File size: 25,045 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
from comfy.ldm.modules import attention as comfy_attention

import comfy.model_patcher
import comfy.utils
import comfy.sd
import torch
import folder_paths
import comfy.model_management as mm
from comfy.cli_args import args

orig_attention = comfy_attention.optimized_attention
original_patch_model = comfy.model_patcher.ModelPatcher.patch_model
original_load_lora_for_models = comfy.sd.load_lora_for_models

class BaseLoaderKJ:
    original_linear = None
    cublas_patched = False

    def _patch_modules(self, patch_cublaslinear, sage_attention):
        from comfy.ops import disable_weight_init, CastWeightBiasOp, cast_bias_weight

        if sage_attention != "disabled":
            print("Patching comfy attention to use sageattn")
            from sageattention import sageattn
            def set_sage_func(sage_attention):
                if sage_attention == "auto":
                    def func(q, k, v, is_causal=False, attn_mask=None, tensor_layout="NHD"):
                        return sageattn(q, k, v, is_causal=is_causal, attn_mask=attn_mask, tensor_layout=tensor_layout)
                    return func
                elif sage_attention == "sageattn_qk_int8_pv_fp16_cuda":
                    from sageattention import sageattn_qk_int8_pv_fp16_cuda
                    def func(q, k, v, is_causal=False, attn_mask=None, tensor_layout="NHD"):
                        return sageattn_qk_int8_pv_fp16_cuda(q, k, v, is_causal=is_causal, attn_mask=attn_mask, pv_accum_dtype="fp32", tensor_layout=tensor_layout)
                    return func
                elif sage_attention == "sageattn_qk_int8_pv_fp16_triton":
                    from sageattention import sageattn_qk_int8_pv_fp16_triton
                    def func(q, k, v, is_causal=False, attn_mask=None, tensor_layout="NHD"):
                        return sageattn_qk_int8_pv_fp16_triton(q, k, v, is_causal=is_causal, attn_mask=attn_mask, tensor_layout=tensor_layout)
                    return func
                elif sage_attention == "sageattn_qk_int8_pv_fp8_cuda":
                    from sageattention import sageattn_qk_int8_pv_fp8_cuda
                    def func(q, k, v, is_causal=False, attn_mask=None, tensor_layout="NHD"):
                        return sageattn_qk_int8_pv_fp8_cuda(q, k, v, is_causal=is_causal, attn_mask=attn_mask, pv_accum_dtype="fp32+fp32", tensor_layout=tensor_layout)
                    return func

            sage_func = set_sage_func(sage_attention)

            @torch.compiler.disable()
            def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
                if skip_reshape:
                    b, _, _, dim_head = q.shape
                    tensor_layout="HND"
                else:
                    b, _, dim_head = q.shape
                    dim_head //= heads
                    q, k, v = map(
                        lambda t: t.view(b, -1, heads, dim_head),
                        (q, k, v),
                    )
                    tensor_layout="NHD"
                if mask is not None:
                    # add a batch dimension if there isn't already one
                    if mask.ndim == 2:
                        mask = mask.unsqueeze(0)
                    # add a heads dimension if there isn't already one
                    if mask.ndim == 3:
                        mask = mask.unsqueeze(1)
                out = sage_func(q, k, v, attn_mask=mask, is_causal=False, tensor_layout=tensor_layout)
                if tensor_layout == "HND":
                    if not skip_output_reshape:
                        out = (
                            out.transpose(1, 2).reshape(b, -1, heads * dim_head)
                        )
                else:
                    if skip_output_reshape:
                        out = out.transpose(1, 2)
                    else:
                        out = out.reshape(b, -1, heads * dim_head)
                return out

            comfy_attention.optimized_attention = attention_sage
            comfy.ldm.hunyuan_video.model.optimized_attention = attention_sage
            comfy.ldm.flux.math.optimized_attention = attention_sage
            comfy.ldm.genmo.joint_model.asymm_models_joint.optimized_attention = attention_sage
            comfy.ldm.cosmos.blocks.optimized_attention = attention_sage

