File size: 17,338 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
# IF_Trellis.py
import os
import torch
import imageio
import numpy as np
import logging
import traceback
from PIL import Image
import folder_paths
from typing import List, Union, Tuple, Literal, Optional, Dict
from easydict import EasyDict as edict
import gc
import comfy.model_management
import trimesh
import trimesh.exchange.export

from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.utils import render_utils, postprocessing_utils
from trellis.representations import Gaussian, MeshExtractResult

logger = logging.getLogger("IF_Trellis")

def get_subpath_after_dir(full_path: str, target_dir: str) -> str:
    try:
        full_path = os.path.normpath(full_path)
        full_path = full_path.replace('\\', '/')
        path_parts = full_path.split('/')
        try:
            index = path_parts.index(target_dir)
            subpath = '/'.join(path_parts[index + 1:])
            return subpath
        except ValueError:
            return path_parts[-1]
    except Exception as e:
        print(f"Error processing path in get_subpath_after_dir: {str(e)}")
        return os.path.basename(full_path)

class IF_TrellisImageTo3D:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "model": ("TRELLIS_MODEL",),
                "mode": (["single", "multi"], {"default": "single", "tooltip": "Mode. single is a single image. with multi you can provide multiple reference angles for the 3D model"}),
                "images": ("IMAGE", {"list": True}),
                "seed": ("INT", {"default": 0, "min": 0, "max": 0x7FFFFFFF}),
                "ss_guidance_strength": ("FLOAT", {"default": 7.5, "min": 0.0, "max": 12.0, "step": 0.1}),
                "ss_sampling_steps": ("INT", {"default": 12, "min": 1, "max": 100}),
                "slat_guidance_strength": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 12.0, "step": 0.1}),
                "slat_sampling_steps": ("INT", {"default": 12, "min": 1, "max": 100}),
                "mesh_simplify": ("FLOAT", {"default": 0.95, "min": 0.9, "max": 1.0, "step": 0.01, "tooltip": "Simplify the mesh. the lower the value more polygons the mesh will have"}),
                "texture_size": ("INT", {"default": 1024, "min": 512, "max": 2048, "step": 512, "tooltip": "Texture size. the higher the value the more detailed the texture will be"}),
                "texture_mode": (["blank", "fast", "opt"], {"default": "fast", "tooltip": "Texture mode. blank is no texture. fast is a fast texture. opt is a high quality texture"}),
                "fps": ("INT", {"default": 15, "min": 1, "max": 60, "tooltip": "FPS. the higher the value the smoother the video will be"}),
                "multimode": (["stochastic", "multidiffusion"], {"default": "stochastic"}),
                "project_name": ("STRING", {"default": "trellis_output"}),
                "save_glb": ("BOOLEAN", {"default": True, "tooltip": "Save the GLB file this is the 3D model"}),
                "render_video": ("BOOLEAN", {"default": False, "tooltip": "Render a video"}),
                "save_gaussian": ("BOOLEAN", {"default": False, "tooltip": "Save the Gaussian file this is a ply file of the 3D model"}),
                "save_texture": ("BOOLEAN", {"default": False, "tooltip": "Save the texture file"}),
                "save_wireframe": ("BOOLEAN", {"default": False, "tooltip": "Save the wireframe file"}),
            },
            "optional": {
                "masks": ("MASK", {"list": True}),
            }
        }

