File size: 4,875 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from pathlib import Path

import comfy.clip_model
import comfy.latent_formats
import comfy.model_base
import comfy.model_management
import comfy.model_patcher
import comfy.sd
import comfy.sd1_clip
import comfy.supported_models_base
import comfy.utils
import folder_paths
import torch
from transformers import T5EncoderModel, T5Tokenizer

from .nodes_registry import comfy_node


class LTXVTokenizer(comfy.sd1_clip.SDTokenizer):
    def __init__(self, tokenizer_path: str):
        self.tokenizer = T5Tokenizer.from_pretrained(
            tokenizer_path, local_files_only=True
        )

    def tokenize_with_weights(self, text: str, return_word_ids: bool = False):
        """
        Takes a prompt and converts it to a list of (token, weight, word id) elements.
        Tokens can both be integer tokens and pre computed CLIP tensors.
        Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens.
        Returned list has the dimensions NxM where M is the input size of CLIP
        """
        text = text.lower().strip()
        text_inputs = self.tokenizer(
            text,
            padding="max_length",  # do_not_pad, longest, max_length
            max_length=128,
            truncation=True,
            add_special_tokens=True,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids
        prompt_attention_mask = text_inputs.attention_mask

        out = {
            "t5xxl": [
                (token, weight, i)
                for i, (token, weight) in enumerate(
                    zip(text_input_ids[0], prompt_attention_mask[0])
                )
            ]
        }

        if not return_word_ids:
            out = {k: [(t, w) for t, w, _ in v] for k, v in out.items()}

        return out


class LTXVTextEncoderModel(torch.nn.Module):
    def __init__(
        self, encoder_path, dtype_t5=None, device="cpu", dtype=None, model_options={}
    ):
        super().__init__()
        dtype_t5 = comfy.model_management.pick_weight_dtype(dtype_t5, dtype, device)
        self.t5xxl = (
            T5EncoderModel.from_pretrained(encoder_path, local_files_only=True)
            .to(dtype_t5)
            .to(device)
        )
        self.dtypes = set([dtype, dtype_t5])

    def set_clip_options(self, options):
        pass

    def reset_clip_options(self):
        pass

    def encode_token_weights(self, token_weight_pairs):
        token_weight_pairs_t5 = token_weight_pairs["t5xxl"]
        text_input_ids = torch.tensor(
            [[t[0] for t in token_weight_pairs_t5]],
            device=self.t5xxl.device,
        )
        prompt_attention_mask = torch.tensor(
            [[w[1] for w in token_weight_pairs_t5]],
            device=self.t5xxl.device,
        )
        self.to(self.t5xxl.device)  # comfyui skips loading some weights to gpu
        out = self.t5xxl(text_input_ids, attention_mask=prompt_attention_mask)[0]
        out = out * prompt_attention_mask.unsqueeze(2)
        return out, None, {"attention_mask": prompt_attention_mask}

    def load_sd(self, sd):
        return self.t5xxl.load_state_dict(sd, strict=False)


def ltxv_clip(encoder_path, dtype_t5=None):
    class LTXVTextEncoderModel_(LTXVTextEncoderModel):
        def __init__(self, device="cpu", dtype=None, model_options={}):
            super().__init__(
                encoder_path=encoder_path,
                dtype_t5=dtype_t5,
                device=device,
                dtype=dtype,
                model_options=model_options,
            )

    return LTXVTextEncoderModel_


def ltxv_tokenizer(tokenizer_path):
    class LTXVTokenizer_(LTXVTokenizer):
        def __init__(self, embedding_directory=None, tokenizer_data={}):
            super().__init__(tokenizer_path)

    return LTXVTokenizer_


@comfy_node(name="LTXVCLIPModelLoader", description="LTXV CLIP Model Loader")
class LTXVCLIPModelLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "clip_path": (
                    folder_paths.get_filename_list("text_encoders"),
                    {"tooltip": "The name of the text encoder model to load."},
                )
            }
        }

    RETURN_TYPES = ("CLIP",)
    RETURN_NAMES = ("clip",)
    FUNCTION = "load_model"
    CATEGORY = "lightricks/LTXV"
    TITLE = "LTXV Model Loader"
    OUTPUT_NODE = False

    def load_model(self, clip_path):
        path = Path(folder_paths.get_full_path("text_encoders", clip_path))
        tokenizer_path = path.parents[1] / "tokenizer"
        encoder_path = path.parents[1] / "text_encoder"

        clip_target = comfy.supported_models_base.ClipTarget(
            tokenizer=ltxv_tokenizer(tokenizer_path),
            clip=ltxv_clip(encoder_path, dtype_t5=torch.bfloat16),
        )

        return (comfy.sd.CLIP(clip_target),)