        else:
            comfy_attention.optimized_attention = orig_attention
            comfy.ldm.hunyuan_video.model.optimized_attention = orig_attention
            comfy.ldm.flux.math.optimized_attention = orig_attention
            comfy.ldm.genmo.joint_model.asymm_models_joint.optimized_attention = orig_attention
            comfy.ldm.cosmos.blocks.optimized_attention = orig_attention

        if patch_cublaslinear:
            if not BaseLoaderKJ.cublas_patched:
                BaseLoaderKJ.original_linear = disable_weight_init.Linear
                try:
                    from cublas_ops import CublasLinear
                except ImportError:
                    raise Exception("Can't import 'torch-cublas-hgemm', install it from here https://github.com/aredden/torch-cublas-hgemm")

                class PatchedLinear(CublasLinear, CastWeightBiasOp):
                    def reset_parameters(self):
                        pass

                    def forward_comfy_cast_weights(self, input):
                        weight, bias = cast_bias_weight(self, input)
                        return torch.nn.functional.linear(input, weight, bias)

                    def forward(self, *args, **kwargs):
                        if self.comfy_cast_weights:
                            return self.forward_comfy_cast_weights(*args, **kwargs)
                        else:
                            return super().forward(*args, **kwargs)

                disable_weight_init.Linear = PatchedLinear
                BaseLoaderKJ.cublas_patched = True
        else:
            if BaseLoaderKJ.cublas_patched:
                disable_weight_init.Linear = BaseLoaderKJ.original_linear
                BaseLoaderKJ.cublas_patched = False

class PathchSageAttentionKJ(BaseLoaderKJ):
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "model": ("MODEL",),
            "sage_attention": (["disabled", "auto", "sageattn_qk_int8_pv_fp16_cuda", "sageattn_qk_int8_pv_fp16_triton", "sageattn_qk_int8_pv_fp8_cuda"], {"default": False, "tooltip": "Global patch comfy attention to use sageattn, once patched to revert back to normal you would need to run this node again with disabled option."}),
        }}

    RETURN_TYPES = ("MODEL", )
    FUNCTION = "patch"
    DESCRIPTION = "Experimental node for patching attention mode. This doesn't use the model patching system and thus can't be disabled without running the node again with 'disabled' option."
    EXPERIMENTAL = True
    CATEGORY = "KJNodes/experimental"

    def patch(self, model, sage_attention):
        self._patch_modules(False, sage_attention)
        return model,
 
class CheckpointLoaderKJ(BaseLoaderKJ):
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "ckpt_name": (folder_paths.get_filename_list("checkpoints"), {"tooltip": "The name of the checkpoint (model) to load."}),
            "patch_cublaslinear": ("BOOLEAN", {"default": False, "tooltip": "Enable or disable the patching, won't take effect on already loaded models!"}),
            "sage_attention": (["disabled", "auto", "sageattn_qk_int8_pv_fp16_cuda", "sageattn_qk_int8_pv_fp16_triton", "sageattn_qk_int8_pv_fp8_cuda"], {"default": False, "tooltip": "Patch comfy attention to use sageattn."}),
        }}

    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "patch"
    OUTPUT_NODE = True
    DESCRIPTION = "Experimental node for patching torch.nn.Linear with CublasLinear."
    EXPERIMENTAL = True
    CATEGORY = "KJNodes/experimental"

    def patch(self, ckpt_name, patch_cublaslinear, sage_attention):
        self._patch_modules(patch_cublaslinear, sage_attention)
        from nodes import CheckpointLoaderSimple
        model, clip, vae = CheckpointLoaderSimple.load_checkpoint(self, ckpt_name)
        return model, clip, vae

class DiffusionModelLoaderKJ(BaseLoaderKJ):
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "ckpt_name": (folder_paths.get_filename_list("diffusion_models"), {"tooltip": "The name of the checkpoint (model) to load."}),
            "weight_dtype": (["default", "fp8_e4m3fn", "fp8_e4m3fn_fast", "fp8_e5m2"],),
            "patch_cublaslinear": ("BOOLEAN", {"default": False, "tooltip": "Enable or disable the patching, won't take effect on already loaded models!"}),
            "sage_attention": (["disabled", "auto", "sageattn_qk_int8_pv_fp16_cuda", "sageattn_qk_int8_pv_fp16_triton", "sageattn_qk_int8_pv_fp8_cuda"], {"default": False, "tooltip": "Patch comfy attention to use sageattn."}),
        }}

