File size: 17,338 Bytes
82ea528 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
# IF_Trellis.py
import os
import torch
import imageio
import numpy as np
import logging
import traceback
from PIL import Image
import folder_paths
from typing import List, Union, Tuple, Literal, Optional, Dict
from easydict import EasyDict as edict
import gc
import comfy.model_management
import trimesh
import trimesh.exchange.export
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.utils import render_utils, postprocessing_utils
from trellis.representations import Gaussian, MeshExtractResult
logger = logging.getLogger("IF_Trellis")
def get_subpath_after_dir(full_path: str, target_dir: str) -> str:
try:
full_path = os.path.normpath(full_path)
full_path = full_path.replace('\\', '/')
path_parts = full_path.split('/')
try:
index = path_parts.index(target_dir)
subpath = '/'.join(path_parts[index + 1:])
return subpath
except ValueError:
return path_parts[-1]
except Exception as e:
print(f"Error processing path in get_subpath_after_dir: {str(e)}")
return os.path.basename(full_path)
class IF_TrellisImageTo3D:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("TRELLIS_MODEL",),
"mode": (["single", "multi"], {"default": "single", "tooltip": "Mode. single is a single image. with multi you can provide multiple reference angles for the 3D model"}),
"images": ("IMAGE", {"list": True}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0x7FFFFFFF}),
"ss_guidance_strength": ("FLOAT", {"default": 7.5, "min": 0.0, "max": 12.0, "step": 0.1}),
"ss_sampling_steps": ("INT", {"default": 12, "min": 1, "max": 100}),
"slat_guidance_strength": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 12.0, "step": 0.1}),
"slat_sampling_steps": ("INT", {"default": 12, "min": 1, "max": 100}),
"mesh_simplify": ("FLOAT", {"default": 0.95, "min": 0.9, "max": 1.0, "step": 0.01, "tooltip": "Simplify the mesh. the lower the value more polygons the mesh will have"}),
"texture_size": ("INT", {"default": 1024, "min": 512, "max": 2048, "step": 512, "tooltip": "Texture size. the higher the value the more detailed the texture will be"}),
"texture_mode": (["blank", "fast", "opt"], {"default": "fast", "tooltip": "Texture mode. blank is no texture. fast is a fast texture. opt is a high quality texture"}),
"fps": ("INT", {"default": 15, "min": 1, "max": 60, "tooltip": "FPS. the higher the value the smoother the video will be"}),
"multimode": (["stochastic", "multidiffusion"], {"default": "stochastic"}),
"project_name": ("STRING", {"default": "trellis_output"}),
"save_glb": ("BOOLEAN", {"default": True, "tooltip": "Save the GLB file this is the 3D model"}),
"render_video": ("BOOLEAN", {"default": False, "tooltip": "Render a video"}),
"save_gaussian": ("BOOLEAN", {"default": False, "tooltip": "Save the Gaussian file this is a ply file of the 3D model"}),
"save_texture": ("BOOLEAN", {"default": False, "tooltip": "Save the texture file"}),
"save_wireframe": ("BOOLEAN", {"default": False, "tooltip": "Save the wireframe file"}),
},
"optional": {
"masks": ("MASK", {"list": True}),
}
}
RETURN_TYPES = ("STRING", "STRING", "IMAGE")
RETURN_NAMES = ("model_file", "video_path", "texture_image")
FUNCTION = "image_to_3d"
CATEGORY = "ImpactFrames💥🎞️/Trellis"
OUTPUT_NODE = True
def __init__(self, vertices=None, faces=None, uvs=None, face_uvs=None, albedo=None):
self.logger = logger
self.output_dir = folder_paths.get_output_directory()
self.temp_dir = folder_paths.get_temp_directory()
self.device = None
self.vertices = vertices
self.faces = faces
self.uvs = uvs
self.face_uvs = face_uvs
self.albedo = albedo
self.normals = None
def torch_to_pil_batch(self, images: Union[torch.Tensor, List[torch.Tensor]],
masks: Optional[torch.Tensor] = None,
alpha_min: float = 0.1) -> List[Image.Image]:
if isinstance(images, list):
processed_tensors = []
for img in images:
if img.ndim == 3:
processed_tensors.append(img)
elif img.ndim == 4:
processed_tensors.extend([t for t in img])
images = torch.stack(processed_tensors, dim=0)
logger.info(f"torch_to_pil_batch input shape: {images.shape}")
if images.ndim == 3:
images = images.unsqueeze(0)
