File size: 7,310 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import cupy
import os
import re
import torch
import typing
from pathlib import Path
import platform

##########################################################


objCudacache = {}


def cuda_int32(intIn: int):
    return cupy.int32(intIn)


# end


def cuda_float32(fltIn: float):
    return cupy.float32(fltIn)


# end


def cuda_kernel(strFunction: str, strKernel: str, objVariables: typing.Dict, **replace_kwargs):
    if "device" not in objCudacache:
        objCudacache["device"] = torch.cuda.get_device_name()
    # end

    strKey = strFunction

    for strVariable in objVariables:
        objValue = objVariables[strVariable]

        strKey += strVariable

        if objValue is None:
            continue

        elif type(objValue) == int:
            strKey += str(objValue)

        elif type(objValue) == float:
            strKey += str(objValue)

        elif type(objValue) == bool:
            strKey += str(objValue)

        elif type(objValue) == str:
            strKey += objValue

        elif type(objValue) == torch.Tensor:
            strKey += str(objValue.dtype)
            strKey += str(objValue.shape)
            strKey += str(objValue.stride())

        elif True:
            print(strVariable, type(objValue))
            assert False

        # end
    # end

    strKey += objCudacache["device"]

    if strKey not in objCudacache:
        for strVariable in objVariables:
            objValue = objVariables[strVariable]

            if objValue is None:
                continue

            elif type(objValue) == int:
                strKernel = strKernel.replace("{{" + strVariable + "}}", str(objValue))

            elif type(objValue) == float:
                strKernel = strKernel.replace("{{" + strVariable + "}}", str(objValue))

            elif type(objValue) == bool:
                strKernel = strKernel.replace("{{" + strVariable + "}}", str(objValue))

            elif type(objValue) == str:
                strKernel = strKernel.replace("{{" + strVariable + "}}", objValue)

            elif type(objValue) == torch.Tensor and objValue.dtype == torch.uint8:
                strKernel = strKernel.replace("{{type}}", "unsigned char")

            elif type(objValue) == torch.Tensor and objValue.dtype == torch.float16:
                strKernel = strKernel.replace("{{type}}", "half")

            elif type(objValue) == torch.Tensor and objValue.dtype == torch.float32:
                strKernel = strKernel.replace("{{type}}", "float")

            elif type(objValue) == torch.Tensor and objValue.dtype == torch.float64:
                strKernel = strKernel.replace("{{type}}", "double")

            elif type(objValue) == torch.Tensor and objValue.dtype == torch.int32:
                strKernel = strKernel.replace("{{type}}", "int")

            elif type(objValue) == torch.Tensor and objValue.dtype == torch.int64:
                strKernel = strKernel.replace("{{type}}", "long")

            elif type(objValue) == torch.Tensor:
                print(strVariable, objValue.dtype)
                assert False

            elif True:
                print(strVariable, type(objValue))
                assert False

            # end
        # end

        while True:
            objMatch = re.search("(SIZE_)([0-4])(\()([^\)]*)(\))", strKernel)

            if objMatch is None:
                break
            # end

            intArg = int(objMatch.group(2))

            strTensor = objMatch.group(4)
            intSizes = objVariables[strTensor].size()

            strKernel = strKernel.replace(objMatch.group(), str(intSizes[intArg]))
        # end

        while True:
            objMatch = re.search("(OFFSET_)([0-4])(\()([^\)]+)(\))", strKernel)

            if objMatch is None:
                break
            # end

            intArgs = int(objMatch.group(2))
            strArgs = objMatch.group(4).split(",")

            strTensor = strArgs[0]
            intStrides = objVariables[strTensor].stride()
            strIndex = [
                "(("
                + strArgs[intArg + 1].replace("{", "(").replace("}", ")").strip()
                + ")*"
                + str(intStrides[intArg])
                + ")"
                for intArg in range(intArgs)
            ]

            strKernel = strKernel.replace(
                objMatch.group(0), "(" + str.join("+", strIndex) + ")"
            )
        # end

        while True:
            objMatch = re.search("(VALUE_)([0-4])(\()", strKernel)

            if objMatch is None:
                break
            # end

            intStart = objMatch.span()[1]
            intStop = objMatch.span()[1]
            intParentheses = 1

            while True:
                intParentheses += 1 if strKernel[intStop] == "(" else 0
                intParentheses -= 1 if strKernel[intStop] == ")" else 0

                if intParentheses == 0:
                    break
                # end

                intStop += 1
            # end

            intArgs = int(objMatch.group(2))
            strArgs = strKernel[intStart:intStop].split(",")

            assert intArgs == len(strArgs) - 1

            strTensor = strArgs[0]
            intStrides = objVariables[strTensor].stride()

            strIndex = []

            for intArg in range(intArgs):
                strIndex.append(
                    "(("
                    + strArgs[intArg + 1].replace("{", "(").replace("}", ")").strip()
                    + ")*"
                    + str(intStrides[intArg])
                    + ")"
                )
            # end

            strKernel = strKernel.replace(
                "VALUE_" + str(intArgs) + "(" + strKernel[intStart:intStop] + ")",
                strTensor + "[" + str.join("+", strIndex) + "]",
            )
        # end

        for replace_key, value in replace_kwargs.items():
            strKernel = strKernel.replace(replace_key, value)

        objCudacache[strKey] = {"strFunction": strFunction, "strKernel": strKernel}
    # end

    return strKey


# end
def get_cuda_home_path():
    if "CUDA_HOME" in os.environ:
        return os.environ["CUDA_HOME"]
    import torch
    torch_lib_path = Path(torch.__file__).parent / "lib"
    torch_lib_path = str(torch_lib_path.resolve())
    if os.path.exists(torch_lib_path):
        nvrtc = filter(lambda lib_file: "nvrtc-builtins" in lib_file, os.listdir(torch_lib_path))
        nvrtc = list(nvrtc)
        return torch_lib_path if len(nvrtc) > 0 else None

@cupy.memoize(for_each_device=True)
def cuda_launch(strKey: str):
    if True:#"CUDA_HOME" not in os.environ:
        cuda_home = get_cuda_home_path()
        if cuda_home is not None:
            os.environ["CUDA_HOME"] = cuda_home
            os.environ["CUDA_PATH"] = cuda_home
        else:
            os.environ["CUDA_HOME"] = "/usr/local/cuda/"
            os.environ["CUDA_PATH"] = "/usr/local/cuda/"
    # print(objCudacache[strKey]['strKernel'])
    # return cupy.cuda.compile_with_cache(objCudacache[strKey]['strKernel'], tuple(['-I ' + os.environ['CUDA_HOME'], '-I ' + os.environ['CUDA_HOME'] + '/include'])).get_function(objCudacache[strKey]['strFunction'])
    return cupy.RawModule(code=objCudacache[strKey]["strKernel"]).get_function(
        objCudacache[strKey]["strFunction"]
    )