File size: 17,535 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
import os
import math
import torch
import random
import torchaudio
import folder_paths
import numpy as np
import platform
import subprocess
import sys
import importlib.util
import importlib.machinery
import argparse
from omegaconf import OmegaConf
from PIL import Image
import shutil
import decimal
from decimal import Decimal, ROUND_UP

def import_inference_script(script_path):
    """Import a Python file as a module using its file path."""
    if not os.path.exists(script_path):
        raise ImportError(f"Script not found: {script_path}")

    module_name = "latentsync_inference"
    spec = importlib.util.spec_from_file_location(module_name, script_path)
    if spec is None:
        raise ImportError(f"Failed to create module spec for {script_path}")

    module = importlib.util.module_from_spec(spec)
    sys.modules[module_name] = module

    try:
        spec.loader.exec_module(module)
    except Exception as e:
        del sys.modules[module_name]
        raise ImportError(f"Failed to execute module: {str(e)}")

    return module

def check_ffmpeg():
    try:
        if platform.system() == "Windows":
            # Check if ffmpeg exists in PATH
            ffmpeg_path = shutil.which("ffmpeg.exe")
            if ffmpeg_path is None:
                # Look for ffmpeg in common locations
                possible_paths = [
                    os.path.join(os.environ.get("ProgramFiles", "C:\\Program Files"), "ffmpeg", "bin"),
                    os.path.join(os.environ.get("ProgramFiles(x86)", "C:\\Program Files (x86)"), "ffmpeg", "bin"),
                    os.path.join(os.path.dirname(os.path.abspath(__file__)), "ffmpeg", "bin"),
                ]
                for path in possible_paths:
                    if os.path.exists(os.path.join(path, "ffmpeg.exe")):
                        # Add to PATH
                        os.environ["PATH"] = path + os.pathsep + os.environ.get("PATH", "")
                        return True
                print("FFmpeg not found. Please install FFmpeg and add it to PATH")
                return False
            return True
        else:
            subprocess.run(["ffmpeg", "-version"], capture_output=True, check=True)
            return True
    except (subprocess.CalledProcessError, FileNotFoundError):
        print("FFmpeg not found. Please install FFmpeg")
        return False

def check_and_install_dependencies():
    if not check_ffmpeg():
        raise RuntimeError("FFmpeg is required but not found")

    required_packages = [
        'omegaconf',
        'pytorch_lightning',
        'transformers',
        'accelerate',
        'huggingface_hub',
        'einops',
        'diffusers'
    ]

    def is_package_installed(package_name):
        return importlib.util.find_spec(package_name) is not None

    def install_package(package):
        python_exe = sys.executable
        try:
            subprocess.check_call([python_exe, '-m', 'pip', 'install', package],
                                    stdout=subprocess.PIPE,
                                    stderr=subprocess.PIPE)
            print(f"Successfully installed {package}")
        except subprocess.CalledProcessError as e:
            print(f"Error installing {package}: {str(e)}")
            raise RuntimeError(f"Failed to install required package: {package}")

    for package in required_packages:
        if not is_package_installed(package):
            print(f"Installing required package: {package}")
            try:
                install_package(package)
            except Exception as e:
                print(f"Warning: Failed to install {package}: {str(e)}")
                raise

def normalize_path(path):
    """Normalize path to handle spaces and special characters"""
    return os.path.normpath(path).replace('\\', '/')

def get_ext_dir(subpath=None, mkdir=False):
    dir = os.path.dirname(__file__)
    if subpath is not None:
        dir = os.path.join(dir, subpath)

    dir = os.path.abspath(dir)

    if mkdir and not os.path.exists(dir):
        os.makedirs(dir)
    return dir
    
def save_and_reload_frames(frames, temp_dir):
    final_frames = []
    for frame in frames:
        # Convert to proper range (0-1)
        frame = frame.float() / max(frame.max(), 1.0)  
        # Ensure CHW format
        if frame.shape[0] != 3:
            frame = frame.permute(2, 0, 1)
        final_frames.append(frame)
    
    stacked = torch.stack(final_frames)
    print(f"Stacked min/max: {stacked.min()}, {stacked.max()}")
    return stacked.to(device='cpu', dtype=torch.float32)

def setup_models():
    cur_dir = get_ext_dir()
    ckpt_dir = os.path.join(cur_dir, "checkpoints")
    whisper_dir = os.path.join(ckpt_dir, "whisper")
    
