File size: 21,046 Bytes
82ea528 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 |
import torch
import torchvision.transforms as transforms
import folder_paths
import os
import types
import numpy as np
import torch.nn.functional as F
from comfy.utils import load_torch_file
from .utils.convert_unet import convert_iclight_unet
from .utils.patches import calculate_weight_adjust_channel
from .utils.image import generate_gradient_image, LightPosition
from nodes import MAX_RESOLUTION
from comfy.model_patcher import ModelPatcher
from comfy import lora
import model_management
import logging
class LoadAndApplyICLightUnet:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"model_path": (folder_paths.get_filename_list("unet"), )
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "load"
CATEGORY = "IC-Light"
DESCRIPTION = """
Loads and applies the diffusers SD1.5 IC-Light models available here:
https://huggingface.co/lllyasviel/ic-light/tree/main
Used with ICLightConditioning -node
"""
def load(self, model, model_path):
type_str = str(type(model.model.model_config).__name__)
if "SD15" not in type_str:
raise Exception(f"Attempted to load {type_str} model, IC-Light is only compatible with SD 1.5 models.")
print("LoadAndApplyICLightUnet: Checking IC-Light Unet path")
model_full_path = folder_paths.get_full_path("unet", model_path)
if not os.path.exists(model_full_path):
raise Exception("Invalid model path")
else:
print("LoadAndApplyICLightUnet: Loading IC-Light Unet weights")
model_clone = model.clone()
iclight_state_dict = load_torch_file(model_full_path)
print("LoadAndApplyICLightUnet: Attempting to add patches with IC-Light Unet weights")
try:
if 'conv_in.weight' in iclight_state_dict:
iclight_state_dict = convert_iclight_unet(iclight_state_dict)
in_channels = iclight_state_dict["diffusion_model.input_blocks.0.0.weight"].shape[1]
for key in iclight_state_dict:
model_clone.add_patches({key: (iclight_state_dict[key],)}, 1.0, 1.0)
else:
for key in iclight_state_dict:
model_clone.add_patches({"diffusion_model." + key: (iclight_state_dict[key],)}, 1.0, 1.0)
in_channels = iclight_state_dict["input_blocks.0.0.weight"].shape[1]
except:
raise Exception("Could not patch model")
print("LoadAndApplyICLightUnet: Added LoadICLightUnet patches")
#Patch ComfyUI's LoRA weight application to accept multi-channel inputs. Thanks @huchenlei
try:
if hasattr(lora, 'calculate_weight'):
lora.calculate_weight = calculate_weight_adjust_channel(lora.calculate_weight)
else:
raise Exception("IC-Light: The 'calculate_weight' function does not exist in 'lora'")
except Exception as e:
raise Exception(f"IC-Light: Could not patch calculate_weight - {str(e)}")
# Mimic the existing IP2P class to enable extra_conds
def bound_extra_conds(self, **kwargs):
return ICLight.extra_conds(self, **kwargs)
new_extra_conds = types.MethodType(bound_extra_conds, model_clone.model)
model_clone.add_object_patch("extra_conds", new_extra_conds)
model_clone.model.model_config.unet_config["in_channels"] = in_channels
return (model_clone, )
import comfy
class ICLight:
def extra_conds(self, **kwargs):
out = {}
image = kwargs.get("concat_latent_image", None)
noise = kwargs.get("noise", None)
device = kwargs["device"]
model_in_channels = self.model_config.unet_config['in_channels']
input_channels = image.shape[1] + 4
if model_in_channels != input_channels:
raise Exception(f"Input channels {input_channels} does not match model in_channels {model_in_channels}, 'opt_background' latent input should be used with the IC-Light 'fbc' model, and only with it")
if image is None:
image = torch.zeros_like(noise)
if image.shape[1:] != noise.shape[1:]:
image = comfy.utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
image = comfy.utils.resize_to_batch_size(image, noise.shape[0])
process_image_in = lambda image: image
out['c_concat'] = comfy.conds.CONDNoiseShape(process_image_in(image))
adm = self.encode_adm(**kwargs)
if adm is not None:
out['y'] = comfy.conds.CONDRegular(adm)
return out
class ICLightConditioning:
@classmethod
def INPUT_TYPES(s):
return {"required": {"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"vae": ("VAE", ),
"foreground": ("LATENT", ),
"multiplier": ("FLOAT", {"default": 0.18215, "min": 0.0, "max": 1.0, "step": 0.001}),
},
"optional": {
"opt_background": ("LATENT", ),
},
}
RETURN_TYPES = ("CONDITIONING","CONDITIONING","LATENT")
RETURN_NAMES = ("positive", "negative", "empty_latent")
FUNCTION = "encode"
CATEGORY = "IC-Light"
DESCRIPTION = """
Conditioning for the IC-Light model.
