File size: 6,788 Bytes
82ea528 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
# https://github.com/MinusZoneAI/ComfyUI-CogVideoX-MZ/blob/9616415220fd09388622f40f6609e4ed81f048a5/mz_gguf_loader.py
import torch
import torch.nn as nn
import torch.nn.functional as F
class quantize_lazy_load():
def __init__(self):
self.device = None
def __enter__(self):
self.device = torch.device("meta")
self.device.__enter__()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.device.__exit__(exc_type, exc_value, traceback)
def quantize_load_state_dict(model, state_dict, device="cpu", cublas_ops=False):
if cublas_ops:
try:
from cublas_ops import cublas_half_matmul
linear_ops = cublas_half_matmul
setattr(model, "cublas_half_matmul", True)
print("Using cublas_ops")
except:
print("Failed to load cublas_ops")
raise ImportError("Install cublas_ops (https://github.com/aredden/torch-cublas-hgemm) to use cublas_ops")
else:
linear_ops = F.linear
setattr(model, "cublas_half_matmul", False)
quant_keys = []
for key in state_dict.keys():
if key.endswith(".Q4_0_qweight"):
quant_keys.append(key.replace(".Q4_0_qweight", ""))
qtype = "Q4_0"
elif key.endswith(".Q8_0_qweight"):
quant_keys.append(key.replace(".Q8_0_qweight", ""))
qtype = "Q8_0"
for name, module in model.named_modules():
if name in quant_keys:
#print(name)
q_linear = WQLinear_GGUF.from_linear(
linear=module,
device=device,
qtype=qtype,
linear_ops=linear_ops
)
set_op_by_name(model, name, q_linear)
model.to_empty(device=device)
model.load_state_dict(state_dict, strict=False)
return model
def set_op_by_name(layer, name, new_module):
levels = name.split(".")
if len(levels) > 1:
mod_ = layer
for l_idx in range(len(levels) - 1):
if levels[l_idx].isdigit():
mod_ = mod_[int(levels[l_idx])]
else:
mod_ = getattr(mod_, levels[l_idx])
setattr(mod_, levels[-1], new_module)
else:
setattr(layer, name, new_module)
class WQLinear_GGUF(nn.Module):
def __init__(
self, in_features, out_features, bias, dev, qtype, linear_ops
):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.qtype = qtype
self.linear_ops = linear_ops
qweight_shape = quant_shape_to_byte_shape(
(out_features, in_features), qtype
)
self.register_buffer(
f"{qtype}_qweight",
torch.zeros(
qweight_shape,
dtype=torch.uint8,
device=dev,
),
)
if bias:
self.register_buffer(
"bias",
torch.zeros(
(out_features),
dtype=torch.float16,
device=dev,
),
)
else:
self.bias = None
@classmethod
def from_linear(
cls, linear,
device="cpu",
qtype="Q4_0",
linear_ops=F.linear
):
q_linear = cls(
linear.in_features,
linear.out_features,
linear.bias is not None,
device,
qtype=qtype,
linear_ops=linear_ops
)
return q_linear
def extra_repr(self) -> str:
return (
"in_features={}, out_features={}, bias={}, w_bit={}, group_size={}".format(
self.in_features,
self.out_features,
self.bias is not None,
self.w_bit,
self.group_size,
)
)
@torch.no_grad()
def forward(self, x):
if self.qtype == "Q4_0":
dequant = dequantize_blocks_Q4_0(self.Q4_0_qweight, x.dtype)
elif self.qtype == "Q8_0":
dequant = dequantize_blocks_Q8_0(self.Q8_0_qweight, x.dtype)
else:
raise ValueError(f"Unknown qtype: {self.qtype}")
return self.linear_ops(x, dequant, bias=self.bias.to(x.dtype) if self.bias is not None else None)
def split_block_dims(blocks, *args):
n_max = blocks.shape[1]
dims = list(args) + [n_max - sum(args)]
return torch.split(blocks, dims, dim=1)
def quant_shape_to_byte_shape(shape, qtype) -> tuple[int, ...]:
# shape = shape[::-1]
block_size, type_size = GGML_QUANT_SIZES[qtype]
if shape[-1] % block_size != 0:
raise ValueError(
f"Quantized tensor row size ({shape[-1]}) is not a multiple of {qtype} block size ({block_size})")
return (*shape[:-1], shape[-1] // block_size * type_size)
def quant_shape_from_byte_shape(shape, qtype) -> tuple[int, ...]:
# shape = shape[::-1]
block_size, type_size = GGML_QUANT_SIZES[qtype]
if shape[-1] % type_size != 0:
raise ValueError(
f"Quantized tensor bytes per row ({shape[-1]}) is not a multiple of {qtype} type size ({type_size})")
return (*shape[:-1], shape[-1] // type_size * block_size)
GGML_QUANT_SIZES = {
"Q4_0": (32, 2 + 16),
"Q8_0": (32, 2 + 32),
}
def dequantize_blocks_Q4_0(data, dtype=torch.float16):
block_size, type_size = GGML_QUANT_SIZES["Q4_0"]
data = data.to(torch.uint8)
shape = data.shape
rows = data.reshape(
(-1, data.shape[-1])
).view(torch.uint8)
n_blocks = rows.numel() // type_size
blocks = data.reshape((n_blocks, type_size))
n_blocks = blocks.shape[0]
d, qs = split_block_dims(blocks, 2)
d = d.view(torch.float16)
qs = qs.reshape((n_blocks, -1, 1, block_size // 2)) >> torch.tensor(
[0, 4], device=d.device, dtype=torch.uint8).reshape((1, 1, 2, 1))
qs = (qs & 0x0F).reshape((n_blocks, -1)).to(torch.int8) - 8
out = (d * qs)
out = out.reshape(quant_shape_from_byte_shape(
shape,
qtype="Q4_0",
)).to(dtype)
return out
def dequantize_blocks_Q8_0(data, dtype=torch.float16):
block_size, type_size = GGML_QUANT_SIZES["Q8_0"]
data = data.to(torch.uint8)
shape = data.shape
rows = data.reshape(
(-1, data.shape[-1])
).view(torch.uint8)
n_blocks = rows.numel() // type_size
blocks = data.reshape((n_blocks, type_size))
n_blocks = blocks.shape[0]
d, qs = split_block_dims(blocks, 2)
d = d.view(torch.float16).to(torch.float32)
qs = qs.view(torch.int8).to(torch.float32)
out = (d * qs)
out = out.reshape(quant_shape_from_byte_shape(
shape,
qtype="Q8_0",
)).to(dtype)
return out |