    RETURN_TYPES = ("STRING", "STRING", "IMAGE")
    RETURN_NAMES = ("model_file", "video_path", "texture_image")
    FUNCTION = "image_to_3d"
    CATEGORY = "ImpactFrames💥🎞️/Trellis"
    OUTPUT_NODE = True

    def __init__(self, vertices=None, faces=None, uvs=None, face_uvs=None, albedo=None):
        self.logger = logger
        self.output_dir = folder_paths.get_output_directory()
        self.temp_dir = folder_paths.get_temp_directory()
        self.device = None
        self.vertices = vertices
        self.faces = faces
        self.uvs = uvs
        self.face_uvs = face_uvs
        self.albedo = albedo
        self.normals = None

    def torch_to_pil_batch(self, images: Union[torch.Tensor, List[torch.Tensor]],

                          masks: Optional[torch.Tensor] = None,

                          alpha_min: float = 0.1) -> List[Image.Image]:
        if isinstance(images, list):
            processed_tensors = []
            for img in images:
                if img.ndim == 3:
                    processed_tensors.append(img)
                elif img.ndim == 4:
                    processed_tensors.extend([t for t in img])
            images = torch.stack(processed_tensors, dim=0)

        logger.info(f"torch_to_pil_batch input shape: {images.shape}")
        if images.ndim == 3:
            images = images.unsqueeze(0)

        if images.shape[-1] != 3:
            if images.shape[1] == 3:
                images = images.permute(0, 2, 3, 1)

        processed_images = []
        for i in range(images.shape[0]):
            img = images[i].detach().cpu()
            if masks is not None:
                if isinstance(masks, torch.Tensor):
                    mask = masks[i] if i < masks.shape[0] else masks[0]
                    if mask.ndim > 2:
                        mask = mask.squeeze()
                    if mask.shape != img.shape[:2]:
                        import torch.nn.functional as F
                        mask = F.interpolate(
                            mask.unsqueeze(0).unsqueeze(0),
                            size=img.shape[:2],
                            mode='bilinear',
                            align_corners=False
                        ).squeeze()
                    if torch.any(mask > alpha_min):
                        mask = mask.to(dtype=img.dtype)
                        mask = mask.unsqueeze(-1) if mask.ndim == 2 else mask
                        img = torch.cat([img, mask], dim=-1)
                        mode = "RGBA"
                    else:
                        mode = "RGB"
                else:
                    mode = "RGB"
            else:
                mode = "RGB"
            img_np = (img.numpy() * 255).astype(np.uint8)
            processed_images.append(Image.fromarray(img_np, mode=mode))
            logger.info(f"Processed image {i}, shape: {img_np.shape}, mode: {mode}")

        return processed_images

    def pack_state(self, gaussian, mesh) -> Dict[str, Dict[str, np.ndarray]]:
        return {
            'gaussian': {
                **gaussian.init_params,
                '_xyz': gaussian._xyz.cpu().numpy(),
                '_features_dc': gaussian._features_dc.cpu().numpy(),
                '_scaling': gaussian._scaling.cpu().numpy(),
                '_rotation': gaussian._rotation.cpu().numpy(),
                '_opacity': gaussian._opacity.cpu().numpy(),
            },
            'mesh': {
                'vertices': mesh.vertices.cpu().numpy(),
                'faces': mesh.faces.cpu().numpy(),
            },
        }

    def unpack_state(self, state: dict) -> Tuple[Gaussian, MeshExtractResult]:
        gaussian = Gaussian(
            aabb=state['gaussian']['aabb'],
            sh_degree=state['gaussian']['sh_degree'],
            mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
            scaling_bias=state['gaussian']['scaling_bias'],
            opacity_bias=state['gaussian']['opacity_bias'],
            scaling_activation=state['gaussian']['scaling_activation'],
        )
        gaussian._xyz = torch.tensor(state['gaussian']['_xyz'], device=self.device)
        gaussian._features_dc = torch.tensor(state['gaussian']['_features_dc'], device=self.device)
        gaussian._scaling = torch.tensor(state['gaussian']['_scaling'], device=self.device)
        gaussian._rotation = torch.tensor(state['gaussian']['_rotation'], device=self.device)
        gaussian._opacity = torch.tensor(state['gaussian']['_opacity'], device=self.device)

        mesh = edict(
            vertices=torch.tensor(state['mesh']['vertices'], device=self.device),
            faces=torch.tensor(state['mesh']['faces'], device=self.device),
        )
        return gaussian, mesh

    def generate_outputs(self, outputs, project_name, fps=15, render_video=True, save_glb=True):
        out_dir = os.path.join(self.output_dir, project_name)
        os.makedirs(out_dir, exist_ok=True)

        video_path = glb_path = ""
        texture_path = wireframe_path = ""
        texture_image = wireframe_image = None

