File size: 10,079 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import torch
import gc


from diffusers.utils.torch_utils import randn_tensor
import comfy.model_management as mm
from ..utils.rope_utils import get_rotary_pos_embed
from ..utils.latent_preview import prepare_callback


class HyVideoFlowEditSamplerNode:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "model": ("HYVIDEOMODEL",),
                "source_embeds": ("HYVIDEMBEDS", ),
                "target_embeds": ("HYVIDEMBEDS", ),
                "samples": ("LATENT", {"tooltip": "init Latents to use for video2video process"} ),
                "steps": ("INT", {"default": 30, "min": 1}),
                "skip_steps": ("INT", {"default": 4, "min": 0}),
                "drift_steps": ("INT", {"default": 0, "min": 0}),
                "source_guidance_scale": ("FLOAT", {"default": 6.0, "min": 0.0, "max": 30.0, "step": 0.01}),
                "target_guidance_scale": ("FLOAT", {"default": 12.0, "min": 0.0, "max": 30.0, "step": 0.01}),
                "flow_shift": ("FLOAT", {"default": 3.0, "min": 1.0, "max": 30.0, "step": 0.01}),
                "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                "force_offload": ("BOOLEAN", {"default": True}),
            },
        }

    RETURN_TYPES = ("LATENT",)
    RETURN_NAMES = ("samples",)
    FUNCTION = "process"
    CATEGORY = "hunyuanloom"

    def process(self, 
                model, 
                source_embeds, 
                target_embeds,
                flow_shift, 
                steps, 
                skip_steps,
                drift_steps,
                source_guidance_scale, 
                target_guidance_scale,
                seed, 
                samples, 
                force_offload):
        model = model.model
        device = mm.get_torch_device()
        offload_device = mm.unet_offload_device()
        dtype = model["dtype"]
        transformer = model["pipe"].transformer
        pipeline = model["pipe"]
        
        generator = torch.Generator(device=torch.device("cpu")).manual_seed(seed)

        latents = samples["samples"] if samples is not None else None
        batch_size, num_channels_latents, latent_num_frames, latent_height, latent_width = latents.shape
        height = latent_height * pipeline.vae_scale_factor
        width = latent_width * pipeline.vae_scale_factor
        num_frames = (latent_num_frames - 1) * 4 + 1

        if width <= 0 or height <= 0 or num_frames <= 0:
            raise ValueError(
                f"`height` and `width` and `video_length` must be positive integers, got height={height}, width={width}, video_length={num_frames}"
            )
        if (num_frames - 1) % 4 != 0:
            raise ValueError(
                f"`video_length-1` must be a multiple of 4, got {num_frames}"
            )

        freqs_cos, freqs_sin = get_rotary_pos_embed(transformer, num_frames, height, width)

        pipeline.scheduler.shift = flow_shift
  
        if model["block_swap_args"] is not None:
            for name, param in transformer.named_parameters():
                #print(name, param.data.device)
                if "single" not in name and "double" not in name:
                    param.data = param.data.to(device)
                
            transformer.block_swap(
                model["block_swap_args"]["double_blocks_to_swap"] - 1 , 
                model["block_swap_args"]["single_blocks_to_swap"] - 1,
                offload_txt_in = model["block_swap_args"]["offload_txt_in"],
                offload_img_in = model["block_swap_args"]["offload_img_in"],
            )
        elif model["manual_offloading"]:
            transformer.to(device)

        mm.soft_empty_cache()
        gc.collect()
        
        try:
            torch.cuda.reset_peak_memory_stats(device)
        except:
            pass
        
        pipeline.scheduler.set_timesteps(steps, device=device)
        timesteps = pipeline.scheduler.timesteps
        timesteps = torch.cat([timesteps, torch.tensor([0]).to(timesteps.device)]).to(timesteps.device)

        latent_video_length = (num_frames - 1) // 4 + 1

        # 5. Prepare latent variables
        num_channels_latents = transformer.config.in_channels
        
        latents = latents.to(device)

        shape = (
            1,
            num_channels_latents,
            latent_video_length,
            int(height) // pipeline.vae_scale_factor,
            int(width) // pipeline.vae_scale_factor,
        )
        noise = randn_tensor(shape, generator=generator, device=device, dtype=torch.float32)
        
        frames_needed = noise.shape[1]
        current_frames = latents.shape[1]
        
        if frames_needed > current_frames:
            repeat_factor = frames_needed - current_frames
            additional_frame = torch.randn((latents.size(0), repeat_factor, latents.size(2), latents.size(3), latents.size(4)), dtype=latents.dtype, device=latents.device)
            latents = torch.cat((additional_frame, latents), dim=1)
            self.additional_frames = repeat_factor
        elif frames_needed < current_frames:
            latents = latents[:, :frames_needed, :, :, :]
            