if images.shape[-1] != 3:
if images.shape[1] == 3:
images = images.permute(0, 2, 3, 1)
processed_images = []
for i in range(images.shape[0]):
img = images[i].detach().cpu()
if masks is not None:
if isinstance(masks, torch.Tensor):
mask = masks[i] if i < masks.shape[0] else masks[0]
if mask.ndim > 2:
mask = mask.squeeze()
if mask.shape != img.shape[:2]:
import torch.nn.functional as F
mask = F.interpolate(
mask.unsqueeze(0).unsqueeze(0),
size=img.shape[:2],
mode='bilinear',
align_corners=False
).squeeze()
if torch.any(mask > alpha_min):
mask = mask.to(dtype=img.dtype)
mask = mask.unsqueeze(-1) if mask.ndim == 2 else mask
img = torch.cat([img, mask], dim=-1)
mode = "RGBA"
else:
mode = "RGB"
else:
mode = "RGB"
else:
mode = "RGB"
img_np = (img.numpy() * 255).astype(np.uint8)
processed_images.append(Image.fromarray(img_np, mode=mode))
logger.info(f"Processed image {i}, shape: {img_np.shape}, mode: {mode}")
return processed_images
def pack_state(self, gaussian, mesh) -> Dict[str, Dict[str, np.ndarray]]:
return {
'gaussian': {
**gaussian.init_params,
'_xyz': gaussian._xyz.cpu().numpy(),
'_features_dc': gaussian._features_dc.cpu().numpy(),
'_scaling': gaussian._scaling.cpu().numpy(),
'_rotation': gaussian._rotation.cpu().numpy(),
'_opacity': gaussian._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
}
def unpack_state(self, state: dict) -> Tuple[Gaussian, MeshExtractResult]:
gaussian = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gaussian._xyz = torch.tensor(state['gaussian']['_xyz'], device=self.device)
gaussian._features_dc = torch.tensor(state['gaussian']['_features_dc'], device=self.device)
gaussian._scaling = torch.tensor(state['gaussian']['_scaling'], device=self.device)
gaussian._rotation = torch.tensor(state['gaussian']['_rotation'], device=self.device)
gaussian._opacity = torch.tensor(state['gaussian']['_opacity'], device=self.device)
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device=self.device),
faces=torch.tensor(state['mesh']['faces'], device=self.device),
)
return gaussian, mesh
def generate_outputs(self, outputs, project_name, fps=15, render_video=True, save_glb=True):
out_dir = os.path.join(self.output_dir, project_name)
os.makedirs(out_dir, exist_ok=True)
video_path = glb_path = ""
texture_path = wireframe_path = ""
texture_image = wireframe_image = None
# Extract the first (and usually only) result
gaussian_output = outputs['gaussian'][0]
mesh_output = outputs['mesh'][0]
if render_video:
video_gs = render_utils.render_video(gaussian_output)['color']
video_mesh = render_utils.render_video(mesh_output)['normal']
video = [np.concatenate([frame_gs, frame_mesh], axis=1)
for frame_gs, frame_mesh in zip(video_gs, video_mesh)]
video_path = os.path.join(out_dir, f"{project_name}_preview.mp4")
imageio.mimsave(video_path, video, fps=fps)
full_video_path = os.path.abspath(video_path)
video_path = get_subpath_after_dir(full_video_path, "output")
logger.info(f"Full video path: {full_video_path}, Processed video path: {video_path}")
if save_glb:
texture_path = os.path.join(out_dir, f"{project_name}_texture.png") if self.save_texture else None
wireframe_path = os.path.join(out_dir, f"{project_name}_wireframe.png") if self.save_wireframe else None
glb_path = os.path.join(out_dir, f"{project_name}.glb")
glb = postprocessing_utils.to_glb(
gaussian_output,
mesh_output,
simplify=self.mesh_simplify,
texture_size=self.texture_size,
texture_mode=self.texture_mode,
fill_holes=True,
save_texture=self.save_texture and self.texture_mode != 'blank',
texture_path=texture_path,
save_wireframe=self.save_wireframe and self.texture_mode != 'blank',
wireframe_path=wireframe_path,
verbose=True
)
glb.export(glb_path)
glb_path = get_subpath_after_dir(glb_path, "output")
full_glb_path = os.path.abspath(glb_path)
logger.info(f"Full GLB path: {full_glb_path}, Processed GLB path: {glb_path}")
# Handle texture image creation
if self.save_texture and self.texture_mode != 'blank' and texture_path and os.path.exists(texture_path):
try:
texture_image = Image.open(texture_path).convert('RGB')
texture_image = np.array(texture_image)
except Exception as e:
