File size: 16,643 Bytes
82ea528 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
import os
import torch
from torch.nn import functional as F
from omegaconf import OmegaConf
import comfy.utils
import comfy.model_management as mm
import folder_paths
from nodes import ImageScaleBy
from nodes import ImageScale
import torch.cuda
from .sgm.util import instantiate_from_config
from .SUPIR.util import convert_dtype, load_state_dict
import open_clip
from contextlib import contextmanager
from transformers import (
CLIPTextModel,
CLIPTokenizer,
CLIPTextConfig,
)
script_directory = os.path.dirname(os.path.abspath(__file__))
def dummy_build_vision_tower(*args, **kwargs):
# Monkey patch the CLIP class before you create an instance.
return None
@contextmanager
def patch_build_vision_tower():
original_build_vision_tower = open_clip.model._build_vision_tower
open_clip.model._build_vision_tower = dummy_build_vision_tower
try:
yield
finally:
open_clip.model._build_vision_tower = original_build_vision_tower
def build_text_model_from_openai_state_dict(
state_dict: dict,
cast_dtype=torch.float16,
):
embed_dim = state_dict["text_projection"].shape[1]
context_length = state_dict["positional_embedding"].shape[0]
vocab_size = state_dict["token_embedding.weight"].shape[0]
transformer_width = state_dict["ln_final.weight"].shape[0]
transformer_heads = transformer_width // 64
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
vision_cfg = None
text_cfg = open_clip.CLIPTextCfg(
context_length=context_length,
vocab_size=vocab_size,
width=transformer_width,
heads=transformer_heads,
layers=transformer_layers,
)
with patch_build_vision_tower():
model = open_clip.CLIP(
embed_dim,
vision_cfg=vision_cfg,
text_cfg=text_cfg,
quick_gelu=True,
cast_dtype=cast_dtype,
)
model.load_state_dict(state_dict, strict=False)
model = model.eval()
for param in model.parameters():
param.requires_grad = False
return model
class SUPIR_Upscale:
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
@classmethod
def INPUT_TYPES(s):
return {"required": {
"supir_model": (folder_paths.get_filename_list("checkpoints"),),
"sdxl_model": (folder_paths.get_filename_list("checkpoints"),),
"image": ("IMAGE",),
"seed": ("INT", {"default": 123, "min": 0, "max": 0xffffffffffffffff, "step": 1}),
"resize_method": (s.upscale_methods, {"default": "lanczos"}),
"scale_by": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 20.0, "step": 0.01}),
"steps": ("INT", {"default": 45, "min": 3, "max": 4096, "step": 1}),
"restoration_scale": ("FLOAT", {"default": -1.0, "min": -1.0, "max": 6.0, "step": 1.0}),
"cfg_scale": ("FLOAT", {"default": 4.0, "min": 0, "max": 100, "step": 0.01}),
"a_prompt": ("STRING", {"multiline": True, "default": "high quality, detailed", }),
"n_prompt": ("STRING", {"multiline": True, "default": "bad quality, blurry, messy", }),
"s_churn": ("INT", {"default": 5, "min": 0, "max": 40, "step": 1}),
"s_noise": ("FLOAT", {"default": 1.003, "min": 1.0, "max": 1.1, "step": 0.001}),
"control_scale": ("FLOAT", {"default": 1.0, "min": 0, "max": 10.0, "step": 0.05}),
"cfg_scale_start": ("FLOAT", {"default": 4.0, "min": 0.0, "max": 100.0, "step": 0.05}),
"control_scale_start": ("FLOAT", {"default": 0.0, "min": 0, "max": 1.0, "step": 0.05}),
"color_fix_type": (
[
'None',
'AdaIn',
'Wavelet',
], {
"default": 'Wavelet'
}),
"keep_model_loaded": ("BOOLEAN", {"default": True}),
"use_tiled_vae": ("BOOLEAN", {"default": True}),
"encoder_tile_size_pixels": ("INT", {"default": 512, "min": 64, "max": 8192, "step": 64}),
"decoder_tile_size_latent": ("INT", {"default": 64, "min": 32, "max": 8192, "step": 64}),
},
"optional": {
"captions": ("STRING", {"forceInput": True, "multiline": False, "default": "", }),
"diffusion_dtype": (
[
'fp16',
'bf16',
'fp32',
'auto'
], {
"default": 'auto'
}),
"encoder_dtype": (
[
'bf16',
'fp32',
'auto'
], {
"default": 'auto'
}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 128, "step": 1}),
"use_tiled_sampling": ("BOOLEAN", {"default": False}),
"sampler_tile_size": ("INT", {"default": 1024, "min": 64, "max": 4096, "step": 32}),
"sampler_tile_stride": ("INT", {"default": 512, "min": 32, "max": 2048, "step": 32}),
