File size: 6,319 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import json
from pathlib import Path

import comfy
import comfy.model_management
import comfy.model_patcher
import folder_paths
import safetensors.torch
import torch
from ltx_video.models.autoencoders.causal_video_autoencoder import (
    CausalVideoAutoencoder,
)
from ltx_video.models.transformers.symmetric_patchifier import SymmetricPatchifier
from ltx_video.models.transformers.transformer3d import Transformer3DModel
from safetensors import safe_open

from .model import LTXVModel, LTXVModelConfig, LTXVTransformer3D
from .nodes_registry import comfy_node
from .vae import LTXVVAE


@comfy_node(name="LTXVLoader")
class LTXVLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "ckpt_name": (
                    folder_paths.get_filename_list("checkpoints"),
                    {"tooltip": "The name of the checkpoint (model) to load."},
                ),
                "dtype": (["bfloat16", "float32"], {"default": "bfloat16"}),
            }
        }

    RETURN_TYPES = ("MODEL", "VAE")
    RETURN_NAMES = ("model", "vae")
    FUNCTION = "load"
    CATEGORY = "lightricks/LTXV"
    TITLE = "LTXV Loader"
    OUTPUT_NODE = False

    def load(self, ckpt_name, dtype):
        dtype_map = {"bfloat16": torch.bfloat16, "float32": torch.float32}
        load_device = comfy.model_management.get_torch_device()
        offload_device = comfy.model_management.unet_offload_device()

        ckpt_path = Path(folder_paths.get_full_path("checkpoints", ckpt_name))

        vae_config = None
        unet_config = None
        with safe_open(ckpt_path, framework="pt", device="cpu") as f:
            metadata = f.metadata()
            if metadata is not None:
                config_metadata = metadata.get("config", None)
                if config_metadata is not None:
                    config_metadata = json.loads(config_metadata)
                    vae_config = config_metadata.get("vae", None)
                    unet_config = config_metadata.get("transformer", None)

        weights = safetensors.torch.load_file(ckpt_path, device="cpu")

        vae = self._load_vae(weights, vae_config)
        num_latent_channels = vae.first_stage_model.config.latent_channels

        model = self._load_unet(
            load_device,
            offload_device,
            weights,
            num_latent_channels,
            dtype=dtype_map[dtype],
            config=unet_config,
        )
        return (model, vae)

    def _load_vae(self, weights, config=None):
        if config is None:
            config = {
                "_class_name": "CausalVideoAutoencoder",
                "dims": 3,
                "in_channels": 3,
                "out_channels": 3,
                "latent_channels": 128,
                "blocks": [
                    ["res_x", 4],
                    ["compress_all", 1],
                    ["res_x_y", 1],
                    ["res_x", 3],
                    ["compress_all", 1],
                    ["res_x_y", 1],
                    ["res_x", 3],
                    ["compress_all", 1],
                    ["res_x", 3],
                    ["res_x", 4],
                ],
                "scaling_factor": 1.0,
                "norm_layer": "pixel_norm",
                "patch_size": 4,
                "latent_log_var": "uniform",
                "use_quant_conv": False,
                "causal_decoder": False,
            }
        vae_prefix = "vae."
        vae = LTXVVAE.from_config_and_state_dict(
            vae_class=CausalVideoAutoencoder,
            config=config,
            state_dict={
                key.removeprefix(vae_prefix): value
                for key, value in weights.items()
                if key.startswith(vae_prefix)
            },
        )
        return vae

    def _load_unet(
        self,
        load_device,
        offload_device,
        weights,
        num_latent_channels,
        dtype,
        config=None,
    ):
        if config is None:
            config = {
                "_class_name": "Transformer3DModel",
                "_diffusers_version": "0.25.1",
                "_name_or_path": "PixArt-alpha/PixArt-XL-2-256x256",
                "activation_fn": "gelu-approximate",
                "attention_bias": True,
                "attention_head_dim": 64,
                "attention_type": "default",
                "caption_channels": 4096,
                "cross_attention_dim": 2048,
                "double_self_attention": False,
                "dropout": 0.0,
                "in_channels": 128,
                "norm_elementwise_affine": False,
                "norm_eps": 1e-06,
                "norm_num_groups": 32,
                "num_attention_heads": 32,
                "num_embeds_ada_norm": 1000,
                "num_layers": 28,
                "num_vector_embeds": None,
                "only_cross_attention": False,
                "out_channels": 128,
                "project_to_2d_pos": True,
                "upcast_attention": False,
                "use_linear_projection": False,
                "qk_norm": "rms_norm",
                "standardization_norm": "rms_norm",
                "positional_embedding_type": "rope",
                "positional_embedding_theta": 10000.0,
                "positional_embedding_max_pos": [20, 2048, 2048],
                "timestep_scale_multiplier": 1000,
            }

        transformer = Transformer3DModel.from_config(config)
        unet_prefix = "model.diffusion_model."
        transformer.load_state_dict(
            {
                key.removeprefix(unet_prefix): value
                for key, value in weights.items()
                if key.startswith(unet_prefix)
            }
        )
        transformer.to(dtype).to(load_device).eval()
        patchifier = SymmetricPatchifier(1)
        diffusion_model = LTXVTransformer3D(transformer, patchifier, None, None, None)
        model = LTXVModel(
            LTXVModelConfig(num_latent_channels, dtype=dtype),
            model_type=comfy.model_base.ModelType.FLOW,
            device=comfy.model_management.get_torch_device(),
        )
        model.diffusion_model = diffusion_model

        patcher = comfy.model_patcher.ModelPatcher(model, load_device, offload_device)

        return patcher