File size: 4,875 Bytes
82ea528 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
from pathlib import Path
import comfy.clip_model
import comfy.latent_formats
import comfy.model_base
import comfy.model_management
import comfy.model_patcher
import comfy.sd
import comfy.sd1_clip
import comfy.supported_models_base
import comfy.utils
import folder_paths
import torch
from transformers import T5EncoderModel, T5Tokenizer
from .nodes_registry import comfy_node
class LTXVTokenizer(comfy.sd1_clip.SDTokenizer):
def __init__(self, tokenizer_path: str):
self.tokenizer = T5Tokenizer.from_pretrained(
tokenizer_path, local_files_only=True
)
def tokenize_with_weights(self, text: str, return_word_ids: bool = False):
"""
Takes a prompt and converts it to a list of (token, weight, word id) elements.
Tokens can both be integer tokens and pre computed CLIP tensors.
Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens.
Returned list has the dimensions NxM where M is the input size of CLIP
"""
text = text.lower().strip()
text_inputs = self.tokenizer(
text,
padding="max_length", # do_not_pad, longest, max_length
max_length=128,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_attention_mask = text_inputs.attention_mask
out = {
"t5xxl": [
(token, weight, i)
for i, (token, weight) in enumerate(
zip(text_input_ids[0], prompt_attention_mask[0])
)
]
}
if not return_word_ids:
out = {k: [(t, w) for t, w, _ in v] for k, v in out.items()}
return out
class LTXVTextEncoderModel(torch.nn.Module):
def __init__(
self, encoder_path, dtype_t5=None, device="cpu", dtype=None, model_options={}
):
super().__init__()
dtype_t5 = comfy.model_management.pick_weight_dtype(dtype_t5, dtype, device)
self.t5xxl = (
T5EncoderModel.from_pretrained(encoder_path, local_files_only=True)
.to(dtype_t5)
.to(device)
)
self.dtypes = set([dtype, dtype_t5])
def set_clip_options(self, options):
pass
def reset_clip_options(self):
pass
def encode_token_weights(self, token_weight_pairs):
token_weight_pairs_t5 = token_weight_pairs["t5xxl"]
text_input_ids = torch.tensor(
[[t[0] for t in token_weight_pairs_t5]],
device=self.t5xxl.device,
)
prompt_attention_mask = torch.tensor(
[[w[1] for w in token_weight_pairs_t5]],
device=self.t5xxl.device,
)
self.to(self.t5xxl.device) # comfyui skips loading some weights to gpu
out = self.t5xxl(text_input_ids, attention_mask=prompt_attention_mask)[0]
out = out * prompt_attention_mask.unsqueeze(2)
return out, None, {"attention_mask": prompt_attention_mask}
def load_sd(self, sd):
return self.t5xxl.load_state_dict(sd, strict=False)
def ltxv_clip(encoder_path, dtype_t5=None):
class LTXVTextEncoderModel_(LTXVTextEncoderModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
super().__init__(
encoder_path=encoder_path,
dtype_t5=dtype_t5,
device=device,
dtype=dtype,
model_options=model_options,
)
return LTXVTextEncoderModel_
def ltxv_tokenizer(tokenizer_path):
class LTXVTokenizer_(LTXVTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(tokenizer_path)
return LTXVTokenizer_
@comfy_node(name="LTXVCLIPModelLoader", description="LTXV CLIP Model Loader")
class LTXVCLIPModelLoader:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"clip_path": (
folder_paths.get_filename_list("text_encoders"),
{"tooltip": "The name of the text encoder model to load."},
)
}
}
RETURN_TYPES = ("CLIP",)
RETURN_NAMES = ("clip",)
FUNCTION = "load_model"
CATEGORY = "lightricks/LTXV"
TITLE = "LTXV Model Loader"
OUTPUT_NODE = False
def load_model(self, clip_path):
path = Path(folder_paths.get_full_path("text_encoders", clip_path))
tokenizer_path = path.parents[1] / "tokenizer"
encoder_path = path.parents[1] / "text_encoder"
clip_target = comfy.supported_models_base.ClipTarget(
tokenizer=ltxv_tokenizer(tokenizer_path),
clip=ltxv_clip(encoder_path, dtype_t5=torch.bfloat16),
)
return (comfy.sd.CLIP(clip_target),)
|