File size: 3,484 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import importlib.metadata
import torch
import logging
import numpy as np
import trimesh
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
log = logging.getLogger(__name__)

def check_diffusers_version():
    try:
        version = importlib.metadata.version('diffusers')
        required_version = '0.31.0'
        if version < required_version:
            raise AssertionError(f"diffusers version {version} is installed, but version {required_version} or higher is required.")
    except importlib.metadata.PackageNotFoundError:
        raise AssertionError("diffusers is not installed.")

def print_memory(device):
    memory = torch.cuda.memory_allocated(device) / 1024**3
    max_memory = torch.cuda.max_memory_allocated(device) / 1024**3
    max_reserved = torch.cuda.max_memory_reserved(device) / 1024**3
    log.info(f"Allocated memory: {memory=:.3f} GB")
    log.info(f"Max allocated memory: {max_memory=:.3f} GB")
    log.info(f"Max reserved memory: {max_reserved=:.3f} GB")
    #memory_summary = torch.cuda.memory_summary(device=device, abbreviated=False)
    #log.info(f"Memory Summary:\n{memory_summary}")

def rotate_mesh_matrix(mesh, angle, axis='z'):
    # Create rotation matrix
    matrix = trimesh.transformations.rotation_matrix(
        angle=np.radians(angle),  # Convert degrees to radians
        direction={
            'x': [1, 0, 0],
            'y': [0, 1, 0],
            'z': [0, 0, 1]
        }[axis]
    )
    return mesh.apply_transform(matrix)
        
def intrinsics_to_projection(
        intrinsics: torch.Tensor,
        near: float,
        far: float,
    ) -> torch.Tensor:
    """
    OpenCV intrinsics to OpenGL perspective matrix

    Args:
        intrinsics (torch.Tensor): [3, 3] OpenCV intrinsics matrix
        near (float): near plane to clip
        far (float): far plane to clip
    Returns:
        (torch.Tensor): [4, 4] OpenGL perspective matrix
    """
    fx, fy = intrinsics[0, 0], intrinsics[1, 1]
    cx, cy = intrinsics[0, 2], intrinsics[1, 2]
    ret = torch.zeros((4, 4), dtype=intrinsics.dtype, device=intrinsics.device)
    ret[0, 0] = 2 * fx
    ret[1, 1] = 2 * fy
    ret[0, 2] = 2 * cx - 1
    ret[1, 2] = - 2 * cy + 1
    ret[2, 2] = far / (far - near)
    ret[2, 3] = near * far / (near - far)
    ret[3, 2] = 1.
    return ret

def yaw_pitch_r_fov_to_extrinsics_intrinsics(yaws, pitchs, rs, fovs):
    import utils3d
    is_list = isinstance(yaws, list)
    if not is_list:
        yaws = [yaws]
        pitchs = [pitchs]
    if not isinstance(rs, list):
        rs = [rs] * len(yaws)
    if not isinstance(fovs, list):
        fovs = [fovs] * len(yaws)
    extrinsics = []
    intrinsics = []
    for yaw, pitch, r, fov in zip(yaws, pitchs, rs, fovs):
        fov = torch.deg2rad(torch.tensor(float(fov))).cuda()
        yaw = torch.tensor(float(yaw)).cuda()
        pitch = torch.tensor(float(pitch)).cuda()
        orig = torch.tensor([
            torch.sin(yaw) * torch.cos(pitch),
            torch.cos(yaw) * torch.cos(pitch),
            torch.sin(pitch),
        ]).cuda() * r
        extr = utils3d.torch.extrinsics_look_at(orig, torch.tensor([0, 0, 0]).float().cuda(), torch.tensor([0, 0, 1]).float().cuda())
        intr = utils3d.torch.intrinsics_from_fov_xy(fov, fov)
        extrinsics.append(extr)
        intrinsics.append(intr)
    if not is_list:
        extrinsics = extrinsics[0]
        intrinsics = intrinsics[0]
    return extrinsics, intrinsics