    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch_and_load"
    OUTPUT_NODE = True
    DESCRIPTION = "Node for patching torch.nn.Linear with CublasLinear."
    EXPERIMENTAL = True
    CATEGORY = "KJNodes/experimental"

    def patch_and_load(self, ckpt_name, weight_dtype, patch_cublaslinear, sage_attention):        
        from nodes import UNETLoader
        model, = UNETLoader.load_unet(self, ckpt_name, weight_dtype)
        self._patch_modules(patch_cublaslinear, sage_attention)
        return (model,)

def patched_patch_model(self, device_to=None, lowvram_model_memory=0, load_weights=True, force_patch_weights=False):
    
    if lowvram_model_memory == 0:
        full_load = True
    else:
        full_load = False
    
    device_to = mm.get_torch_device()
    load_weights = True
    if load_weights:
        self.load(device_to, lowvram_model_memory=lowvram_model_memory, force_patch_weights=force_patch_weights, full_load=full_load)
    for k in self.object_patches:
        old = comfy.utils.set_attr(self.model, k, self.object_patches[k])
        if k not in self.object_patches_backup:
            self.object_patches_backup[k] = old
    
    return self.model

def patched_load_lora_for_models(model, clip, lora, strength_model, strength_clip):

    patch_keys = list(model.object_patches_backup.keys())
    for k in patch_keys:
        #print("backing up object patch: ", k)
        comfy.utils.set_attr(model.model, k, model.object_patches_backup[k])

    key_map = {}
    if model is not None:
        key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
    if clip is not None:
        key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map)

    loaded = comfy.lora.load_lora(lora, key_map)
    #print(temp_object_patches_backup)
   
    if model is not None:
        new_modelpatcher = model.clone()
        k = new_modelpatcher.add_patches(loaded, strength_model)
    else:
        k = ()
        new_modelpatcher = None

    if clip is not None:
        new_clip = clip.clone()
        k1 = new_clip.add_patches(loaded, strength_clip)
    else:
        k1 = ()
        new_clip = None
    k = set(k)
    k1 = set(k1)
    for x in loaded:
        if (x not in k) and (x not in k1):
            print("NOT LOADED {}".format(x))

    if patch_keys:
        if hasattr(model.model, "compile_settings"):
            compile_settings = getattr(model.model, "compile_settings")
            print("compile_settings: ", compile_settings)
            for k in patch_keys:
                if "diffusion_model." in k:
                    # Remove the prefix to get the attribute path
                    key = k.replace('diffusion_model.', '')
                    attributes = key.split('.')
                    # Start with the diffusion_model object
                    block = model.get_model_object("diffusion_model")
                    # Navigate through the attributes to get to the block
                    for attr in attributes:
                        if attr.isdigit():
                            block = block[int(attr)]
                        else:
                            block = getattr(block, attr)
                    # Compile the block
                    compiled_block = torch.compile(block, mode=compile_settings["mode"], dynamic=compile_settings["dynamic"], fullgraph=compile_settings["fullgraph"], backend=compile_settings["backend"])
                    # Add the compiled block back as an object patch
                    model.add_object_patch(k, compiled_block)
    return (new_modelpatcher, new_clip)

class PatchModelPatcherOrder:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { 
                    "model": ("MODEL",),
                    "patch_order": (["object_patch_first", "weight_patch_first"], {"default": "weight_patch_first", "tooltip": "Patch the comfy patch_model function to load weight patches (LoRAs) before compiling the model"}),
                }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"
    CATEGORY = "KJNodes/experimental"
    DESCTIPTION = "Patch the comfy patch_model function patching order, useful for torch.compile (used as object_patch) as it should come last if you want to use LoRAs with compile"
    EXPERIMENTAL = True

    def patch(self, model, patch_order):
        comfy.model_patcher.ModelPatcher.temp_object_patches_backup = {}
        if patch_order == "weight_patch_first":            
            comfy.model_patcher.ModelPatcher.patch_model = patched_patch_model
            comfy.sd.load_lora_for_models = patched_load_lora_for_models
        else:
            comfy.model_patcher.ModelPatcher.patch_model = original_patch_model
            comfy.sd.load_lora_for_models = original_load_lora_for_models
        
        return model,

class TorchCompileModelFluxAdvanced:
    def __init__(self):
        self._compiled = False

