File size: 15,072 Bytes
82ea528 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
import torch
import hashlib
import os
import logging
import numpy as np
import comfy.clip_vision
import comfy.clip_model
import comfy.model_management
import comfy.utils
import comfy.sd
import folder_paths
import torchvision.transforms.v2 as T
from comfy.sd import CLIP
from typing import Union
from collections import Counter
from torch import Tensor
from transformers import CLIPImageProcessor
from transformers.image_utils import PILImageResampling
from .insightface_package import analyze_faces, insightface_loader
from .model import PhotoMakerIDEncoder
from .model_v2 import PhotoMakerIDEncoder_CLIPInsightfaceExtendtoken
from .utils import LoadImageCustom, load_image, prepImage, crop_image_pil, tokenize_with_trigger_word
from .style_template import styles
class PhotoMakerLoaderPlus:
def __init__(self):
self.loaded_lora = None
self.loaded_clipvision = None
@classmethod
def INPUT_TYPES(s):
return {"required": {
"photomaker_model_name": (folder_paths.get_filename_list("photomaker"), ),
},
}
RETURN_TYPES = ("PHOTOMAKER", )
FUNCTION = "load_photomaker_model"
CATEGORY = "PhotoMaker"
def load_photomaker_model(self, photomaker_model_name):
self.load_data(None, None, photomaker_model_name, 0, 0)[0]
if 'qformer_perceiver.token_norm.weight' in self.loaded_clipvision[1].keys():
photomaker_model = PhotoMakerIDEncoder_CLIPInsightfaceExtendtoken()
else:
photomaker_model = PhotoMakerIDEncoder()
photomaker_model.load_state_dict(self.loaded_clipvision[1])
photomaker_model.loader = self
photomaker_model.filename = photomaker_model_name
return (photomaker_model,)
def load_data(self, model, clip, name, strength_model, strength_clip):
model_lora, clip_lora = model, clip
path = folder_paths.get_full_path("photomaker", name)
lora = None
if self.loaded_lora is not None:
if self.loaded_lora[0] == path:
lora = self.loaded_lora[1]
else:
temp = self.loaded_lora
self.loaded_lora = None
del temp
temp = self.loaded_clipvision
self.loaded_clipvision = None
del temp
if lora is None:
data = comfy.utils.load_torch_file(path, safe_load=True)
clipvision = data.get("id_encoder", None)
lora = data.get("lora_weights", None)
self.loaded_lora = (path, lora)
self.loaded_clipvision = (path, clipvision)
if model is not None and (strength_model > 0 or strength_clip > 0):
model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip)
return (model_lora, clip_lora)
class PhotoMakerLoraLoaderPlus:
def __init__(self):
self.loaded_lora = None
self.loaded_clipvision = None
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"photomaker": ("PHOTOMAKER",),
"lora_strength": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01}),
},
}
RETURN_TYPES = ("MODEL", )
FUNCTION = "load_photomaker_lora"
CATEGORY = "PhotoMaker"
def load_photomaker_lora(self, model, photomaker, lora_strength):
return (photomaker.loader.load_data(model, None, photomaker.filename, lora_strength, 0)[0],)
class PhotoMakerInsightFaceLoader:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"provider": (["CPU", "CUDA", "ROCM"], ),
},
}
RETURN_TYPES = ("INSIGHTFACE",)
FUNCTION = "load_insightface"
CATEGORY = "PhotoMaker"
def load_insightface(self, provider):
return (insightface_loader(provider),)
class PhotoMakerEncodePlus:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"clip": ("CLIP",),
"photomaker": ("PHOTOMAKER",),
"image": ("IMAGE",),
"trigger_word": ("STRING", {"default": "img"}),
"text": ("STRING", {"multiline": True, "default": "photograph of a man img", "dynamicPrompts": True}),
},
"optional": {
"insightface_opt": ("INSIGHTFACE",),
},
}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "apply_photomaker"
CATEGORY = "PhotoMaker"
@torch.no_grad()
def apply_photomaker(self, clip: CLIP, photomaker: Union[PhotoMakerIDEncoder, PhotoMakerIDEncoder_CLIPInsightfaceExtendtoken], image: Tensor, trigger_word: str, text: str, insightface_opt=None):
if (num_images := len(image)) == 0:
raise ValueError("No image provided or found.")
