = torch.zeros((1,64,64), dtype=torch.float32, device="cpu")
if not keep_model_loaded:
print("Offloading model...")
model.to(offload_device)
mm.soft_empty_cache()
return (out_tensor, out_mask_tensor, out_results, out_data)
NODE_CLASS_MAPPINGS = {
"DownloadAndLoadFlorence2Model": DownloadAndLoadFlorence2Model,
"DownloadAndLoadFlorence2Lora": DownloadAndLoadFlorence2Lora,
"Florence2ModelLoader": Florence2ModelLoader,
"Florence2Run": Florence2Run,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"DownloadAndLoadFlorence2Model": "DownloadAndLoadFlorence2Model",
"DownloadAndLoadFlorence2Lora": "DownloadAndLoadFlorence2Lora",
"Florence2ModelLoader": "Florence2ModelLoader",
"Florence2Run": "Florence2Run",
}
|