        # 7. Denoising loop
        self._num_timesteps = len(timesteps)

        callback = prepare_callback(transformer, steps)

        x_init = latents.clone()

        from comfy.utils import ProgressBar
        from tqdm import tqdm
        comfy_pbar = ProgressBar(len(timesteps))
        N = len(timesteps)

        x_tgt = latents

        with tqdm(total=len(timesteps)) as progress_bar:
            for idx, (t, t_prev) in enumerate(zip(timesteps[:-1], timesteps[1:])):
                if idx < skip_steps:
                    continue
                t_expand = t.repeat(x_init.shape[0])
                source_guidance_expand = (
                    torch.tensor(
                        [source_guidance_scale] * x_init.shape[0],
                        dtype=torch.float32,
                        device=device,
                    ).to(pipeline.base_dtype)
                    * 1000.0
                    if source_guidance_scale is not None
                    else None
                )

                target_guidance_expand = (
                    torch.tensor(
                        [target_guidance_scale] * x_init.shape[0],
                        dtype=torch.float32,
                        device=device,
                    ).to(pipeline.base_dtype)
                    * 1000.0
                    if target_guidance_scale is not None
                    else None
                )

                # predict the noise residual
                with torch.autocast(
                    device_type="cuda", dtype=pipeline.base_dtype, enabled=True
                ):
                    
                    noise = torch.randn(x_init.shape, generator=generator).to(x_init.device)

                    sigma = t / 1000.0
                    sigma_prev = t_prev / 1000.0

                    zt_src = (1-sigma)*x_init + sigma*noise

                    if idx < N-drift_steps:
                        zt_tgt = x_tgt + zt_src - x_init
                        vt_src = transformer(  # For an input image (129, 192, 336) (1, 256, 256)
                            zt_src,  # [2, 16, 33, 24, 42]
                            t_expand,  # [2]
                            text_states=source_embeds["prompt_embeds"],  # [2, 256, 4096]
                            text_mask=source_embeds["attention_mask"],  # [2, 256]
                            text_states_2=source_embeds["prompt_embeds_2"],  # [2, 768]
                            freqs_cos=freqs_cos,  # [seqlen, head_dim]
                            freqs_sin=freqs_sin,  # [seqlen, head_dim]
                            guidance=source_guidance_expand,
                            stg_block_idx=-1,
                            stg_mode=None,
                            return_dict=True,
                        )["x"]
                    else:
                        if idx == N - drift_steps:
                            x_tgt = x_tgt + zt_src - x_init
                        zt_tgt = x_tgt
                        vt_src = 0

                    vt_tgt = transformer(  # For an input image (129, 192, 336) (1, 256, 256)
                        zt_tgt,  # [2, 16, 33, 24, 42]
                        t_expand,  # [2]
                        text_states=target_embeds["prompt_embeds"],  # [2, 256, 4096]
                        text_mask=target_embeds["attention_mask"],  # [2, 256]
                        text_states_2=target_embeds["prompt_embeds_2"],  # [2, 768]
                        freqs_cos=freqs_cos,  # [seqlen, head_dim]
                        freqs_sin=freqs_sin,  # [seqlen, head_dim]
                        guidance=target_guidance_expand,
                        stg_block_idx=-1,
                        stg_mode=None,
                        return_dict=True,
                    )["x"]

                    v_delta = vt_tgt - vt_src
                
                x_tgt = x_tgt.to(torch.float32)
                v_delta = v_delta.to(torch.float32)


                x_tgt = x_tgt + (sigma_prev - sigma) * v_delta
                x_tgt = x_tgt.to(torch.bfloat16)

                # compute the previous noisy sample x_t -> x_t-1
                #latents = pipeline.scheduler.step(noise_pred, t, latents, return_dict=False)[0]

                
                progress_bar.update()
                if callback is not None:
                        callback(idx, latents.detach()[-1].permute(1,0,2,3), None, steps)
                else:
                    comfy_pbar.update(1)
                  
        try:
            torch.cuda.reset_peak_memory_stats(device)
        except:
            pass
        
        if force_offload:
            if model["manual_offloading"]:
                transformer.to(offload_device)
                mm.soft_empty_cache()
                gc.collect()

        return ({
            "samples": x_tgt
            },)