File size: 8,361 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import torch
from torch import nn
import comfy.ldm.modules.attention
import comfy.ldm.common_dit
import math

from comfy.ldm.lightricks.model import apply_rotary_emb, precompute_freqs_cis, LTXVModel, BasicTransformerBlock

from ..utils.latent_guide import LatentGuide


class LTXModifiedCrossAttention(nn.Module):
    def forward(self, x, context=None, mask=None, pe=None, transformer_options={}):
        context = x if context is None else context
        context_v = x if context is None else context

        step = transformer_options.get('step', -1)
        total_steps = transformer_options.get('total_steps', 0)
        attn_bank = transformer_options.get('attn_bank', None)
        sample_mode = transformer_options.get('sample_mode', None)
        if attn_bank is not None and self.idx in attn_bank['block_map']:
            len_conds = len(transformer_options['cond_or_uncond'])
            pred_order = transformer_options['pred_order']
            if sample_mode == 'forward' and total_steps-step-1 < attn_bank['save_steps']:
                step_idx = f'{pred_order}_{total_steps-step-1}'
                attn_bank['block_map'][self.idx][step_idx] = x.cpu()
            elif sample_mode == 'reverse' and step < attn_bank['inject_steps']:
                step_idx = f'{pred_order}_{step}'
                inject_settings = attn_bank.get('inject_settings', {})
                if len(inject_settings) > 0:
                    inj = attn_bank['block_map'][self.idx][step_idx].to(x.device).repeat(len_conds, 1, 1)
                if 'q' in inject_settings:
                    x = inj
                if 'k' in inject_settings:
                    context = inj
                if 'v' in inject_settings:
                    context_v = inj

        q = self.to_q(x)
        k = self.to_k(context)
        v = self.to_v(context_v)

        q = self.q_norm(q)
        k = self.k_norm(k)

        if pe is not None:
            q = apply_rotary_emb(q, pe)
            k = apply_rotary_emb(k, pe)
        
        alt_attn_fn = transformer_options.get('patches_replace', {}).get(f'layer', {}).get(('self_attn', self.idx), None) 
        if alt_attn_fn is not None:
            out = alt_attn_fn(q,k,v, self.heads, attn_precision=self.attn_precision, transformer_options=transformer_options)
        elif mask is None:
            out = comfy.ldm.modules.attention.optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision)
        else:
            out = comfy.ldm.modules.attention.optimized_attention_masked(q, k, v, self.heads, mask, attn_precision=self.attn_precision)
        return self.to_out(out)


class LTXModifiedBasicTransformerBlock(BasicTransformerBlock):
    def forward(self, x, context=None, attention_mask=None, timestep=None, pe=None, transformer_options={}):
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None, None].to(device=x.device, dtype=x.dtype) + timestep.reshape(x.shape[0], timestep.shape[1], self.scale_shift_table.shape[0], -1)).unbind(dim=2)
        x += self.attn1(comfy.ldm.common_dit.rms_norm(x) * (1 + scale_msa) + shift_msa, pe=pe, transformer_options=transformer_options) * gate_msa

        x += self.attn2(x, context=context, mask=attention_mask)

        y = comfy.ldm.common_dit.rms_norm(x) * (1 + scale_mlp) + shift_mlp
        x += self.ff(y) * gate_mlp

        return x


class LTXVModelModified(LTXVModel):
   
    def forward(self, x, timestep, context, attention_mask, frame_rate=25, guiding_latent=None, guiding_latents={}, transformer_options={}, **kwargs):
        patches_replace = transformer_options.get("patches_replace", {})

        guiding_latents = transformer_options.get('patches', {}).get('guiding_latents', None)

        indices_grid = self.patchifier.get_grid(
            orig_num_frames=x.shape[2],
            orig_height=x.shape[3],
            orig_width=x.shape[4],
            batch_size=x.shape[0],
            scale_grid=((1 / frame_rate) * 8, 32, 32),
            device=x.device,
        )