To use the "opt_background" input, you also need to use the
"fbc" version of the IC-Light models.
"""
def encode(self, positive, negative, vae, foreground, multiplier, opt_background=None):
samples_1 = foreground["samples"]
if opt_background is not None:
samples_2 = opt_background["samples"]
repeats_1 = samples_2.size(0) // samples_1.size(0)
repeats_2 = samples_1.size(0) // samples_2.size(0)
if samples_1.shape[1:] != samples_2.shape[1:]:
samples_2 = comfy.utils.common_upscale(samples_2, samples_1.shape[-1], samples_1.shape[-2], "bilinear", "disabled")
# Repeat the tensors to match the larger batch size
if repeats_1 > 1:
samples_1 = samples_1.repeat(repeats_1, 1, 1, 1)
if repeats_2 > 1:
samples_2 = samples_2.repeat(repeats_2, 1, 1, 1)
concat_latent = torch.cat((samples_1, samples_2), dim=1)
else:
concat_latent = samples_1
out_latent = torch.zeros_like(samples_1)
out = []
for conditioning in [positive, negative]:
c = []
for t in conditioning:
d = t[1].copy()
d["concat_latent_image"] = concat_latent * multiplier
n = [t[0], d]
c.append(n)
out.append(c)
return (out[0], out[1], {"samples": out_latent})
class LightSource:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"light_position": ([member.value for member in LightPosition],),
"multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.001}),
"start_color": ("STRING", {"default": "#FFFFFF"}),
"end_color": ("STRING", {"default": "#000000"}),
"width": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
"height": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
},
"optional": {
"batch_size": ("INT", { "default": 1, "min": 1, "max": 4096, "step": 1, }),
"prev_image": ("IMAGE",),
}
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "IC-Light"
DESCRIPTION = """
Generates a gradient image that can be used
as a simple light source. The color can be
specified in RGB or hex format.
"""
def execute(self, light_position, multiplier, start_color, end_color, width, height, batch_size=1, prev_image=None):
def toRgb(color):
if color.startswith('#') and len(color) == 7: # e.g. "#RRGGBB"
color_rgb =tuple(int(color[i:i+2], 16) for i in (1, 3, 5))
else: # e.g. "255,255,255"
color_rgb = tuple(int(i) for i in color.split(','))
return color_rgb
lightPosition = LightPosition(light_position)
start_color_rgb = toRgb(start_color)
end_color_rgb = toRgb(end_color)
image = generate_gradient_image(width, height, start_color_rgb, end_color_rgb, multiplier, lightPosition)
image = image.astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
image = image.repeat(batch_size, 1, 1, 1)
if prev_image is not None:
image = torch.cat((prev_image, image), dim=0)
return (image,)
class CalculateNormalsFromImages:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE",),
"sigma": ("FLOAT", { "default": 10.0, "min": 0.01, "max": 100.0, "step": 0.01, }),
"center_input_range": ("BOOLEAN", { "default": False, }),
},
"optional": {
"mask": ("MASK",),
}
}
RETURN_TYPES = ("IMAGE", "IMAGE",)
RETURN_NAMES = ("normal", "divided",)
FUNCTION = "execute"
CATEGORY = "IC-Light"
DESCRIPTION = """
Calculates normal map from different directional exposures.
