File size: 9,530 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
# Copyright 2023 SLAPaper
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections.abc as clabc

import torch


class ImageSelector:
    """
    Select some of the images and pipe through
    """

    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        """
        Input: list of index of selected image, seperated by comma (",")
        support colon (":") sperated range (left included, right excluded) 
        Indexes start with 1 for simplicity
        """
        return {
            "required": {
                "images": ("IMAGE", ),
                "selected_indexes": ("STRING", {
                    "multiline": False,
                    "default": "1,2,3"
                }),
            },
        }

    RETURN_TYPES = ("IMAGE", )
    # RETURN_NAMES = ("image_output_name",)

    FUNCTION = "run"

    OUTPUT_NODE = False

    CATEGORY = "image"

    def run(self, images: torch.Tensor, selected_indexes: str):
        """
        根据 selected_indexes 选择 images 中的图片,支持连续索引和范围索引

        Args:
            images (torch.Tensor): 输入的图像张量,维度为 [N, C, H, W], 其中 N 为图片数量, C 为通道数, H、W 为图片的高和宽。
            selected_indexes (str): 选择的图片索引,支持连续索引和范围索引,例如:"0,2,4:6,8" 表示选择第1、3、5张和第2、4、6、8张图片。

        Returns:
            tuple: 选择的图片张量,维度为 [N', C, H, W],其中 N' 为选择的图片数量。

        """
        shape = images.shape
        len_first_dim = shape[0]

        selected_index: list[int] = []
        total_indexes: list[int] = list(range(len_first_dim))
        for s in selected_indexes.strip().split(','):
            try:
                if ":" in s:
                    _li = s.strip().split(':', maxsplit=1)
                    _start = _li[0]
                    _end = _li[1]
                    if _start and _end:
                        selected_index.extend(
                            total_indexes[int(_start) - 1:int(_end) - 1]
                        )
                    elif _start:
                        selected_index.extend(
                            total_indexes[int(_start) - 1:]
                        )
                    elif _end:
                        selected_index.extend(
                            total_indexes[:int(_end) - 1]
                        )
                else:
                    x: int = int(s.strip()) - 1
                    if x < len_first_dim:
                        selected_index.append(x)
            except:
                pass

        if selected_index:
            print(f"ImageSelector: selected: {len(selected_index)} images")
            return (images[selected_index], )

        print(f"ImageSelector: selected no images, passthrough")
        return (images, )


class ImageDuplicator:
    """
    Duplicate each images and pipe through
    """

    def __init__(self):
        self._name = "ImageDuplicator"
        pass

    @classmethod
    def INPUT_TYPES(s):
        """
        Input: copies you want to get
        """
        return {
            "required": {
                "images": ("IMAGE", ),
                "dup_times": ("INT", {
                    "default": 2,
                    "min": 1,
                    "max": 16,
                    "step": 1,
                }),
            },
        }

    RETURN_TYPES = ("IMAGE", )
    # RETURN_NAMES = ("image_output_name",)

    FUNCTION = "run"

    OUTPUT_NODE = False

    CATEGORY = "image"

    def run(self, images: torch.Tensor, dup_times: int):
        """
        对输入的图像张量进行复制多次,并将复制后的张量拼接起来返回。

        Args:
            images (torch.Tensor): 输入的图像张量,维度为 (batch_size, channels, height, width)。
            dup_times (int): 复制的次数。

        Returns:
            torch.Tensor: 拼接后的图像张量,维度为 (batch_size * dup_times, channels, height, width)。

        """

        tensor_list = [images
                       ] + [torch.clone(images) for _ in range(dup_times - 1)]

        print(
            f"ImageDuplicator: dup {dup_times} times,",
            f"return {len(tensor_list)} images",
        )
        return (torch.cat(tensor_list), )


class LatentSelector:
    """
    Select some of the latent images and pipe through
    """

