File size: 7,378 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import torch
from tqdm import trange

from comfy.samplers import KSAMPLER

from ..utils.attn_bank import AttentionBank
from ..utils.const import DEFAULT_DOUBLE_LAYERS, DEFAULT_SINGLE_LAYERS


def get_sample_forward(attn_bank, save_steps, single_layers, double_layers, order="second"):
    @torch.no_grad()
    def sample_forward(model, x, sigmas, extra_args=None, callback=None, disable=None):
        attn_bank.clear()
        attn_bank['save_steps'] = save_steps

        extra_args = {} if extra_args is None else extra_args

        model_options = extra_args.get('model_options', {})
        model_options = {**model_options}
        transformer_options = model_options.get('transformer_options', {})
        transformer_options = {**transformer_options}
        model_options['transformer_options'] = transformer_options
        extra_args['model_options'] = model_options
        prev_pred = None
        N = len(sigmas)-1
        s_in = x.new_ones([x.shape[0]])
        for i in trange(N, disable=disable):
            sigma = sigmas[i]
            sigma_next = sigmas[i+1]

            if N-i-1 < save_steps:
                attn_bank[N-i-1] = {
                    'first': {},
                    'mid': {}
                }

            transformer_options['rfedit'] = {
                'step': N-i-1,
                'process': 'forward' if N-i-1 < save_steps else None,
                'pred': 'first',
                'bank': attn_bank,
                'single_layers': single_layers,
                'double_layers': double_layers,
            }

            if order == 'fireflow' and prev_pred is not None:
                pred = prev_pred
            else:
                pred = model(x, s_in * sigma, **extra_args)

            transformer_options['rfedit'] = {
                'step': N-i-1,
                'process': 'forward' if N-i-1 < save_steps else None,
                'pred': 'mid',
                'bank': attn_bank,
                'single_layers': single_layers,
                'double_layers': double_layers,
            }
            
            img_mid = x + (sigma_next- sigma) / 2 * pred
            sigma_mid = (sigma + (sigma_next - sigma) / 2)
            pred_mid = model(img_mid, s_in * sigma_mid, **extra_args)
            if order == 'fireflow':
                prev_pred = pred_mid
                x = x + (sigma_next - sigma) * pred_mid
            else:
                first_order = (pred_mid - pred) / ((sigma_next - sigma) / 2)
                x = x + (sigma_next - sigma) * pred + 0.5 * (sigma_next - sigma) ** 2 * first_order

            if callback is not None:
                callback({'x': x, 'denoised': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i]})

        return x

    return sample_forward

def get_sample_reverse(attn_bank, inject_steps, single_layers, double_layers, order="second"):
    @torch.no_grad()
    def sample_reverse(model, x, sigmas, extra_args=None, callback=None, disable=None):
        if inject_steps > attn_bank['save_steps']:
            raise ValueError(f'You must save at least as many steps as you want to inject. save_steps: {attn_bank["save_steps"]}, inject_steps: {inject_steps}')
        
        extra_args = {} if extra_args is None else extra_args

        model_options = extra_args.get('model_options', {})
        model_options = {**model_options}
        transformer_options = model_options.get('transformer_options', {})
        transformer_options = {**transformer_options}
        model_options['transformer_options'] = transformer_options
        extra_args['model_options'] = model_options

        prev_pred = None
        N = len(sigmas)-1
        s_in = x.new_ones([x.shape[0]])
        for i in trange(N, disable=disable):
            sigma = sigmas[i]
            sigma_prev = sigmas[i+1]

            transformer_options['rfedit'] = {
                'step': i,
                'process': 'reverse' if i < inject_steps else None,
                'pred': 'first',
                'bank': attn_bank,
                'single_layers': single_layers,
                'double_layers': double_layers,
            }

            if order == "fireflow" and prev_pred is not None:
                pred = prev_pred
            else:
                pred = model(x, s_in * sigma, **extra_args)

            transformer_options['rfedit'] = {
                'step': i,
                'process': 'reverse' if i < inject_steps else None,
                'pred': 'mid',
                'bank': attn_bank,
                'single_layers': single_layers,
                'double_layers': double_layers,
            }
            
            img_mid = x + (sigma_prev- sigma) / 2 * pred
            sigma_mid = (sigma + (sigma_prev - sigma) / 2)
            pred_mid = model(img_mid, s_in * sigma_mid, **extra_args)
            if order == "fireflow":
                prev_pred = pred_mid
                x = x + (sigma_prev - sigma) * pred_mid
            else:
                first_order = (pred_mid - pred) / ((sigma_prev - sigma) / 2)
                x = x + (sigma_prev - sigma) * pred + 0.5 * (sigma_prev - sigma) ** 2 * first_order

            if callback is not None:
                callback({'x': x, 'denoised': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i]})

        return x

    return sample_reverse


class FlowEditForwardSamplerNode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { 
            "save_steps": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff }),
        },           
            "optional": {
                "single_layers": ("SINGLE_LAYERS",),
                "double_layers": ("DOUBLE_LAYERS",),
                "order": (["second", "fireflow",],),
        }}
    RETURN_TYPES = ("SAMPLER","ATTN_INJ")
    FUNCTION = "build"

    CATEGORY = "fluxtapoz"

    def build(self, save_steps, single_layers=DEFAULT_SINGLE_LAYERS, double_layers=DEFAULT_DOUBLE_LAYERS, order="second"):
        attn_bank = AttentionBank()
        sampler = KSAMPLER(get_sample_forward(attn_bank, save_steps, single_layers, double_layers, order))

        return (sampler, attn_bank)


class FlowEditReverseSamplerNode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { 
            "attn_inj": ("ATTN_INJ",),
            "inject_steps": ("INT", {"default": 0, "min": 0, "max": 1000, "step": 1}),
        },           
            "optional": {
                "single_layers": ("SINGLE_LAYERS",),
                "double_layers": ("DOUBLE_LAYERS",),
                "order": (["second", "fireflow",],),
        }}
    RETURN_TYPES = ("SAMPLER",)
    FUNCTION = "build"

    CATEGORY = "fluxtapoz"

    def build(self, attn_inj, inject_steps, single_layers=DEFAULT_SINGLE_LAYERS, double_layers=DEFAULT_DOUBLE_LAYERS, order="second"):
        sampler = KSAMPLER(get_sample_reverse(attn_inj, inject_steps, single_layers, double_layers, order))
        return (sampler, )


class PrepareAttnBankNode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { 
            "latent": ("LATENT",),
            "attn_inj": ("ATTN_INJ",),
        }
        }

    RETURN_TYPES = ("LATENT", "ATTN_INJ")
    FUNCTION = "prepare"

    CATEGORY = "fluxtapoz"

    def prepare(self, latent, attn_inj):
        # Hack to force order of operations in ComfyUI graph
        return (latent, attn_inj)