File size: 12,490 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
# Adapted from https://github.com/Limitex/ComfyUI-Diffusers/blob/main/utils.py

import io
import os
import torch
import requests
import numpy as np
from PIL import Image
from omegaconf import OmegaConf
from torchvision.transforms import ToTensor
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
    assign_to_checkpoint,
    conv_attn_to_linear,
    create_vae_diffusers_config,
    renew_vae_attention_paths,
    renew_vae_resnet_paths,
)
from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
    DDPMScheduler,
    DEISMultistepScheduler,
    DPMSolverMultistepScheduler,
    DPMSolverSinglestepScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    HeunDiscreteScheduler,
    KDPM2AncestralDiscreteScheduler,
    KDPM2DiscreteScheduler,
    UniPCMultistepScheduler,
    LCMScheduler,
    StableDiffusionXLPipeline,
)

from .mvadapter.pipelines.pipeline_mvadapter_t2mv_sdxl import MVAdapterT2MVSDXLPipeline
from .mvadapter.pipelines.pipeline_mvadapter_i2mv_sdxl import MVAdapterI2MVSDXLPipeline
from .mvadapter.pipelines.pipeline_mvadapter_i2mv_sd import MVAdapterI2MVSDPipeline
from .mvadapter.pipelines.pipeline_mvadapter_t2mv_sd import MVAdapterT2MVSDPipeline
from .mvadapter.utils import (
    get_orthogonal_camera,
    get_plucker_embeds_from_cameras_ortho,
    make_image_grid,
)


NODE_CACHE_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), "cache")

PIPELINES = {
    "StableDiffusionXLPipeline": StableDiffusionXLPipeline,
    "MVAdapterT2MVSDXLPipeline": MVAdapterT2MVSDXLPipeline,
    "MVAdapterI2MVSDXLPipeline": MVAdapterI2MVSDXLPipeline,
    "MVAdapterI2MVSDPipeline": MVAdapterI2MVSDPipeline,
    "MVAdapterT2MVSDPipeline": MVAdapterT2MVSDPipeline,
}

SCHEDULERS = {
    "DDIM": DDIMScheduler,
    "DDPM": DDPMScheduler,
    "DEISMultistep": DEISMultistepScheduler,
    "DPMSolverMultistep": DPMSolverMultistepScheduler,
    "DPMSolverSinglestep": DPMSolverSinglestepScheduler,
    "EulerAncestralDiscrete": EulerAncestralDiscreteScheduler,
    "EulerDiscrete": EulerDiscreteScheduler,
    "HeunDiscrete": HeunDiscreteScheduler,
    "KDPM2AncestralDiscrete": KDPM2AncestralDiscreteScheduler,
    "KDPM2Discrete": KDPM2DiscreteScheduler,
    "UniPCMultistep": UniPCMultistepScheduler,
    "LCM": LCMScheduler,
}

MVADAPTERS = [
    "mvadapter_t2mv_sdxl.safetensors",
    "mvadapter_i2mv_sdxl.safetensors",
    "mvadapter_i2mv_sdxl_beta.safetensors",
    "mvadapter_t2mv_sd21.safetensors",
    "mvadapter_i2mv_sd21.safetensors",
]


# Reference from : https://github.com/huggingface/diffusers/blob/main/scripts/convert_vae_pt_to_diffusers.py
def custom_convert_ldm_vae_checkpoint(checkpoint, config):
    vae_state_dict = checkpoint

    new_checkpoint = {}

    new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
    new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
    new_checkpoint["encoder.conv_out.weight"] = vae_state_dict[
        "encoder.conv_out.weight"
    ]
    new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
    new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict[
        "encoder.norm_out.weight"
    ]
    new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict[
        "encoder.norm_out.bias"
    ]

    new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
    new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
    new_checkpoint["decoder.conv_out.weight"] = vae_state_dict[
        "decoder.conv_out.weight"
    ]
    new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
    new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict[
        "decoder.norm_out.weight"
    ]
    new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict[
        "decoder.norm_out.bias"
    ]

    new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
    new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
    new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
    new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]

    # Retrieves the keys for the encoder down blocks only
    num_down_blocks = len(
        {
            ".".join(layer.split(".")[:3])
            for layer in vae_state_dict
            if "encoder.down" in layer
        }
    )
    down_blocks = {
        layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key]
        for layer_id in range(num_down_blocks)
    }

    # Retrieves the keys for the decoder up blocks only
    num_up_blocks = len(
        {
            ".".join(layer.split(".")[:3])
            for layer in vae_state_dict
            if "decoder.up" in layer
        }
    )
    up_blocks = {
        layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key]
        for layer_id in range(num_up_blocks)
    }

    for i in range(num_down_blocks):
        resnets = [
            key
            for key in down_blocks[i]
            if f"down.{i}" in key and f"down.{i}.downsample" not in key
        ]

        if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
            new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = (
                vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.weight")
            )
            new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = (
                vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.bias")
            )

        paths = renew_vae_resnet_paths(resnets)
        meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
        assign_to_checkpoint(
            paths,
            new_checkpoint,
            vae_state_dict,
            additional_replacements=[meta_path],
            config=config,
        )

    mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
    num_mid_res_blocks = 2
    for i in range(1, num_mid_res_blocks + 1):
        resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]

