File size: 9,530 Bytes
82ea528 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
# Copyright 2023 SLAPaper
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections.abc as clabc
import torch
class ImageSelector:
"""
Select some of the images and pipe through
"""
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
"""
Input: list of index of selected image, seperated by comma (",")
support colon (":") sperated range (left included, right excluded)
Indexes start with 1 for simplicity
"""
return {
"required": {
"images": ("IMAGE", ),
"selected_indexes": ("STRING", {
"multiline": False,
"default": "1,2,3"
}),
},
}
RETURN_TYPES = ("IMAGE", )
# RETURN_NAMES = ("image_output_name",)
FUNCTION = "run"
OUTPUT_NODE = False
CATEGORY = "image"
def run(self, images: torch.Tensor, selected_indexes: str):
"""
根据 selected_indexes 选择 images 中的图片,支持连续索引和范围索引
Args:
images (torch.Tensor): 输入的图像张量,维度为 [N, C, H, W], 其中 N 为图片数量, C 为通道数, H、W 为图片的高和宽。
selected_indexes (str): 选择的图片索引,支持连续索引和范围索引,例如:"0,2,4:6,8" 表示选择第1、3、5张和第2、4、6、8张图片。
Returns:
tuple: 选择的图片张量,维度为 [N', C, H, W],其中 N' 为选择的图片数量。
"""
shape = images.shape
len_first_dim = shape[0]
selected_index: list[int] = []
total_indexes: list[int] = list(range(len_first_dim))
for s in selected_indexes.strip().split(','):
try:
if ":" in s:
_li = s.strip().split(':', maxsplit=1)
_start = _li[0]
_end = _li[1]
if _start and _end:
selected_index.extend(
total_indexes[int(_start) - 1:int(_end) - 1]
)
elif _start:
selected_index.extend(
total_indexes[int(_start) - 1:]
)
elif _end:
selected_index.extend(
total_indexes[:int(_end) - 1]
)
else:
x: int = int(s.strip()) - 1
if x < len_first_dim:
selected_index.append(x)
except:
pass
if selected_index:
print(f"ImageSelector: selected: {len(selected_index)} images")
return (images[selected_index], )
print(f"ImageSelector: selected no images, passthrough")
return (images, )
class ImageDuplicator:
"""
Duplicate each images and pipe through
"""
def __init__(self):
self._name = "ImageDuplicator"
pass
@classmethod
def INPUT_TYPES(s):
"""
Input: copies you want to get
"""
return {
"required": {
"images": ("IMAGE", ),
"dup_times": ("INT", {
"default": 2,
"min": 1,
"max": 16,
"step": 1,
}),
},
}
RETURN_TYPES = ("IMAGE", )
# RETURN_NAMES = ("image_output_name",)
FUNCTION = "run"
OUTPUT_NODE = False
CATEGORY = "image"
def run(self, images: torch.Tensor, dup_times: int):
"""
对输入的图像张量进行复制多次,并将复制后的张量拼接起来返回。
Args:
images (torch.Tensor): 输入的图像张量,维度为 (batch_size, channels, height, width)。
dup_times (int): 复制的次数。
Returns:
torch.Tensor: 拼接后的图像张量,维度为 (batch_size * dup_times, channels, height, width)。
"""
tensor_list = [images
] + [torch.clone(images) for _ in range(dup_times - 1)]
print(
f"ImageDuplicator: dup {dup_times} times,",
f"return {len(tensor_list)} images",
)
return (torch.cat(tensor_list), )
class LatentSelector:
"""
Select some of the latent images and pipe through
"""
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
"""
Input: list of index of selected image, seperated by comma (",")
support colon (":") sperated range (left included, right excluded)
Indexes start with 1 for simplicity
"""
return {
"required": {
"latent_image": ("LATENT", ),
"selected_indexes": ("STRING", {
"multiline": False,
"default": "1,2,3"
}),
},
}
RETURN_TYPES = ("LATENT", )
# RETURN_NAMES = ("image_output_name",)
FUNCTION = "run"
OUTPUT_NODE = False
CATEGORY = "latent"
def run(self, latent_image: clabc.Mapping[str, torch.Tensor],
selected_indexes: str):
"""
对latent_image进行筛选,根据selected_indexes指定的索引进行筛选
Args:
latent_image: 待筛选的latent_image,Mapping[str, torch.Tensor],包含'samples'字段
selected_indexes: 待筛选的索引,以逗号分隔,支持连续索引范围以冒号分隔,例如'1,3,5:7,9'
Returns:
筛选后的latent_image,Mapping[str, torch.Tensor]
"""
samples = latent_image['samples']
shape = samples.shape
len_first_dim = shape[0]
selected_index: list[int] = []
total_indexes: list[int] = list(range(len_first_dim))
for s in selected_indexes.strip().split(','):
try:
if ":" in s:
_li = s.strip().split(':', maxsplit=1)
_start = _li[0]
_end = _li[1]
if _start and _end:
selected_index.extend(
total_indexes[int(_start) - 1:int(_end) - 1]
)
elif _start:
selected_index.extend(
total_indexes[int(_start) - 1:]
)
elif _end:
selected_index.extend(
total_indexes[:int(_end) - 1]
)
else:
x: int = int(s.strip()) - 1
if x < len_first_dim:
selected_index.append(x)
except:
pass
if selected_index:
print(f"LatentSelector: selected: {len(selected_index)} latents")
return ({'samples': samples[selected_index, :, :, :]}, )
print(f"LatentSelector: selected no latents, passthrough")
return (latent_image, )
class LatentDuplicator:
"""
Duplicate each latent images and pipe through
"""
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
"""
Input: copies you want to get
"""
return {
"required": {
"latent_image": ("LATENT", ),
"dup_times": ("INT", {
"default": 2,
"min": 1,
"max": 16,
"step": 1,
}),
},
}
RETURN_TYPES = ("LATENT", )
# RETURN_NAMES = ("image_output_name",)
FUNCTION = "run"
OUTPUT_NODE = False
CATEGORY = "latent"
def run(self, latent_image: clabc.Mapping[str, torch.Tensor],
dup_times: int):
"""
对latent_image进行复制, 复制次数为dup_times。
Args:
latent_image (clabc.Mapping[str, torch.Tensor]): 输入的latent_image, 包含'samples'键。
dup_times (int): 复制次数。
Returns:
Tuple[Dict[str, torch.Tensor]]: 返回包含samples的字典, samples是一个长度为(dup_times+1)的样本张量。
"""
samples = latent_image['samples']
sample_list = [samples] + [
torch.clone(samples) for _ in range(dup_times - 1)
]
print(
f"LatentDuplicator: dup {dup_times} times,",
f"return {len(sample_list)} images",
)
return ({
'samples': torch.cat(sample_list),
}, )
# A dictionary that contains all nodes you want to export with their names
# NOTE: names should be globally unique
NODE_CLASS_MAPPINGS = {
"ImageSelector": ImageSelector,
"ImageDuplicator": ImageDuplicator,
"LatentSelector": LatentSelector,
"LatentDuplicator": LatentDuplicator
}
|