"fp8_unet": ("BOOLEAN", {"default": False}),
"fp8_vae": ("BOOLEAN", {"default": False}),
"sampler": (
[
'RestoreDPMPP2MSampler',
'RestoreEDMSampler',
], {
"default": 'RestoreEDMSampler'
}),
}
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("upscaled_image",)
FUNCTION = "process"
CATEGORY = "SUPIR"
def process(self, steps, image, color_fix_type, seed, scale_by, cfg_scale, resize_method, s_churn, s_noise,
encoder_tile_size_pixels, decoder_tile_size_latent,
control_scale, cfg_scale_start, control_scale_start, restoration_scale, keep_model_loaded,
a_prompt, n_prompt, sdxl_model, supir_model, use_tiled_vae, use_tiled_sampling=False, sampler_tile_size=128, sampler_tile_stride=64, captions="", diffusion_dtype="auto",
encoder_dtype="auto", batch_size=1, fp8_unet=False, fp8_vae=False, sampler="RestoreEDMSampler"):
device = mm.get_torch_device()
mm.unload_all_models()
SUPIR_MODEL_PATH = folder_paths.get_full_path("checkpoints", supir_model)
SDXL_MODEL_PATH = folder_paths.get_full_path("checkpoints", sdxl_model)
config_path = os.path.join(script_directory, "options/SUPIR_v0.yaml")
config_path_tiled = os.path.join(script_directory, "options/SUPIR_v0_tiled.yaml")
clip_config_path = os.path.join(script_directory, "configs/clip_vit_config.json")
tokenizer_path = os.path.join(script_directory, "configs/tokenizer")
custom_config = {
'sdxl_model': sdxl_model,
'diffusion_dtype': diffusion_dtype,
'encoder_dtype': encoder_dtype,
'use_tiled_vae': use_tiled_vae,
'supir_model': supir_model,
'use_tiled_sampling': use_tiled_sampling,
'fp8_unet': fp8_unet,
'fp8_vae': fp8_vae,
'sampler': sampler
}
if diffusion_dtype == 'auto':
try:
if mm.should_use_fp16():
print("Diffusion using fp16")
dtype = torch.float16
model_dtype = 'fp16'
if mm.should_use_bf16():
print("Diffusion using bf16")
dtype = torch.bfloat16
model_dtype = 'bf16'
else:
print("Diffusion using using fp32")
dtype = torch.float32
model_dtype = 'fp32'
except:
raise AttributeError("ComfyUI too old, can't autodecet properly. Set your dtypes manually.")
else:
print(f"Diffusion using using {diffusion_dtype}")
dtype = convert_dtype(diffusion_dtype)
model_dtype = diffusion_dtype
if encoder_dtype == 'auto':
try:
if mm.should_use_bf16():
print("Encoder using bf16")
vae_dtype = 'bf16'
else:
print("Encoder using using fp32")
vae_dtype = 'fp32'
except:
raise AttributeError("ComfyUI too old, can't autodetect properly. Set your dtypes manually.")
else:
vae_dtype = encoder_dtype
print(f"Encoder using using {vae_dtype}")
if not hasattr(self, "model") or self.model is None or self.current_config != custom_config:
self.current_config = custom_config
self.model = None
mm.soft_empty_cache()
if use_tiled_sampling:
config = OmegaConf.load(config_path_tiled)
config.model.params.sampler_config.params.tile_size = sampler_tile_size // 8
config.model.params.sampler_config.params.tile_stride = sampler_tile_stride // 8
config.model.params.sampler_config.target = f".sgm.modules.diffusionmodules.sampling.Tiled{sampler}"
print("Using tiled sampling")
else:
config = OmegaConf.load(config_path)
config.model.params.sampler_config.target = f".sgm.modules.diffusionmodules.sampling.{sampler}"
print("Using non-tiled sampling")
if mm.XFORMERS_IS_AVAILABLE:
config.model.params.control_stage_config.params.spatial_transformer_attn_type = "softmax-xformers"
config.model.params.network_config.params.spatial_transformer_attn_type = "softmax-xformers"
config.model.params.first_stage_config.params.ddconfig.attn_type = "vanilla-xformers"
config.model.params.ae_dtype = vae_dtype
config.model.params.diffusion_dtype = model_dtype
self.model = instantiate_from_config(config.model).cpu()
try:
print(f'Attempting to load SUPIR model: [{SUPIR_MODEL_PATH}]')
supir_state_dict = load_state_dict(SUPIR_MODEL_PATH)
except:
raise Exception("Failed to load SUPIR model")
try:
print(f"Attempting to load SDXL model: [{SDXL_MODEL_PATH}]")
sdxl_state_dict = load_state_dict(SDXL_MODEL_PATH)
except:
raise Exception("Failed to load SDXL model")
self.model.load_state_dict(supir_state_dict, strict=False)
self.model.load_state_dict(sdxl_state_dict, strict=False)
del supir_state_dict