Takes in 4 images as a batch:
left, right, bottom, top
"""
def execute(self, images, sigma, center_input_range, mask=None):
B, H, W, C = images.shape
repetitions = B // 4
if center_input_range:
images = images * 0.5 + 0.5
if mask is not None:
if mask.shape[-2:] != images[0].shape[:-1]:
mask = mask.unsqueeze(0)
mask = F.interpolate(mask, size=(images.shape[1], images.shape[2]), mode="bilinear")
mask = mask.squeeze(0)
normal_list = []
divided_list = []
iteration_counter = 0
for i in range(0, B, 4): # Loop over every 4 images
index = torch.arange(iteration_counter, B, repetitions)
rearranged_images = images[index]
images_np = rearranged_images.numpy().astype(np.float32)
left = images_np[0]
right = images_np[1]
bottom = images_np[2]
top = images_np[3]
ambient = (left + right + bottom + top) / 4.0
def safe_divide(a, b):
e = 1e-5
return ((a + e) / (b + e)) - 1.0
left = safe_divide(left, ambient)
right = safe_divide(right, ambient)
bottom = safe_divide(bottom, ambient)
top = safe_divide(top, ambient)
u = (right - left) * 0.5
v = (top - bottom) * 0.5
u = np.mean(u, axis=2)
v = np.mean(v, axis=2)
h = (1.0 - u ** 2.0 - v ** 2.0).clip(0, 1e5) ** (0.5 * sigma)
z = np.zeros_like(h)
normal = np.stack([u, v, h], axis=2)
normal /= np.sum(normal ** 2.0, axis=2, keepdims=True) ** 0.5
if mask is not None:
matting = mask[iteration_counter].unsqueeze(0).numpy().astype(np.float32)
matting = matting[..., np.newaxis]
normal = normal * matting + np.stack([z, z, 1 - z], axis=2)
normal = torch.from_numpy(normal)
#normal = normal.unsqueeze(0)
else:
normal = normal + np.stack([z, z, 1 - z], axis=2)
normal = torch.from_numpy(normal).unsqueeze(0)
iteration_counter += 1
normal = (normal - normal.min()) / ((normal.max() - normal.min()))
normal_list.append(normal)
divided = np.stack([left, right, bottom, top])
divided = torch.from_numpy(divided)
divided = (divided - divided.min()) / ((divided.max() - divided.min()))
divided = torch.max(divided, dim=3, keepdim=True)[0].repeat(1, 1, 1, 3)
divided_list.append(divided)
normal_out = torch.cat(normal_list, dim=0)
divided_out = torch.cat(divided_list, dim=0)
return (normal_out, divided_out, )
class LoadHDRImage:
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
return {"required":
{"image": (sorted(files), {"image_upload": False}),
"exposures": ("STRING", {"default": "-2,-1,0,1,2"}),
},
}
CATEGORY = "IC-Light"
RETURN_TYPES = ("IMAGE", "MASK")
FUNCTION = "loadhdrimage"
DESCRIPTION = """
Loads a .hdr image from the input directory.
Output is a batch of LDR images with the selected exposures.
"""
def loadhdrimage(self, image, exposures):
import cv2
image_path = folder_paths.get_annotated_filepath(image)
# Load the HDR image
hdr_image = cv2.imread(image_path, cv2.IMREAD_ANYDEPTH)
exposures = list(map(int, exposures.split(",")))
if not isinstance(exposures, list):
exposures = [exposures] # Example exposure values
ldr_images_tensors = []
for exposure in exposures:
# Scale pixel values to simulate different exposures
ldr_image = np.clip(hdr_image * (2**exposure), 0, 1)
# Convert to 8-bit image (LDR) by scaling to 255
ldr_image_8bit = np.uint8(ldr_image * 255)
# Convert BGR to RGB
ldr_image_8bit = cv2.cvtColor(ldr_image_8bit, cv2.COLOR_BGR2RGB)
# Convert the LDR image to a torch tensor
tensor_image = torch.from_numpy(ldr_image_8bit).float()
# Normalize the tensor to the range [0, 1]
tensor_image = tensor_image / 255.0
# Change the tensor shape to (C, H, W)
tensor_image = tensor_image.permute(2, 0, 1)
# Add the tensor to the list
ldr_images_tensors.append(tensor_image)
batch_tensors = torch.stack(ldr_images_tensors)
batch_tensors = batch_tensors.permute(0, 2, 3, 1)
return batch_tensors,
class BackgroundScaler:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"mask": ("MASK",),
"scale": ("FLOAT", {"default": 0.5, "min": -10.0, "max": 10.0, "step": 0.001}),
"invert": ("BOOLEAN", { "default": False, }),
}
}
CATEGORY = "IC-Light"
RETURN_TYPES = ("IMAGE",)
FUNCTION = "apply"
DESCRIPTION = """
Sets the masked area color in grayscale range.
"""
def apply(self, image: torch.Tensor, mask: torch.Tensor, scale: float, invert: bool):
# Validate inputs
if not isinstance(image, torch.Tensor) or not isinstance(mask, torch.Tensor):
raise ValueError("image and mask must be torch.Tensor types.")
if image.ndim != 4 or mask.ndim not in [3, 4]:
raise ValueError("image must be a 4D tensor, and mask must be a 3D or 4D tensor.")