    # Create directories if they don't exist
    os.makedirs(ckpt_dir, exist_ok=True)
    os.makedirs(whisper_dir, exist_ok=True)
    
    unet_path = os.path.join(ckpt_dir, "latentsync_unet.pt")
    whisper_path = os.path.join(whisper_dir, "tiny.pt")
    
    if not (os.path.exists(unet_path) and os.path.exists(whisper_path)):
        print("Downloading required model checkpoints... This may take a while.")
        try:
            from huggingface_hub import snapshot_download
            snapshot_download(repo_id="chunyu-li/LatentSync",
                            allow_patterns=["latentsync_unet.pt", "whisper/tiny.pt"],
                            local_dir=ckpt_dir, local_dir_use_symlinks=False)
            print("Model checkpoints downloaded successfully!")
        except Exception as e:
            print(f"Error downloading models: {str(e)}")
            print("\nPlease download models manually:")
            print("1. Visit: https://huggingface.co/chunyu-li/LatentSync")
            print("2. Download: latentsync_unet.pt and whisper/tiny.pt")
            print(f"3. Place them in: {ckpt_dir}")
            print(f"   with whisper/tiny.pt in: {whisper_dir}")
            raise RuntimeError("Model download failed. See instructions above.")

class LatentSyncNode:
    def __init__(self):
        check_and_install_dependencies()
        setup_models()


    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                    "images": ("IMAGE",),
                    "audio": ("AUDIO", ),
                    "seed": ("INT", {"default": 1247}),
                 },}

    CATEGORY = "LatentSyncNode"

    RETURN_TYPES = ("IMAGE", )
    RETURN_NAMES = ("images", )
    FUNCTION = "inference"

    def inference(self, images, audio, seed):
        cur_dir = get_ext_dir()
        ckpt_dir = os.path.join(cur_dir, "checkpoints")
        output_dir = folder_paths.get_output_directory()
        temp_dir = os.path.join(output_dir, "temp_frames")
        os.makedirs(output_dir, exist_ok=True)
        os.makedirs(temp_dir, exist_ok=True)

        # Create a temporary video file from the input frames
        output_name = ''.join(random.choice("abcdefghijklmnopqrstuvwxyz") for _ in range(5))
        temp_video_path = os.path.join(output_dir, f"temp_{output_name}.mp4")
        output_video_path = os.path.join(output_dir, f"latentsync_{output_name}_out.mp4")

        # Save frames as temporary video
        import torchvision.io as io
        if isinstance(images, list):
            frames = torch.stack(images)
        else:
            frames = images
        print(f"Initial frame count: {frames.shape[0]}")

        frames = (frames * 255).byte()
        if len(frames.shape) == 3:
            frames = frames.unsqueeze(0)
        print(f"Frame count before writing video: {frames.shape[0]}")

        if isinstance(frames, torch.Tensor):
            frames = frames.cpu()
        try:
            io.write_video(temp_video_path, frames, fps=25, video_codec='h264')
        except TypeError:
            # Fallback for newer versions
            import av
            container = av.open(temp_video_path, mode='w')
            stream = container.add_stream('h264', rate=25)
            stream.width = frames.shape[2]
            stream.height = frames.shape[1]
            
            for frame in frames:
                frame = av.VideoFrame.from_ndarray(frame.numpy(), format='rgb24')
                packet = stream.encode(frame)
                container.mux(packet)
            
            # Flush stream
            packet = stream.encode(None)
            container.mux(packet)
            container.close()
        video_path = normalize_path(temp_video_path)

        if not os.path.exists(ckpt_dir):
            print("Downloading model checkpoints... This may take a while.")
            from huggingface_hub import snapshot_download
            snapshot_download(repo_id="chunyu-li/LatentSync",
                                    allow_patterns=["latentsync_unet.pt", "whisper/tiny.pt"],
                                    local_dir=ckpt_dir, local_dir_use_symlinks=False)
            print("Model checkpoints downloaded successfully!")