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { 
                    "model": ("MODEL",),
                    "backend": (["inductor", "cudagraphs"],),
                    "fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
                    "mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
                    "double_blocks": ("STRING", {"default": "0-18", "multiline": True}),
                    "single_blocks": ("STRING", {"default": "0-37", "multiline": True}),
                    "dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}),
                }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "KJNodes/experimental"
    EXPERIMENTAL = True

    def parse_blocks(self, blocks_str):
        blocks = []
        for part in blocks_str.split(','):
            part = part.strip()
            if '-' in part:
                start, end = map(int, part.split('-'))
                blocks.extend(range(start, end + 1))
            else:
                blocks.append(int(part))
        return blocks

    def patch(self, model, backend, mode, fullgraph, single_blocks, double_blocks, dynamic):
        single_block_list = self.parse_blocks(single_blocks)
        double_block_list = self.parse_blocks(double_blocks)
        m = model.clone()
        diffusion_model = m.get_model_object("diffusion_model")
        
        if not self._compiled:
            try:
                for i, block in enumerate(diffusion_model.double_blocks):
                    if i in double_block_list:
                        #print("Compiling double_block", i)
                        m.add_object_patch(f"diffusion_model.double_blocks.{i}", torch.compile(block, mode=mode, dynamic=dynamic, fullgraph=fullgraph, backend=backend))
                for i, block in enumerate(diffusion_model.single_blocks):
                    if i in single_block_list:
                        #print("Compiling single block", i)
                        m.add_object_patch(f"diffusion_model.single_blocks.{i}", torch.compile(block, mode=mode, dynamic=dynamic, fullgraph=fullgraph, backend=backend))
                self._compiled = True
                compile_settings = {
                    "backend": backend,
                    "mode": mode,
                    "fullgraph": fullgraph,
                    "dynamic": dynamic,
                }
                setattr(m.model, "compile_settings", compile_settings)
            except:
                raise RuntimeError("Failed to compile model")
        
        return (m, )
        # rest of the layers that are not patched
        # diffusion_model.final_layer = torch.compile(diffusion_model.final_layer, mode=mode, fullgraph=fullgraph, backend=backend)
        # diffusion_model.guidance_in = torch.compile(diffusion_model.guidance_in, mode=mode, fullgraph=fullgraph, backend=backend)
        # diffusion_model.img_in = torch.compile(diffusion_model.img_in, mode=mode, fullgraph=fullgraph, backend=backend)
        # diffusion_model.time_in = torch.compile(diffusion_model.time_in, mode=mode, fullgraph=fullgraph, backend=backend)
        # diffusion_model.txt_in = torch.compile(diffusion_model.txt_in, mode=mode, fullgraph=fullgraph, backend=backend)
        # diffusion_model.vector_in = torch.compile(diffusion_model.vector_in, mode=mode, fullgraph=fullgraph, backend=backend)

class TorchCompileVAE:
    def __init__(self):
        self._compiled_encoder = False
        self._compiled_decoder = False

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { 
                    "vae": ("VAE",),
                    "backend": (["inductor", "cudagraphs"],),
                    "fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
                    "mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
                    "compile_encoder": ("BOOLEAN", {"default": True, "tooltip": "Compile encoder"}),
                    "compile_decoder": ("BOOLEAN", {"default": True, "tooltip": "Compile decoder"}),
                }}
    RETURN_TYPES = ("VAE",)
    FUNCTION = "compile"

    CATEGORY = "KJNodes/experimental"
    EXPERIMENTAL = True

    def compile(self, vae, backend, mode, fullgraph, compile_encoder, compile_decoder):
        if compile_encoder:
            if not self._compiled_encoder:
                encoder_name = "encoder"
                if hasattr(vae.first_stage_model, "taesd_encoder"):
                    encoder_name = "taesd_encoder"

