File size: 6,040 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import torch
from tqdm import trange

from comfy.samplers import KSAMPLER


def generate_eta_values(steps, start_time, end_time, eta, eta_trend):
    eta_values = [0] * steps
    
    if eta_trend == 'constant':
        for i in range(start_time, end_time):
            eta_values[i] = eta
    elif eta_trend == 'linear_increase':
        for i in range(start_time, end_time):
            progress = (i - start_time) / (end_time - start_time - 1)
            eta_values[i] = eta * progress
    elif eta_trend == 'linear_decrease':
        for i in range(start_time, end_time):
            progress = 1 - (i - start_time) / (end_time - start_time - 1)
            eta_values[i] = eta * progress
    
    return eta_values



def get_sample_forward(gamma, start_step, end_step, gamma_trend, seed):
    # Controlled Forward ODE (Algorithm 1)

    @torch.no_grad()
    def sample_forward(model, y0, sigmas, extra_args=None, callback=None, disable=None):
        generator = torch.Generator()
        generator.manual_seed(seed)
        extra_args = {} if extra_args is None else extra_args
        Y = y0.clone()
        y1 = torch.randn(Y.shape, generator=generator).to(y0.device)
        N = len(sigmas)-1
        s_in = y0.new_ones([y0.shape[0]])
        gamma_values = generate_eta_values(N, start_step, end_step, gamma, gamma_trend)
        for i in trange(N, disable=disable):
            # t_i = model.inner_model.inner_model.model_sampling.timestep(sigmas[i]) - old code
            t_i = sigmas[i] / max(sigmas)  # - new code

            # 6. Unconditional Vector field uti(Yti) = u(Yti, ti, Φ(“”); φ)
            unconditional_vector_field = model(Y, s_in * sigmas[i], **extra_args) # this implementation takes sigma instead of timestep
            
            # 7.Conditional Vector field  uti(Yti|y1) = (y1−Yti)/1−ti
            conditional_vector_field = (y1-Y)/(1-t_i)
            
            # 8. Controlled Vector field ti(Yti) = uti(Yti) + γ (uti(Yti|y1) − uti(Yti))
            controlled_vector_field = unconditional_vector_field + gamma_values[i] * (conditional_vector_field - unconditional_vector_field)
            
            # 9. Next state Yti+1 = Yti + ˆuti(Yti) (σ(ti+1) − σ(ti))
            Y = Y + controlled_vector_field * (sigmas[i+1] - sigmas[i])

            if callback is not None:
                callback({'x': Y, 'denoised': Y, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i]})

        return Y

    return sample_forward



def get_sample_reverse(latent_image, eta, start_time, end_time, eta_trend):
    # Controlled Reverse ODE (Algorithm 2)
    @torch.no_grad()
    def sample_reverse(model, y1, sigmas, extra_args=None, callback=None, disable=None):
        extra_args = {} if extra_args is None else extra_args
        X = y1.clone()
        N = len(sigmas)-1
        y0 = latent_image.clone().to(y1.device)
        s_in = y0.new_ones([y0.shape[0]])
        eta_values = generate_eta_values(N, start_time, end_time, eta, eta_trend)
        for i in trange(N, disable=disable):
            # t_i = 1-model.inner_model.inner_model.model_sampling.timestep(sigmas[i]) # TODO: figure out which one to use
            t_i = i/N # Empiracally better results
            sigma = sigmas[i]

            # 5. Unconditional Vector field uti(Xti) = -u(Xti, 1-ti, Φ(“prompt”); φ)
            unconditional_vector_field = -model(X, sigma*s_in, **extra_args) # this implementation takes sigma instead of timestep
            
            # 6.Conditional Vector field  uti(Xti|y0) = (y0−Xti)/(1−ti)
            conditional_vector_field = (y0-X)/(1-t_i)
            
            # 7. Controlled Vector field ti(Yti) = uti(Yti) + γ (uti(Yti|y1) − uti(Yti))
            controlled_vector_field = unconditional_vector_field + eta_values[i] * (conditional_vector_field - unconditional_vector_field)
            
            # 8. Next state Yti+1 = Yti + ˆuti(Yti) (σ(ti+1) − σ(ti))
            X = X + controlled_vector_field * (sigmas[i] - sigmas[i+1])

            if callback is not None:
                callback({'x': X, 'denoised': X, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i]})

        return X
    
    return sample_reverse


class HYForwardODESamplerNode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { 
            "gamma": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 100.0, "step": 0.01}),
            "start_step": ("INT", {"default": 0, "min": 0, "max": 1000, "step": 1}),
            "end_step": ("INT", {"default": 5, "min": 0, "max": 1000, "step": 1}),
            "gamma_trend": (['constant', 'linear_increase', 'linear_decrease'],)
        }, "optional": {
            "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff }),
        }}
    RETURN_TYPES = ("SAMPLER",)
    FUNCTION = "build"

    CATEGORY = "hunyuanloom"

    def build(self, gamma, start_step, end_step, gamma_trend, seed=0):
        sampler = KSAMPLER(get_sample_forward(gamma, start_step, end_step, gamma_trend, seed))

        return (sampler, )


class HYReverseODESamplerNode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { 
            "model": ("MODEL",),
            "latent_image": ("LATENT",),
            "eta": ("FLOAT", {"default": 0.8, "min": 0.0, "max": 100.0, "step": 0.01}),
            "start_step": ("INT", {"default": 0, "min": 0, "max": 1000, "step": 1}),
            "end_step": ("INT", {"default": 5, "min": 0, "max": 1000, "step": 1}),
        }, "optional": {
            "eta_trend": (['constant', 'linear_increase', 'linear_decrease'],)
        }}
    RETURN_TYPES = ("SAMPLER",)
    FUNCTION = "build"

    CATEGORY = "hunyuanloom"

    def build(self, model, latent_image, eta, start_step, end_step, eta_trend='constant'):
        process_latent_in = model.get_model_object("process_latent_in")
        latent_image = process_latent_in(latent_image['samples'])
        sampler = KSAMPLER(get_sample_reverse(latent_image, eta, start_step, end_step, eta_trend))

        return (sampler, )