File size: 2,363 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import torch
from torch.utils.data import DataLoader
import pathlib
from vfi_utils import load_file_from_github_release, preprocess_frames, postprocess_frames, generic_frame_loop, InterpolationStateList
import typing
from comfy.model_management import get_torch_device

MODEL_TYPE = pathlib.Path(__file__).parent.name
CKPT_NAMES = ["pretrained_cain.pth"]


class CAIN_VFI:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "ckpt_name": (CKPT_NAMES, ),
                "frames": ("IMAGE", ),
                "clear_cache_after_n_frames": ("INT", {"default": 10, "min": 1, "max": 1000}),
                "multiplier": ("INT", {"default": 2, "min": 2, "max": 1000})
            },
            "optional": {
                "optional_interpolation_states": ("INTERPOLATION_STATES", )
            }
        }
    
    RETURN_TYPES = ("IMAGE", )
    FUNCTION = "vfi"
    CATEGORY = "ComfyUI-Frame-Interpolation/VFI"
    
    def vfi(
        self,
        ckpt_name: typing.AnyStr, 
        frames: torch.Tensor, 
        clear_cache_after_n_frames: typing.SupportsInt = 1,
        multiplier: typing.SupportsInt = 2,
        optional_interpolation_states: InterpolationStateList = None,
        **kwargs
    ):
        from .cain_arch import CAIN
        model_path = load_file_from_github_release(MODEL_TYPE, ckpt_name)
        sd = torch.load(model_path)["state_dict"]
        sd = {key.replace('module.', ''): value for key, value in sd.items()}


        global interpolation_model
        interpolation_model = CAIN(depth=3)
        interpolation_model.load_state_dict(sd)
        interpolation_model.eval().to(get_torch_device())
        del sd

        frames = preprocess_frames(frames)
    
        
        def return_middle_frame(frame_0, frame_1, timestep, model):
            #CAIN does some direct modifications to input frame tensors so we need to clone them
            return model(frame_0.detach().clone(), frame_1.detach().clone())[0]
        
        args = [interpolation_model]
        out = postprocess_frames(
            generic_frame_loop(type(self).__name__, frames, clear_cache_after_n_frames, multiplier, return_middle_frame, *args, 
                               interpolation_states=optional_interpolation_states, use_timestep=False, dtype=torch.float32)
        )
        return (out,)