        # Extract the first (and usually only) result
        gaussian_output = outputs['gaussian'][0]
        mesh_output = outputs['mesh'][0]

        if render_video:
            video_gs = render_utils.render_video(gaussian_output)['color']
            video_mesh = render_utils.render_video(mesh_output)['normal']
            video = [np.concatenate([frame_gs, frame_mesh], axis=1)
                     for frame_gs, frame_mesh in zip(video_gs, video_mesh)]
            video_path = os.path.join(out_dir, f"{project_name}_preview.mp4")
            imageio.mimsave(video_path, video, fps=fps)
            full_video_path = os.path.abspath(video_path)
            video_path = get_subpath_after_dir(full_video_path, "output")
            logger.info(f"Full video path: {full_video_path}, Processed video path: {video_path}")

        if save_glb:
            texture_path = os.path.join(out_dir, f"{project_name}_texture.png") if self.save_texture else None
            wireframe_path = os.path.join(out_dir, f"{project_name}_wireframe.png") if self.save_wireframe else None
            glb_path = os.path.join(out_dir, f"{project_name}.glb")

            glb = postprocessing_utils.to_glb(
                gaussian_output,
                mesh_output,
                simplify=self.mesh_simplify,
                texture_size=self.texture_size,
                texture_mode=self.texture_mode,
                fill_holes=True,
                save_texture=self.save_texture and self.texture_mode != 'blank',
                texture_path=texture_path,
                save_wireframe=self.save_wireframe and self.texture_mode != 'blank',
                wireframe_path=wireframe_path,
                verbose=True
            )
            glb.export(glb_path)
            glb_path = get_subpath_after_dir(glb_path, "output")
            full_glb_path = os.path.abspath(glb_path)
            logger.info(f"Full GLB path: {full_glb_path}, Processed GLB path: {glb_path}")

            # Handle texture image creation
            if self.save_texture and self.texture_mode != 'blank' and texture_path and os.path.exists(texture_path):
                try:
                    texture_image = Image.open(texture_path).convert('RGB')
                    texture_image = np.array(texture_image)
                except Exception as e:
                    logger.warning(f"Failed to load texture image: {str(e)}")
                    texture_image = np.zeros((self.texture_size, self.texture_size, 3), dtype=np.uint8)
            else:
                # Create a blank texture if not saving or if texture mode is blank
                texture_image = np.zeros((self.texture_size, self.texture_size, 3), dtype=np.uint8)

            # Handle wireframe image
            if wireframe_path and os.path.exists(wireframe_path):
                wireframe_image = Image.open(wireframe_path).convert('RGB')
                wireframe_image = np.array(wireframe_image)
            else:
                wireframe_image = None

        # Clean up the large tensors after we're done using them
        del gaussian_output
        del mesh_output
        torch.cuda.empty_cache()
        
        logger.info(f"Texture image shape: {texture_image.shape}")

        return video_path, glb_path, texture_path, wireframe_path, texture_image, wireframe_image

    def get_pipeline_params(self, seed, ss_sampling_steps, ss_guidance_strength,

                            slat_sampling_steps, slat_guidance_strength):
        if ss_sampling_steps < 1:
            raise ValueError("ss_sampling_steps must be >= 1")
        if slat_sampling_steps < 1:
            raise ValueError("slat_sampling_steps must be >= 1")
        if ss_guidance_strength < 0:
            raise ValueError("ss_guidance_strength must be >= 0")
        if slat_guidance_strength < 0:
            raise ValueError("slat_guidance_strength must be >= 0")

        return {
            "seed": seed,
            "formats": ["gaussian", "mesh"],
            "preprocess_image": True,
            "sparse_structure_sampler_params": {
                "steps": ss_sampling_steps,
                "cfg_strength": ss_guidance_strength,
            },
            "slat_sampler_params": {
                "steps": slat_sampling_steps,
                "cfg_strength": slat_guidance_strength,
            }
        }