trigger_word=trigger_word.strip()
tokens = clip.tokenize(text)
class_tokens_mask = {}
out_tokens = {}
num_tokens = getattr(photomaker, 'num_tokens', 1)
for key, val in tokens.items():
clip_tokenizer = getattr(clip.tokenizer, f'clip_{key}', clip.tokenizer)
img_token = clip_tokenizer.tokenizer(trigger_word, truncation=False, add_special_tokens=False)["input_ids"][0] # only get the first token
_tokens = torch.tensor([[tpy[0] for tpy in tpy_] for tpy_ in val ] , dtype=torch.int32)
_weights = torch.tensor([[tpy[1] for tpy in tpy_] for tpy_ in val] , dtype=torch.float32)
start_token = clip_tokenizer.start_token
end_token = clip_tokenizer.end_token
pad_token = clip_tokenizer.pad_token
tokens_mask = tokenize_with_trigger_word(_tokens, _weights, num_images, num_tokens, img_token,start_token, end_token, pad_token, return_mask=True)[0]
tokens_new, weights_new, num_trigger_tokens_processed = tokenize_with_trigger_word(_tokens, _weights, num_images, num_tokens, img_token,start_token, end_token, pad_token)
token_weight_pairs = [[(tt,ww) for tt,ww in zip(x.tolist(), y.tolist())] for x,y in zip(tokens_new, weights_new)]
mask = (tokens_mask == -1).tolist()
class_tokens_mask[key] = mask
out_tokens[key] = token_weight_pairs
cond, pooled = clip.encode_from_tokens(out_tokens, return_pooled=True)
if num_trigger_tokens_processed == 0 or not trigger_word:
logging.warning("\033[33mWarning:\033[0m No trigger token found.")
return ([[cond, {"pooled_output": pooled}]],)
prompt_embeds = cond
device_orig = prompt_embeds.device
first_key = next(iter(tokens.keys()))
class_tokens_mask = class_tokens_mask[first_key]
if num_trigger_tokens_processed > 1:
image = image.repeat([num_trigger_tokens_processed] + [1] * (len(image.shape) - 1))
photomaker = photomaker.to(device=photomaker.load_device)
image.clamp_(0.0, 1.0)
input_id_images = image
_, h, w, _ = image.shape
do_resize = (h, w) != (224, 224)
image_bak = image
try:
if do_resize:
clip_preprocess = CLIPImageProcessor(resample=PILImageResampling.LANCZOS, do_normalize=False, do_rescale=False, do_convert_rgb=False)
image = clip_preprocess(image, return_tensors="pt").pixel_values.movedim(1,-1)
except RuntimeError as e:
image = image_bak
pixel_values = comfy.clip_vision.clip_preprocess(image.to(photomaker.load_device)).float()
if photomaker.__class__.__name__ == 'PhotoMakerIDEncoder':
cond = photomaker(id_pixel_values=pixel_values.unsqueeze(0),
prompt_embeds=cond.to(photomaker.load_device),
class_tokens_mask=torch.tensor(class_tokens_mask, dtype=torch.bool, device=photomaker.load_device).unsqueeze(0))
else:
if insightface_opt is None:
raise ValueError(f"InsightFace is required for PhotoMaker V2")
face_detector = insightface_opt
if not hasattr(face_detector, 'get_'):
face_detector.get_ = face_detector.get
def get(self, img, max_num=0, det_size=(640, 640)):
if det_size is not None:
self.det_model.input_size = det_size
return self.get_(img, max_num)
face_detector.get = get.__get__(face_detector, face_detector.__class__)
id_embed_list = []
ToPILImage = T.ToPILImage()
def tensor_to_pil_np(_img):
nonlocal ToPILImage
img_pil = ToPILImage(_img.movedim(-1,0))
if img_pil.mode != 'RGB': img_pil = img_pil.convert('RGB')
return np.asarray(img_pil)
for img in input_id_images:
faces = analyze_faces(face_detector, tensor_to_pil_np(img))
if len(faces) > 0:
id_embed_list.append(torch.from_numpy((faces[0]['embedding'])))
if len(id_embed_list) == 0:
raise ValueError(f"No face detected in input image pool")
id_embeds = torch.stack(id_embed_list).to(device=photomaker.load_device)
class_tokens_mask=torch.tensor(class_tokens_mask, dtype=torch.bool, device=photomaker.load_device).unsqueeze(0)
cond = photomaker(id_pixel_values=pixel_values.unsqueeze(0),
prompt_embeds=cond.to(photomaker.load_device),
class_tokens_mask=class_tokens_mask,
id_embeds=id_embeds)
cond = cond.to(device=device_orig)
return ([[cond, {"pooled_output": pooled}]],)
class PhotoMakerStyles:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"style_name": (list(styles.keys()), {"default": "Photographic (Default)"}),
},
"optional": {
"positive": ("STRING", {"multiline": True, "forceInput": True, "dynamicPrompts": True}),