        inference_script_path = os.path.join(cur_dir, "scripts", "inference.py")
        unet_config_path = normalize_path(os.path.join(cur_dir, "configs", "unet", "second_stage.yaml"))
        scheduler_config_path = normalize_path(os.path.join(cur_dir, "configs"))
        ckpt_path = normalize_path(os.path.join(ckpt_dir, "latentsync_unet.pt"))
        whisper_ckpt_path = normalize_path(os.path.join(ckpt_dir, "whisper", "tiny.pt"))

        # resample audio to 16k hz and save to wav
        waveform = audio["waveform"]
        sample_rate = audio["sample_rate"]

        if waveform.dim() == 3: # Expected shape: [channels, samples]
            waveform = waveform.squeeze(0)

        if sample_rate != 16000:
            new_sample_rate = 16000
            waveform_16k = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=new_sample_rate)(waveform)
            waveform, sample_rate = waveform_16k, new_sample_rate

        audio_path = normalize_path(os.path.join(output_dir, f"latentsync_{output_name}_audio.wav"))
        torchaudio.save(audio_path, waveform, sample_rate)

        print(f"Using video path: {video_path}")
        print(f"Video file exists: {os.path.exists(video_path)}")
        print(f"Video file size: {os.path.getsize(video_path)} bytes")

        assert os.path.exists(video_path), f"video_path not exists: {video_path}"
        assert os.path.exists(audio_path), f"audio_path not exists: {audio_path}"

        try:
            # Add the package root to Python path
            package_root = os.path.dirname(cur_dir)
            if package_root not in sys.path:
                sys.path.insert(0, package_root)
               
            # Add the current directory to Python path
            if cur_dir not in sys.path:
                sys.path.insert(0, cur_dir)

            # Import the inference module
            inference_module = import_inference_script(inference_script_path)
           
            # Create a Namespace object with the arguments
            args = argparse.Namespace(
                unet_config_path=unet_config_path,
                inference_ckpt_path=ckpt_path,
                video_path=video_path,
                audio_path=audio_path,
                video_out_path=output_video_path,
                seed=seed,
                scheduler_config_path=scheduler_config_path,
                whisper_ckpt_path=whisper_ckpt_path
            )
           
            # Load the config
            config = OmegaConf.load(unet_config_path)
           
            # Call main with both config and args
            inference_module.main(config, args)

            # Load the processed video back as frames
            processed_frames = io.read_video(output_video_path, pts_unit='sec')[0]  # [T, H, W, C]
            print(f"Frame count after reading video: {processed_frames.shape[0]}")
            
            # Process frames following wav2lip.py pattern
            out_tensor_list = []
            for frame in processed_frames:
                # Convert to numpy and ensure correct format
                frame = frame.numpy()
                
                # Convert frame to float32 and normalize
                frame = frame.astype(np.float32) / 255.0
                
                # Convert back to tensor
                frame = torch.from_numpy(frame)
                
                # Ensure we have 3 channels
                if len(frame.shape) == 2:  # If grayscale
                    frame = frame.unsqueeze(2).repeat(1, 1, 3)
                elif frame.shape[2] == 4:  # If RGBA
                    frame = frame[:, :, :3]
                
                # Change to [C, H, W] format
                frame = frame.permute(2, 0, 1)
                
                out_tensor_list.append(frame)

            processed_frames = io.read_video(output_video_path, pts_unit='sec')[0]  # [T, H, W, C]
            processed_frames = processed_frames.float() / 255.0
            print(f"Frame count after normalization: {processed_frames.shape[0]}")

            # Fix dimensions for VideoCombine compatibility
            if len(processed_frames.shape) == 3:  
                processed_frames = processed_frames.unsqueeze(0)
            if processed_frames.shape[0] == 1 and len(processed_frames.shape) == 4:
                processed_frames = processed_frames.squeeze(0)
            if processed_frames.shape[0] == 3:  # If in CHW format
                processed_frames = processed_frames.permute(1, 2, 0)  # Convert to HWC
            if processed_frames.shape[-1] == 4:  # If RGBA
                processed_frames = processed_frames[..., :3]

            print(f"Final frame count: {processed_frames.shape[0]}")

            print(f"Final shape: {processed_frames.shape}")