        paths = renew_vae_resnet_paths(resnets)
        meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
        assign_to_checkpoint(
            paths,
            new_checkpoint,
            vae_state_dict,
            additional_replacements=[meta_path],
            config=config,
        )

    mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
    paths = renew_vae_attention_paths(mid_attentions)
    meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
    assign_to_checkpoint(
        paths,
        new_checkpoint,
        vae_state_dict,
        additional_replacements=[meta_path],
        config=config,
    )
    conv_attn_to_linear(new_checkpoint)

    for i in range(num_up_blocks):
        block_id = num_up_blocks - 1 - i
        resnets = [
            key
            for key in up_blocks[block_id]
            if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
        ]

        if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
            new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = (
                vae_state_dict[f"decoder.up.{block_id}.upsample.conv.weight"]
            )
            new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = (
                vae_state_dict[f"decoder.up.{block_id}.upsample.conv.bias"]
            )

        paths = renew_vae_resnet_paths(resnets)
        meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
        assign_to_checkpoint(
            paths,
            new_checkpoint,
            vae_state_dict,
            additional_replacements=[meta_path],
            config=config,
        )

    mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
    num_mid_res_blocks = 2
    for i in range(1, num_mid_res_blocks + 1):
        resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]

        paths = renew_vae_resnet_paths(resnets)
        meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
        assign_to_checkpoint(
            paths,
            new_checkpoint,
            vae_state_dict,
            additional_replacements=[meta_path],
            config=config,
        )

    mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
    paths = renew_vae_attention_paths(mid_attentions)
    meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
    assign_to_checkpoint(
        paths,
        new_checkpoint,
        vae_state_dict,
        additional_replacements=[meta_path],
        config=config,
    )
    conv_attn_to_linear(new_checkpoint)
    return new_checkpoint


# Reference from : https://github.com/huggingface/diffusers/blob/main/scripts/convert_vae_pt_to_diffusers.py
def vae_pt_to_vae_diffuser(checkpoint_path: str, force_upcast: bool = True):
    try:
        config_path = os.path.join(
            NODE_CACHE_PATH, "stable-diffusion-v1-inference.yaml"
        )
        original_config = OmegaConf.load(config_path)
    except FileNotFoundError as e:
        print(f"Warning: {e}")

        r = requests.get(
            "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
        )
        io_obj = io.BytesIO(r.content)
        original_config = OmegaConf.load(io_obj)

    image_size = 512
    device = "cuda" if torch.cuda.is_available() else "cpu"
    if checkpoint_path.endswith("safetensors"):
        from safetensors import safe_open

        checkpoint = {}
        with safe_open(checkpoint_path, framework="pt", device="cpu") as f:
            for key in f.keys():
                checkpoint[key] = f.get_tensor(key)
    else:
        checkpoint = torch.load(checkpoint_path, map_location=device)["state_dict"]

    # Convert the VAE model.
    vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
    vae_config.update({"force_upcast": force_upcast})
    converted_vae_checkpoint = custom_convert_ldm_vae_checkpoint(checkpoint, vae_config)

    vae = AutoencoderKL(**vae_config)
    vae.load_state_dict(converted_vae_checkpoint)

    return vae


def convert_images_to_tensors(images: list[Image.Image]):
    return torch.stack([np.transpose(ToTensor()(image), (1, 2, 0)) for image in images])


def convert_tensors_to_images(images: torch.tensor):
    return [
        Image.fromarray(np.clip(255.0 * image.cpu().numpy(), 0, 255).astype(np.uint8))
        for image in images
    ]


def resize_images(images: list[Image.Image], size: tuple[int, int]):
    return [image.resize(size) for image in images]


def prepare_camera_embed(num_views, size, device, azimuth_degrees=None):
    cameras = get_orthogonal_camera(
        elevation_deg=[0] * num_views,
        distance=[1.8] * num_views,
        left=-0.55,
        right=0.55,
        bottom=-0.55,
        top=0.55,
        azimuth_deg=[x - 90 for x in azimuth_degrees],
        device=device,
    )

    plucker_embeds = get_plucker_embeds_from_cameras_ortho(
        cameras.c2w, [1.1] * num_views, size
    )
    control_images = ((plucker_embeds + 1.0) / 2.0).clamp(0, 1)

    return control_images


def preprocess_image(image: Image.Image, height, width):
    image = np.array(image)
    alpha = image[..., 3] > 0
    H, W = alpha.shape
    # get the bounding box of alpha
    y, x = np.where(alpha)
    y0, y1 = max(y.min() - 1, 0), min(y.max() + 1, H)
    x0, x1 = max(x.min() - 1, 0), min(x.max() + 1, W)
    image_center = image[y0:y1, x0:x1]
    # resize the longer side to H * 0.9
    H, W, _ = image_center.shape
    if H > W:
        W = int(W * (height * 0.9) / H)
        H = int(height * 0.9)
    else:
        H = int(H * (width * 0.9) / W)
        W = int(width * 0.9)
    image_center = np.array(Image.fromarray(image_center).resize((W, H)))
    # pad to H, W
    start_h = (height - H) // 2
    start_w = (width - W) // 2
    image = np.zeros((height, width, 4), dtype=np.uint8)
    image[start_h : start_h + H, start_w : start_w + W] = image_center
    image = image.astype(np.float32) / 255.0
    image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
    image = (image * 255).clip(0, 255).astype(np.uint8)
    image = Image.fromarray(image)

    return image