                try:
                    setattr(
                        vae.first_stage_model,
                        encoder_name,
                        torch.compile(
                            getattr(vae.first_stage_model, encoder_name),
                            mode=mode,
                            fullgraph=fullgraph,
                            backend=backend,
                        ),
                    )
                    self._compiled_encoder = True
                except:
                    raise RuntimeError("Failed to compile model")
        if compile_decoder:
            if not self._compiled_decoder:
                decoder_name = "decoder"
                if hasattr(vae.first_stage_model, "taesd_decoder"):
                    decoder_name = "taesd_decoder"

                try:
                    setattr(
                        vae.first_stage_model,
                        decoder_name,
                        torch.compile(
                            getattr(vae.first_stage_model, decoder_name),
                            mode=mode,
                            fullgraph=fullgraph,
                            backend=backend,
                        ),
                    )
                    self._compiled_decoder = True
                except:
                    raise RuntimeError("Failed to compile model")
        return (vae, )

class TorchCompileControlNet:
    def __init__(self):
        self._compiled= False

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { 
                    "controlnet": ("CONTROL_NET",),
                    "backend": (["inductor", "cudagraphs"],),
                    "fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
                    "mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
                }}
    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "compile"

    CATEGORY = "KJNodes/experimental"
    EXPERIMENTAL = True

    def compile(self, controlnet, backend, mode, fullgraph):
        if not self._compiled:
            try:
                # for i, block in enumerate(controlnet.control_model.double_blocks):
                #     print("Compiling controlnet double_block", i)
                #     controlnet.control_model.double_blocks[i] = torch.compile(block, mode=mode, fullgraph=fullgraph, backend=backend)
                controlnet.control_model = torch.compile(controlnet.control_model, mode=mode, fullgraph=fullgraph, backend=backend)
                self._compiled = True
            except:
                self._compiled = False
                raise RuntimeError("Failed to compile model")
       
        return (controlnet, )

class TorchCompileLTXModel:
    def __init__(self):
        self._compiled = False

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { 
                    "model": ("MODEL",),
                    "backend": (["inductor", "cudagraphs"],),
                    "fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
                    "mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
                    "dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}),
                }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "KJNodes/experimental"
    EXPERIMENTAL = True

    def patch(self, model, backend, mode, fullgraph, dynamic):
        m = model.clone()
        diffusion_model = m.get_model_object("diffusion_model")
        
        if not self._compiled:
            try:
                for i, block in enumerate(diffusion_model.transformer_blocks):
                        compiled_block = torch.compile(block, mode=mode, dynamic=dynamic, fullgraph=fullgraph, backend=backend)
                        m.add_object_patch(f"diffusion_model.transformer_blocks.{i}", compiled_block)
                self._compiled = True
                compile_settings = {
                    "backend": backend,
                    "mode": mode,
                    "fullgraph": fullgraph,
                    "dynamic": dynamic,
                }
                setattr(m.model, "compile_settings", compile_settings)
               
            except:
                raise RuntimeError("Failed to compile model")           
        
        return (m, )
      
class TorchCompileCosmosModel:
    def __init__(self):
        self._compiled = False

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { 
                    "model": ("MODEL",),
                    "backend": (["inductor", "cudagraphs"],),
                    "fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
                    "mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
                    "dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}),
                    "dynamo_cache_size_limit": ("INT", {"default": 64, "tooltip": "Set the dynamo cache size limit"}),
                }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "KJNodes/experimental"
    EXPERIMENTAL = True

    def patch(self, model, backend, mode, fullgraph, dynamic, dynamo_cache_size_limit):
        
        m = model.clone()
        diffusion_model = m.get_model_object("diffusion_model")
        torch._dynamo.config.cache_size_limit = dynamo_cache_size_limit
        
        if not self._compiled:
            try:
                for name, block in diffusion_model.blocks.items():
                    #print(f"Compiling block {name}")
                    compiled_block = torch.compile(block, mode=mode, dynamic=dynamic, fullgraph=fullgraph, backend=backend)
                    m.add_object_patch(f"diffusion_model.blocks.{name}", compiled_block)
                    #diffusion_model.blocks[name] = compiled_block

                self._compiled = True
                compile_settings = {
                    "backend": backend,
                    "mode": mode,
                    "fullgraph": fullgraph,
                    "dynamic": dynamic,
                }
                setattr(m.model, "compile_settings", compile_settings)
               
            except:
                raise RuntimeError("Failed to compile model")           
        
        return (m, )