File size: 10,817 Bytes
82ea528 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import torch
import gc
from diffusers.utils.torch_utils import randn_tensor
import comfy.model_management as mm
from ..utils.rope_utils import get_rotary_pos_embed
from ..utils.latent_preview import prepare_callback
VAE_SCALING_FACTOR = 0.476986
class HyVideoFlowEditSamplerNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("HYVIDEOMODEL",),
"source_embeds": ("HYVIDEMBEDS", ),
"target_embeds": ("HYVIDEMBEDS", ),
"samples": ("LATENT", {"tooltip": "init Latents to use for video2video process"} ),
"steps": ("INT", {"default": 30, "min": 1}),
"skip_steps": ("INT", {"default": 4, "min": 0}),
"drift_steps": ("INT", {"default": 0, "min": 0}),
"source_guidance_scale": ("FLOAT", {"default": 6.0, "min": 0.0, "max": 30.0, "step": 0.01}),
"target_guidance_scale": ("FLOAT", {"default": 12.0, "min": 0.0, "max": 30.0, "step": 0.01}),
"drift_guidance_scale": ("FLOAT", {"default": 6.0, "min": 0.0, "max": 30.0, "step": 0.01}),
"flow_shift": ("FLOAT", {"default": 6.0, "min": 1.0, "max": 30.0, "step": 0.01}),
"drift_flow_shift": ("FLOAT", {"default": 3.0, "min": 1.0, "max": 30.0, "step": 0.01}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"force_offload": ("BOOLEAN", {"default": True}),
},
}
RETURN_TYPES = ("LATENT",)
RETURN_NAMES = ("samples",)
FUNCTION = "process"
CATEGORY = "hunyuanloom"
def process(self,
model,
source_embeds,
target_embeds,
flow_shift,
drift_flow_shift,
steps,
skip_steps,
drift_steps,
source_guidance_scale,
target_guidance_scale,
drift_guidance_scale,
seed,
samples,
force_offload):
model = model.model
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
transformer = model["pipe"].transformer
pipeline = model["pipe"]
generator = torch.Generator(device=torch.device("cpu")).manual_seed(seed)
latents = samples["samples"] * VAE_SCALING_FACTOR if samples is not None else None
batch_size, num_channels_latents, latent_num_frames, latent_height, latent_width = latents.shape
height = latent_height * pipeline.vae_scale_factor
width = latent_width * pipeline.vae_scale_factor
num_frames = (latent_num_frames - 1) * 4 + 1
if width <= 0 or height <= 0 or num_frames <= 0:
raise ValueError(
f"`height` and `width` and `video_length` must be positive integers, got height={height}, width={width}, video_length={num_frames}"
)
if (num_frames - 1) % 4 != 0:
raise ValueError(
f"`video_length-1` must be a multiple of 4, got {num_frames}"
)
freqs_cos, freqs_sin = get_rotary_pos_embed(transformer, num_frames, height, width)
freqs_cos = freqs_cos.to(device)
freqs_sin = freqs_sin.to(device)
if model["block_swap_args"] is not None:
for name, param in transformer.named_parameters():
#print(name, param.data.device)
if "single" not in name and "double" not in name:
param.data = param.data.to(device)
transformer.block_swap(
model["block_swap_args"]["double_blocks_to_swap"] - 1 ,
model["block_swap_args"]["single_blocks_to_swap"] - 1,
offload_txt_in = model["block_swap_args"]["offload_txt_in"],
offload_img_in = model["block_swap_args"]["offload_img_in"],
)
elif model["manual_offloading"]:
transformer.to(device)
mm.soft_empty_cache()
gc.collect()
try:
torch.cuda.reset_peak_memory_stats(device)
except:
pass
# drift_flow_shift
pipeline.scheduler.flow_shift = flow_shift
pipeline.scheduler.set_timesteps(steps, device=device)
timesteps = pipeline.scheduler.timesteps
timesteps = torch.cat([timesteps, torch.tensor([0]).to(timesteps.device)]).to(timesteps.device)
pipeline.scheduler.flow_shift = drift_flow_shift
pipeline.scheduler.set_timesteps(steps, device=device)
drift_timesteps = pipeline.scheduler.timesteps
drift_timesteps = torch.cat([drift_timesteps, torch.tensor([0]).to(drift_timesteps.device)]).to(drift_timesteps.device)