            # Clean up
            if os.path.exists(temp_video_path):
                os.remove(temp_video_path)
            if os.path.exists(output_video_path):
                os.remove(output_video_path)
            shutil.rmtree(temp_dir, ignore_errors=True)
                
        except Exception as e:
            # Clean up on error
            if os.path.exists(temp_video_path):
                os.remove(temp_video_path)
            if os.path.exists(output_video_path):
                os.remove(output_video_path)
            shutil.rmtree(temp_dir, ignore_errors=True)
            print(f"Error during inference: {str(e)}")
            import traceback
            traceback.print_exc()
            raise

        return (processed_frames,)

class VideoLengthAdjuster:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "images": ("IMAGE",),
                "audio": ("AUDIO",),
                "mode": (["normal", "pingpong", "loop_to_audio"], {"default": "normal"}),
                "fps": ("FLOAT", {"default": 25.0, "min": 1.0, "max": 120.0}),
                "pingpong_smoothing": ("INT", {"default": 2, "min": 0, "max": 10}),
            }
        }

    CATEGORY = "LatentSyncNode"
    RETURN_TYPES = ("IMAGE", "AUDIO")
    RETURN_NAMES = ("images", "audio")
    FUNCTION = "adjust"

    def adjust(self, images, audio, mode, fps=25.0, pingpong_smoothing=2):
        # --- High-Precision Initialization ---
        ctx = decimal.getcontext()
        ctx.rounding = ROUND_UP
        
        # --- Audio Validation ---
        waveform = audio["waveform"].squeeze(0)
        if waveform.numel() < 10:
            raise ValueError("Audio input too short for processing")

        sample_rate = Decimal(str(audio["sample_rate"]))
        fps_dec = Decimal(str(fps)).quantize(Decimal('1.000'))

        # --- Frame Preparation ---
        original_frames = [images[i] for i in range(images.shape[0])]
        original_count = len(original_frames)

        # --- Ping-Pong Processing ---
        if mode == "pingpong":
            reversed_frames = original_frames[::-1]
            for i in range(int(pingpong_smoothing)):  # Convert to int
                alpha = (i + 1) / (pingpong_smoothing + 1)
                original_frames[-1 - i] = original_frames[-1 - i] * (1 - float(alpha)) + reversed_frames[i] * float(alpha)
            frames = original_frames + reversed_frames[int(pingpong_smoothing):]  # Convert to int
        else:
            frames = original_frames.copy()

        # --- Integer Conversion for Indexing ---
        audio_duration = Decimal(waveform.shape[1]) / sample_rate
        exact_frames_needed = int((audio_duration * fps_dec).to_integral_value())  # Convert to int
        final_video_duration = exact_frames_needed / float(fps_dec)  # Use float for duration
        required_samples = int((final_video_duration * float(sample_rate)))  # Convert to int

        # --- Frame Adjustment ---
        current_frames = len(frames)
        if current_frames < exact_frames_needed:
            repeat_times = math.ceil(exact_frames_needed / current_frames)
            frames = (frames * repeat_times)[:exact_frames_needed]  # Now using integers
        elif current_frames > exact_frames_needed:
            frames = frames[:exact_frames_needed]

        # --- Audio Trimming ---
        adjusted_audio = waveform[:, :required_samples]

        return (
            torch.stack(frames), 
            {"waveform": adjusted_audio.unsqueeze(0), "sample_rate": int(sample_rate)}
        )

NODE_CLASS_MAPPINGS = {
    "D_LatentSyncNode": LatentSyncNode,
    "D_VideoLengthAdjuster": VideoLengthAdjuster,
}

NODE_DISPLAY_NAME_MAPPINGS = {
    "D_LatentSyncNode": "LatentSync Node",
    "D_VideoLengthAdjuster": "Video Length Adjuster",
}