        ts = None
        input_x = None

        if guiding_latent is not None:
            guiding_latents = guiding_latents if guiding_latents is not None else []
            guiding_latents.append(LatentGuide(guiding_latent, 0))

        if guiding_latents is not None:
            input_x = x.clone()
            ts = torch.ones([x.shape[0], 1, x.shape[2], x.shape[3], x.shape[4]], device=x.device, dtype=x.dtype)
            input_ts = timestep.view([timestep.shape[0]] + [1] * (x.ndim - 1))
            ts *= input_ts
            for guide in guiding_latents:
                ts[:, :, guide.index] = 0.0
                x[:,:,guide.index] = guide.latent[:,:,0]
            timestep = self.patchifier.patchify(ts)

        orig_shape = list(x.shape)
        transformer_options['original_shape'] = orig_shape

        x = self.patchifier.patchify(x)


        x = self.patchify_proj(x)
        timestep = timestep * 1000.0

        attention_mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1]))
        attention_mask = attention_mask.masked_fill(attention_mask.to(torch.bool), float("-inf"))  # not sure about this
        # attention_mask = (context != 0).any(dim=2).to(dtype=x.dtype)

        pe = precompute_freqs_cis(indices_grid, dim=self.inner_dim, out_dtype=x.dtype)

        batch_size = x.shape[0]
        timestep, embedded_timestep = self.adaln_single(
            timestep.flatten(),
            {"resolution": None, "aspect_ratio": None},
            batch_size=batch_size,
            hidden_dtype=x.dtype,
        )
        # Second dimension is 1 or number of tokens (if timestep_per_token)
        timestep = timestep.view(batch_size, -1, timestep.shape[-1])
        embedded_timestep = embedded_timestep.view(
            batch_size, -1, embedded_timestep.shape[-1]
        )

        # 2. Blocks
        if self.caption_projection is not None:
            batch_size = x.shape[0]
            context = self.caption_projection(context)
            context = context.view(
                batch_size, -1, x.shape[-1]
            )

        blocks_replace = patches_replace.get("dit", {})
        for i, block in enumerate(self.transformer_blocks):
            if ("double_block", i) in blocks_replace:
                def block_wrap(args):
                    out = {}
                    out["img"] = block(args["img"], context=args["txt"], attention_mask=args["attention_mask"], timestep=args["vec"], pe=args["pe"])
                    return out

                out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "attention_mask": attention_mask, "vec": timestep, "pe": pe}, {"original_block": block_wrap})
                x = out["img"]
            else:
                x = block(
                    x,
                    context=context,
                    attention_mask=attention_mask,
                    timestep=timestep,
                    pe=pe,
                    transformer_options=transformer_options
                )

        # 3. Output
        scale_shift_values = (
            self.scale_shift_table[None, None].to(device=x.device, dtype=x.dtype) + embedded_timestep[:, :, None]
        )
        shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1]
        x = self.norm_out(x)
        # Modulation
        x = x * (1 + scale) + shift
        x = self.proj_out(x)

        x = self.patchifier.unpatchify(
            latents=x,
            output_height=orig_shape[3],
            output_width=orig_shape[4],
            output_num_frames=orig_shape[2],
            out_channels=orig_shape[1] // math.prod(self.patchifier.patch_size),
        )

        if guiding_latents is not None:
            for guide in guiding_latents:
                x[:, :, guide.index] = (input_x[:, :, guide.index] - guide.latent[:, :, 0]) / input_ts[:, :, 0]

        return x


def inject_model(diffusion_model):
    diffusion_model.__class__ = LTXVModelModified
    for idx, transformer_block in enumerate(diffusion_model.transformer_blocks):
        transformer_block.__class__ = LTXModifiedBasicTransformerBlock
        transformer_block.idx = idx
        transformer_block.attn1.__class__ = LTXModifiedCrossAttention
        transformer_block.attn1.idx = idx
    return diffusion_model