timesteps[-drift_steps:] = drift_timesteps[-drift_steps:]
latent_video_length = (num_frames - 1) // 4 + 1
# 5. Prepare latent variables
num_channels_latents = transformer.config.in_channels
latents = latents.to(device)
shape = (
1,
num_channels_latents,
latent_video_length,
int(height) // pipeline.vae_scale_factor,
int(width) // pipeline.vae_scale_factor,
)
noise = randn_tensor(shape, generator=generator, device=device, dtype=torch.float32)
frames_needed = noise.shape[1]
current_frames = latents.shape[1]
if frames_needed > current_frames:
repeat_factor = frames_needed - current_frames
additional_frame = torch.randn((latents.size(0), repeat_factor, latents.size(2), latents.size(3), latents.size(4)), dtype=latents.dtype, device=latents.device)
latents = torch.cat((additional_frame, latents), dim=1)
self.additional_frames = repeat_factor
elif frames_needed < current_frames:
latents = latents[:, :frames_needed, :, :, :]
# 7. Denoising loop
callback = prepare_callback(transformer, steps)
x_init = latents.clone()
from comfy.utils import ProgressBar
from tqdm import tqdm
comfy_pbar = ProgressBar(len(timesteps))
N = len(timesteps)
x_tgt = latents
with tqdm(total=len(timesteps)) as progress_bar:
for idx, (t, t_prev) in enumerate(zip(timesteps[:-1], timesteps[1:])):
if idx < skip_steps:
continue
t_expand = t.repeat(x_init.shape[0])
source_guidance_expand = (
torch.tensor(
[source_guidance_scale] * x_init.shape[0],
dtype=torch.float32,
device=device,
).to(pipeline.base_dtype)
* 1000.0
if source_guidance_scale is not None
else None
)
if idx < N-drift_steps:
current_guidance_scale = target_guidance_scale
else:
current_guidance_scale = drift_guidance_scale
target_guidance_expand = (
torch.tensor(
[current_guidance_scale] * x_init.shape[0],
dtype=torch.float32,
device=device,
).to(pipeline.base_dtype)
* 1000.0
if target_guidance_scale is not None
else None
)
with torch.autocast(
device_type="cuda", dtype=pipeline.base_dtype, enabled=True
):
noise = torch.randn(x_init.shape, generator=generator).to(x_init.device)
sigma = t / 1000.0
sigma_prev = t_prev / 1000.0
zt_src = (1-sigma) * x_init + sigma * noise
zt_tgt = x_tgt + zt_src - x_init
if idx < N-drift_steps:
vt_src = transformer( # For an input image (129, 192, 336) (1, 256, 256)
zt_src, # [2, 16, 33, 24, 42]
t_expand, # [2]
text_states=source_embeds["prompt_embeds"], # [2, 256, 4096]
text_mask=source_embeds["attention_mask"], # [2, 256]
text_states_2=source_embeds["prompt_embeds_2"], # [2, 768]
freqs_cos=freqs_cos, # [seqlen, head_dim]
freqs_sin=freqs_sin, # [seqlen, head_dim]
guidance=source_guidance_expand,
stg_block_idx=-1,
stg_mode=None,
return_dict=True,
)["x"]
else:
if idx == N - drift_steps:
x_tgt = zt_tgt
zt_tgt = x_tgt
vt_src = 0
vt_tgt = transformer( # For an input image (129, 192, 336) (1, 256, 256)
zt_tgt, # [2, 16, 33, 24, 42]
t_expand, # [2]
text_states=target_embeds["prompt_embeds"], # [2, 256, 4096]
text_mask=target_embeds["attention_mask"], # [2, 256]
text_states_2=target_embeds["prompt_embeds_2"], # [2, 768]
freqs_cos=freqs_cos, # [seqlen, head_dim]
freqs_sin=freqs_sin, # [seqlen, head_dim]
guidance=target_guidance_expand,
stg_block_idx=-1,
stg_mode=None,
return_dict=True,
)["x"]
v_delta = vt_tgt - vt_src
x_tgt = x_tgt.to(torch.float32)
v_delta = v_delta.to(torch.float32)
x_tgt = x_tgt + (sigma_prev - sigma) * v_delta
x_tgt = x_tgt.to(torch.bfloat16)
progress_bar.update()
if callback is not None:
callback(idx, (zt_tgt - vt_tgt * sigma).detach()[-1].permute(1,0,2,3), None, steps)
else:
comfy_pbar.update(1)
try:
torch.cuda.reset_peak_memory_stats(device)
except:
pass
if force_offload:
if model["manual_offloading"]:
transformer.to(offload_device)
mm.soft_empty_cache()
gc.collect()
return ({
"samples": x_tgt / VAE_SCALING_FACTOR
},)
|