# Adjust mask dimensions if necessary
if mask.ndim == 3:
# [B, H, W] => [B, H, W, C=1]
mask = mask.unsqueeze(-1)
if invert:
mask = 1 - mask
image_out = image * mask + (1 - mask) * scale
image_out = torch.clamp(image_out, 0, 1).cpu().float()
return (image_out,)
class DetailTransfer:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"target": ("IMAGE", ),
"source": ("IMAGE", ),
"mode": ([
"add",
"multiply",
"screen",
"overlay",
"soft_light",
"hard_light",
"color_dodge",
"color_burn",
"difference",
"exclusion",
"divide",
],
{"default": "add"}
),
"blur_sigma": ("FLOAT", {"default": 1.0, "min": 0.1, "max": 100.0, "step": 0.01}),
"blend_factor": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.001, "round": 0.001}),
},
"optional": {
"mask": ("MASK", ),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "process"
CATEGORY = "IC-Light"
def adjust_mask(self, mask, target_tensor):
# Add a channel dimension and repeat to match the channel number of the target tensor
if len(mask.shape) == 3:
mask = mask.unsqueeze(1) # Add a channel dimension
target_channels = target_tensor.shape[1]
mask = mask.expand(-1, target_channels, -1, -1) # Expand the channel dimension to match the target tensor's channels
return mask
def process(self, target, source, mode, blur_sigma, blend_factor, mask=None):
B, H, W, C = target.shape
device = model_management.get_torch_device()
target_tensor = target.permute(0, 3, 1, 2).clone().to(device)
source_tensor = source.permute(0, 3, 1, 2).clone().to(device)
if target.shape[1:] != source.shape[1:]:
source_tensor = comfy.utils.common_upscale(source_tensor, W, H, "bilinear", "disabled")
if source.shape[0] < B:
source = source[0].unsqueeze(0).repeat(B, 1, 1, 1)
kernel_size = int(6 * int(blur_sigma) + 1)
gaussian_blur = transforms.GaussianBlur(kernel_size=(kernel_size, kernel_size), sigma=(blur_sigma, blur_sigma))
blurred_target = gaussian_blur(target_tensor)
blurred_source = gaussian_blur(source_tensor)
if mode == "add":
tensor_out = (source_tensor - blurred_source) + blurred_target
elif mode == "multiply":
tensor_out = source_tensor * blurred_target
elif mode == "screen":
tensor_out = 1 - (1 - source_tensor) * (1 - blurred_target)
elif mode == "overlay":
tensor_out = torch.where(blurred_target < 0.5, 2 * source_tensor * blurred_target, 1 - 2 * (1 - source_tensor) * (1 - blurred_target))
elif mode == "soft_light":
tensor_out = (1 - 2 * blurred_target) * source_tensor**2 + 2 * blurred_target * source_tensor
elif mode == "hard_light":
tensor_out = torch.where(source_tensor < 0.5, 2 * source_tensor * blurred_target, 1 - 2 * (1 - source_tensor) * (1 - blurred_target))
elif mode == "difference":
tensor_out = torch.abs(blurred_target - source_tensor)
elif mode == "exclusion":
tensor_out = 0.5 - 2 * (blurred_target - 0.5) * (source_tensor - 0.5)
elif mode == "color_dodge":
tensor_out = blurred_target / (1 - source_tensor)
elif mode == "color_burn":
tensor_out = 1 - (1 - blurred_target) / source_tensor
elif mode == "divide":
tensor_out = (source_tensor / blurred_source) * blurred_target
else:
tensor_out = source_tensor
tensor_out = torch.lerp(target_tensor, tensor_out, blend_factor)
if mask is not None:
# Call the function and pass in mask and target_tensor
mask = self.adjust_mask(mask, target_tensor)
mask = mask.to(device)
tensor_out = torch.lerp(target_tensor, tensor_out, mask)
tensor_out = torch.clamp(tensor_out, 0, 1)
tensor_out = tensor_out.permute(0, 2, 3, 1).cpu().float()
return (tensor_out,)
NODE_CLASS_MAPPINGS = {
"LoadAndApplyICLightUnet": LoadAndApplyICLightUnet,
"ICLightConditioning": ICLightConditioning,
"LightSource": LightSource,
"CalculateNormalsFromImages": CalculateNormalsFromImages,
"LoadHDRImage": LoadHDRImage,
"BackgroundScaler": BackgroundScaler,
"DetailTransfer": DetailTransfer
}
NODE_DISPLAY_NAME_MAPPINGS = {
"LoadAndApplyICLightUnet": "Load And Apply IC-Light",
"ICLightConditioning": "IC-Light Conditioning",
"LightSource": "Simple Light Source",
"CalculateNormalsFromImages": "Calculate Normals From Images",
"LoadHDRImage": "Load HDR Image",
"BackgroundScaler": "Background Scaler",
"DetailTransfer": "Detail Transfer"
} |