    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        """
        Input: list of index of selected image, seperated by comma (",")
        support colon (":") sperated range (left included, right excluded) 
        Indexes start with 1 for simplicity
        """
        return {
            "required": {
                "latent_image": ("LATENT", ),
                "selected_indexes": ("STRING", {
                    "multiline": False,
                    "default": "1,2,3"
                }),
            },
        }

    RETURN_TYPES = ("LATENT", )
    # RETURN_NAMES = ("image_output_name",)

    FUNCTION = "run"

    OUTPUT_NODE = False

    CATEGORY = "latent"

    def run(self, latent_image: clabc.Mapping[str, torch.Tensor],
            selected_indexes: str):
        """
        对latent_image进行筛选,根据selected_indexes指定的索引进行筛选
        Args:
            latent_image: 待筛选的latent_image,Mapping[str, torch.Tensor],包含'samples'字段
            selected_indexes: 待筛选的索引,以逗号分隔,支持连续索引范围以冒号分隔,例如'1,3,5:7,9'

        Returns:
            筛选后的latent_image,Mapping[str, torch.Tensor]
        """
        samples = latent_image['samples']
        shape = samples.shape
        len_first_dim = shape[0]

        selected_index: list[int] = []
        total_indexes: list[int] = list(range(len_first_dim))
        for s in selected_indexes.strip().split(','):
            try:
                if ":" in s:
                    _li = s.strip().split(':', maxsplit=1)
                    _start = _li[0]
                    _end = _li[1]
                    if _start and _end:
                        selected_index.extend(
                            total_indexes[int(_start) - 1:int(_end) - 1]
                        )
                    elif _start:
                        selected_index.extend(
                            total_indexes[int(_start) - 1:]
                        )
                    elif _end:
                        selected_index.extend(
                            total_indexes[:int(_end) - 1]
                        )
                else:
                    x: int = int(s.strip()) - 1
                    if x < len_first_dim:
                        selected_index.append(x)
            except:
                pass

        if selected_index:
            print(f"LatentSelector: selected: {len(selected_index)} latents")
            return ({'samples': samples[selected_index, :, :, :]}, )

        print(f"LatentSelector: selected no latents, passthrough")
        return (latent_image, )


class LatentDuplicator:
    """
    Duplicate each latent images and pipe through
    """

    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        """
        Input: copies you want to get
        """
        return {
            "required": {
                "latent_image": ("LATENT", ),
                "dup_times": ("INT", {
                    "default": 2,
                    "min": 1,
                    "max": 16,
                    "step": 1,
                }),
            },
        }

    RETURN_TYPES = ("LATENT", )
    # RETURN_NAMES = ("image_output_name",)

    FUNCTION = "run"

    OUTPUT_NODE = False

    CATEGORY = "latent"

    def run(self, latent_image: clabc.Mapping[str, torch.Tensor],
            dup_times: int):
        """
        对latent_image进行复制, 复制次数为dup_times。
        
        Args:
            latent_image (clabc.Mapping[str, torch.Tensor]): 输入的latent_image, 包含'samples'键。
            dup_times (int): 复制次数。
        
        Returns:
            Tuple[Dict[str, torch.Tensor]]: 返回包含samples的字典, samples是一个长度为(dup_times+1)的样本张量。
        
        """
        samples = latent_image['samples']

        sample_list = [samples] + [
            torch.clone(samples) for _ in range(dup_times - 1)
        ]

        print(
            f"LatentDuplicator: dup {dup_times} times,",
            f"return {len(sample_list)} images",
        )
        return ({
            'samples': torch.cat(sample_list),
        }, )


# A dictionary that contains all nodes you want to export with their names
# NOTE: names should be globally unique
NODE_CLASS_MAPPINGS = {
    "ImageSelector": ImageSelector,
    "ImageDuplicator": ImageDuplicator,
    "LatentSelector": LatentSelector,
    "LatentDuplicator": LatentDuplicator
}