    @torch.inference_mode()
    def image_to_3d(

        self,

        model: TrellisImageTo3DPipeline,

        mode: str,

        images: torch.Tensor,

        seed: int,

        ss_guidance_strength: float,

        ss_sampling_steps: int,

        slat_guidance_strength: float,

        slat_sampling_steps: int,

        mesh_simplify: float,

        texture_size: int,

        texture_mode: str,

        fps: int,

        multimode: str,

        project_name: str,

        render_video: bool,

        save_glb: bool,

        save_gaussian: bool,

        save_texture: bool,

        save_wireframe: bool,

        masks: Optional[torch.Tensor] = None,

    ) -> Tuple[str, str, torch.Tensor]:
        try:
            logger.info(f"Input images tensor initial shape: {images.shape}")
            with model.inference_context():
                self.mesh_simplify = mesh_simplify
                self.texture_size = texture_size
                self.texture_mode = texture_mode
                self.save_texture = save_texture
                self.save_wireframe = save_wireframe
                self.device = model.device

                pipeline_params = self.get_pipeline_params(
                    seed, ss_sampling_steps, ss_guidance_strength,
                    slat_sampling_steps, slat_guidance_strength
                )

                # Handle single vs multi mode differently
                if mode == "single":
                    # Take just the first image regardless of how many were input
                    images = images[0:1]
                    pil_imgs = self.torch_to_pil_batch(images, masks)
                    outputs = model.run(pil_imgs[0], **pipeline_params)
                else:
                    # In multi mode, treat the whole list as a batch
                    pil_imgs = self.torch_to_pil_batch(images, masks)
                    logger.info(f"Processing {len(pil_imgs)} views for multi-view reconstruction")
                    outputs = model.run_multi_image(
                        pil_imgs,
                        mode=multimode,
                        **pipeline_params
                    )

                video_path, glb_path, _, _, texture_image, _ = self.generate_outputs(
                    outputs,
                    project_name,
                    fps,
                    render_video=render_video,
                    save_glb=save_glb
                )

                if save_gaussian:
                    gaussian_path = os.path.join(self.output_dir, project_name, f"{project_name}.ply")
                    outputs['gaussian'][0].save_ply(gaussian_path)

                # Convert texture image to tensor
                if isinstance(texture_image, np.ndarray):
                    # Ensure proper shape and type
                    if texture_image.ndim == 2:  # Grayscale
                        texture_image = np.stack([texture_image]*3, axis=-1)
                    elif texture_image.shape[-1] == 4:  # RGBA
                        texture_image = texture_image[..., :3]  # Drop alpha channel
                    
                    texture_tensor = torch.from_numpy(texture_image).float() / 255.0
                    texture_tensor = texture_tensor.unsqueeze(0)  # [1, H, W, 3]
                    logger.info(f"Texture tensor shape after unsqueeze: {texture_tensor.shape}")
                else:
                    # Fallback to black texture
                    texture_tensor = torch.zeros((1, self.texture_size, self.texture_size, 3), dtype=torch.float32)

                self.cleanup_outputs(outputs)
                return glb_path, video_path, texture_tensor

        except Exception as e:
            logger.error(f"Error in image_to_3d: {str(e)}")
            logger.error(traceback.format_exc())
            raise
        finally:
            torch.cuda.empty_cache()
            gc.collect()

    def cleanup_outputs(self, outputs):
        # Now we only need to clean up the dictionary itself
        del outputs
        gc.collect()