logger.warning(f"Failed to load texture image: {str(e)}")
texture_image = np.zeros((self.texture_size, self.texture_size, 3), dtype=np.uint8)
else:
# Create a blank texture if not saving or if texture mode is blank
texture_image = np.zeros((self.texture_size, self.texture_size, 3), dtype=np.uint8)
# Handle wireframe image
if wireframe_path and os.path.exists(wireframe_path):
wireframe_image = Image.open(wireframe_path).convert('RGB')
wireframe_image = np.array(wireframe_image)
else:
wireframe_image = None
# Clean up the large tensors after we're done using them
del gaussian_output
del mesh_output
torch.cuda.empty_cache()
logger.info(f"Texture image shape: {texture_image.shape}")
return video_path, glb_path, texture_path, wireframe_path, texture_image, wireframe_image
def get_pipeline_params(self, seed, ss_sampling_steps, ss_guidance_strength,
slat_sampling_steps, slat_guidance_strength):
if ss_sampling_steps < 1:
raise ValueError("ss_sampling_steps must be >= 1")
if slat_sampling_steps < 1:
raise ValueError("slat_sampling_steps must be >= 1")
if ss_guidance_strength < 0:
raise ValueError("ss_guidance_strength must be >= 0")
if slat_guidance_strength < 0:
raise ValueError("slat_guidance_strength must be >= 0")
return {
"seed": seed,
"formats": ["gaussian", "mesh"],
"preprocess_image": True,
"sparse_structure_sampler_params": {
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
"slat_sampler_params": {
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
}
}
@torch.inference_mode()
def image_to_3d(
self,
model: TrellisImageTo3DPipeline,
mode: str,
images: torch.Tensor,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
mesh_simplify: float,
texture_size: int,
texture_mode: str,
fps: int,
multimode: str,
project_name: str,
render_video: bool,
save_glb: bool,
save_gaussian: bool,
save_texture: bool,
save_wireframe: bool,
masks: Optional[torch.Tensor] = None,
) -> Tuple[str, str, torch.Tensor]:
try:
logger.info(f"Input images tensor initial shape: {images.shape}")
with model.inference_context():
self.mesh_simplify = mesh_simplify
self.texture_size = texture_size
self.texture_mode = texture_mode
self.save_texture = save_texture
self.save_wireframe = save_wireframe
self.device = model.device
pipeline_params = self.get_pipeline_params(
seed, ss_sampling_steps, ss_guidance_strength,
slat_sampling_steps, slat_guidance_strength
)
# Handle single vs multi mode differently
if mode == "single":
# Take just the first image regardless of how many were input
images = images[0:1]
pil_imgs = self.torch_to_pil_batch(images, masks)
outputs = model.run(pil_imgs[0], **pipeline_params)
else:
# In multi mode, treat the whole list as a batch
pil_imgs = self.torch_to_pil_batch(images, masks)
logger.info(f"Processing {len(pil_imgs)} views for multi-view reconstruction")
outputs = model.run_multi_image(
pil_imgs,
mode=multimode,
**pipeline_params
)
video_path, glb_path, _, _, texture_image, _ = self.generate_outputs(
outputs,
project_name,
fps,
render_video=render_video,
save_glb=save_glb
)
if save_gaussian:
gaussian_path = os.path.join(self.output_dir, project_name, f"{project_name}.ply")
outputs['gaussian'][0].save_ply(gaussian_path)
# Convert texture image to tensor
if isinstance(texture_image, np.ndarray):
# Ensure proper shape and type
if texture_image.ndim == 2: # Grayscale
texture_image = np.stack([texture_image]*3, axis=-1)
elif texture_image.shape[-1] == 4: # RGBA
texture_image = texture_image[..., :3] # Drop alpha channel
texture_tensor = torch.from_numpy(texture_image).float() / 255.0
texture_tensor = texture_tensor.unsqueeze(0) # [1, H, W, 3]
logger.info(f"Texture tensor shape after unsqueeze: {texture_tensor.shape}")
else:
# Fallback to black texture
texture_tensor = torch.zeros((1, self.texture_size, self.texture_size, 3), dtype=torch.float32)
self.cleanup_outputs(outputs)
return glb_path, video_path, texture_tensor
except Exception as e:
logger.error(f"Error in image_to_3d: {str(e)}")
logger.error(traceback.format_exc())
raise
finally:
torch.cuda.empty_cache()
gc.collect()
def cleanup_outputs(self, outputs):
# Now we only need to clean up the dictionary itself
del outputs
gc.collect()
|