#first clip model from SDXL checkpoint
try:
print("Loading first clip model from SDXL checkpoint")
replace_prefix = {}
replace_prefix["conditioner.embedders.0.transformer."] = ""
sd = comfy.utils.state_dict_prefix_replace(sdxl_state_dict, replace_prefix, filter_keys=False)
clip_text_config = CLIPTextConfig.from_pretrained(clip_config_path)
self.model.conditioner.embedders[0].tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path)
self.model.conditioner.embedders[0].transformer = CLIPTextModel(clip_text_config)
self.model.conditioner.embedders[0].transformer.load_state_dict(sd, strict=False)
self.model.conditioner.embedders[0].eval()
for param in self.model.conditioner.embedders[0].parameters():
param.requires_grad = False
except:
raise Exception("Failed to load first clip model from SDXL checkpoint")
del sdxl_state_dict
#second clip model from SDXL checkpoint
try:
print("Loading second clip model from SDXL checkpoint")
replace_prefix2 = {}
replace_prefix2["conditioner.embedders.1.model."] = ""
sd = comfy.utils.state_dict_prefix_replace(sd, replace_prefix2, filter_keys=True)
clip_g = build_text_model_from_openai_state_dict(sd, cast_dtype=dtype)
self.model.conditioner.embedders[1].model = clip_g
except:
raise Exception("Failed to load second clip model from SDXL checkpoint")
del sd, clip_g
mm.soft_empty_cache()
self.model.to(dtype)
#only unets and/or vae to fp8
if fp8_unet:
self.model.model.to(torch.float8_e4m3fn)
if fp8_vae:
self.model.first_stage_model.to(torch.float8_e4m3fn)
if use_tiled_vae:
self.model.init_tile_vae(encoder_tile_size=encoder_tile_size_pixels, decoder_tile_size=decoder_tile_size_latent)
upscaled_image, = ImageScaleBy.upscale(self, image, resize_method, scale_by)
B, H, W, C = upscaled_image.shape
new_height = H if H % 64 == 0 else ((H // 64) + 1) * 64
new_width = W if W % 64 == 0 else ((W // 64) + 1) * 64
upscaled_image = upscaled_image.permute(0, 3, 1, 2)
resized_image = F.interpolate(upscaled_image, size=(new_height, new_width), mode='bicubic', align_corners=False)
resized_image = resized_image.to(device)
captions_list = []
captions_list.append(captions)
print("captions: ", captions_list)
use_linear_CFG = cfg_scale_start > 0
use_linear_control_scale = control_scale_start > 0
out = []
pbar = comfy.utils.ProgressBar(B)
batched_images = [resized_image[i:i + batch_size] for i in
range(0, len(resized_image), batch_size)]
captions_list = captions_list * resized_image.shape[0]
batched_captions = [captions_list[i:i + batch_size] for i in range(0, len(captions_list), batch_size)]
mm.soft_empty_cache()
i = 1
for imgs, caps in zip(batched_images, batched_captions):
try:
samples = self.model.batchify_sample(imgs, caps, num_steps=steps,
restoration_scale=restoration_scale, s_churn=s_churn,
s_noise=s_noise, cfg_scale=cfg_scale, control_scale=control_scale,
seed=seed,
num_samples=1, p_p=a_prompt, n_p=n_prompt,
color_fix_type=color_fix_type,
use_linear_CFG=use_linear_CFG,
use_linear_control_scale=use_linear_control_scale,
cfg_scale_start=cfg_scale_start,
control_scale_start=control_scale_start)
except torch.cuda.OutOfMemoryError as e:
mm.free_memory(mm.get_total_memory(mm.get_torch_device()), mm.get_torch_device())
self.model = None
mm.soft_empty_cache()
print("It's likely that too large of an image or batch_size for SUPIR was used,"
" and it has devoured all of the memory it had reserved, you may need to restart ComfyUI. Make sure you are using tiled_vae, "
" you can also try using fp8 for reduced memory usage if your system supports it.")
raise e
out.append(samples.squeeze(0).cpu())
print("Sampled ", i * len(imgs), " out of ", B)
i = i + 1
pbar.update(1)
if not keep_model_loaded:
self.model = None
mm.soft_empty_cache()
if len(out[0].shape) == 4:
out_stacked = torch.cat(out, dim=0).cpu().to(torch.float32).permute(0, 2, 3, 1)
else:
out_stacked = torch.stack(out, dim=0).cpu().to(torch.float32).permute(0, 2, 3, 1)
final_image, = ImageScale.upscale(self, out_stacked, resize_method, W, H, crop="disabled")
return (final_image,)
NODE_CLASS_MAPPINGS = {
"SUPIR_Upscale": SUPIR_Upscale
}
NODE_DISPLAY_NAME_MAPPINGS = {
"SUPIR_Upscale": "SUPIR_Upscale"
} |