"negative": ("STRING", {"multiline": True, "forceInput": True, "dynamicPrompts": True}),
},
}
RETURN_TYPES = ("STRING","STRING",)
RETURN_NAMES = ("POSITIVE","NEGATIVE",)
FUNCTION = "apply_photomaker_style"
CATEGORY = "PhotoMaker"
def apply_photomaker_style(self, style_name, positive: str = '', negative: str = ''):
p, n = styles.get(style_name, "Photographic (Default)")
return p.replace("{prompt}", positive), n + ' ' + negative
class PrepImagesForClipVisionFromPath:
def __init__(self) -> None:
self.image_loader = LoadImageCustom()
self.load_device = comfy.model_management.text_encoder_device()
self.offload_device = comfy.model_management.text_encoder_offload_device()
@classmethod
def INPUT_TYPES(s):
return {"required": {
"path": ("STRING", {"multiline": False}),
"interpolation": (["nearest", "bilinear", "box", "bicubic", "lanczos", "hamming"], {"default": "lanczos"}),
"crop_position": (["top", "bottom", "left", "right", "center", "pad"], {"default": "center"}),
},
}
@classmethod
def IS_CHANGED(s, path:str, interpolation, crop_position):
image_path_list = s.get_images_paths(path)
hashes = []
for image_path in image_path_list:
if not (path.startswith("http://") or path.startswith("https://")):
m = hashlib.sha256()
with open(image_path, 'rb') as f:
m.update(f.read())
hashes.append(m.digest().hex())
return Counter(hashes)
@classmethod
def VALIDATE_INPUTS(s, path:str, interpolation, crop_position):
image_path_list = s.get_images_paths(path)
if len(image_path_list) == 0:
return "No image provided or found."
return True
RETURN_TYPES = ("IMAGE",)
FUNCTION = "prep_images_for_clip_vision_from_path"
CATEGORY = "image"
@classmethod
def get_images_paths(self, path:str):
image_path_list = []
path = path.strip()
if path:
image_path_list = [path]
if not (path.startswith("http://") or path.startswith("https://")) and os.path.isdir(path):
image_basename_list = os.listdir(path)
image_path_list = [
os.path.join(path, basename)
for basename in image_basename_list
if not basename.startswith('.') and basename.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.webp', '.gif'))
]
return image_path_list
def prep_images_for_clip_vision_from_path(self, path:str, interpolation:str, crop_position,):
image_path_list = self.get_images_paths(path)
if len(image_path_list) == 0:
raise ValueError("No image provided or found.")
interpolation=interpolation.upper()
size = (224, 224)
try:
input_id_images = [img if (img:=load_image(image_path)).size == size else crop_image_pil(img, crop_position) for image_path in image_path_list]
do_resize = not all(img.size == size for img in input_id_images)
resample = getattr(PILImageResampling, interpolation)
clip_preprocess = CLIPImageProcessor(resample=resample, do_normalize=False, do_resize=do_resize)
id_pixel_values = clip_preprocess(input_id_images, return_tensors="pt").pixel_values.movedim(1,-1)
except TypeError as err:
logging.warning('[PhotoMaker]:', err)
logging.warning('[PhotoMaker]: You may need to update transformers.')
input_id_images = [self.image_loader.load_image(image_path)[0] for image_path in image_path_list]
do_resize = not all(img.shape[-3:-3+2] == size for img in input_id_images)
if do_resize:
id_pixel_values = torch.cat([prepImage(img, interpolation=interpolation, crop_position=crop_position) for img in input_id_images])
else:
id_pixel_values = torch.cat(input_id_images)
return (id_pixel_values,)
NODE_CLASS_MAPPINGS = {
"PhotoMakerLoaderPlus": PhotoMakerLoaderPlus,
"PhotoMakerEncodePlus": PhotoMakerEncodePlus,
"PhotoMakerStyles": PhotoMakerStyles,
"PhotoMakerLoraLoaderPlus": PhotoMakerLoraLoaderPlus,
"PrepImagesForClipVisionFromPath": PrepImagesForClipVisionFromPath,
"PhotoMakerInsightFaceLoader": PhotoMakerInsightFaceLoader,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"PhotoMakerLoaderPlus": "PhotoMaker Loader Plus",
"PhotoMakerEncodePlus": "PhotoMaker Encode Plus",
"PhotoMakerStyles": "Apply PhotoMaker Style",
"PhotoMakerLoraLoaderPlus": "PhotoMaker LoRA Loader Plus",
"PrepImagesForClipVisionFromPath": "Prepare Images For CLIP Vision From Path",
"PhotoMakerInsightFaceLoader": "PhotoMaker InsightFace Loader",
} |