jaxmetaverse's picture
Upload folder using huggingface_hub
82ea528 verified
import os
import gc
import math
import copy
from enum import Enum
from collections import OrderedDict
import folder_paths as comfy_paths
from omegaconf import OmegaConf
import json
import torch
from torch.utils.data import DataLoader
from torchvision.transforms import v2
import torchvision.transforms.functional as TF
import numpy as np
from safetensors.torch import load_file
from einops import rearrange
from diffusers import (
DiffusionPipeline,
StableDiffusionPipeline
)
from diffusers import (
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
DDIMScheduler,
DDIMParallelScheduler,
LCMScheduler,
KDPM2AncestralDiscreteScheduler,
KDPM2DiscreteScheduler,
)
from huggingface_hub import snapshot_download
from plyfile import PlyData
import trimesh
from PIL import Image
from .mesh_processer.mesh import Mesh
from .mesh_processer.mesh_utils import (
ply_to_points_cloud,
get_target_axis_and_scale,
switch_ply_axis_and_scale,
switch_mesh_axis_and_scale,
calculate_max_sh_degree_from_gs_ply,
marching_cubes_density_to_mesh,
color_func_to_albedo,
interpolate_texture_map_attr,
decimate_mesh,
)
from FlexiCubes.flexicubes_trainer import FlexiCubesTrainer
from DiffRastMesh.diff_mesh import DiffMesh, DiffMeshCameraController
from DiffRastMesh.diff_mesh import DiffRastRenderer
from GaussianSplatting.main_3DGS import GaussianSplatting3D, GaussianSplattingCameraController, GSParams
from GaussianSplatting.main_3DGS_renderer import GaussianSplattingRenderer
from NeRF.Instant_NGP import InstantNGP
from TriplaneGaussian.triplane_gaussian_transformers import TGS
from TriplaneGaussian.utils.config import ExperimentConfig as ExperimentConfigTGS, load_config as load_config_tgs
from TriplaneGaussian.data import CustomImageOrbitDataset
from TriplaneGaussian.utils.misc import todevice, get_device
from LGM.core.options import config_defaults
from LGM.mvdream.pipeline_mvdream import MVDreamPipeline
from LGM.large_multiview_gaussian_model import LargeMultiviewGaussianModel
from LGM.nerf_marching_cubes_converter import GSConverterNeRFMarchingCubes
from TripoSR.system import TSR
from StableFast3D.sf3d import utils as sf3d_utils
from StableFast3D.sf3d.system import SF3D
from InstantMesh.utils.camera_util import oribt_camera_poses_to_input_cameras
from CRM.model.crm.model import ConvolutionalReconstructionModel
from CRM.model.crm.sampler import CRMSampler
from Wonder3D.pipelines.pipeline_mvdiffusion_image import MVDiffusionImagePipeline
from Wonder3D.data.single_image_dataset import SingleImageDataset as MVSingleImageDataset
from Wonder3D.utils.misc import load_config as load_config_wonder3d
from Zero123Plus.pipeline import Zero123PlusPipeline
from Era3D.mvdiffusion.pipelines.pipeline_mvdiffusion_unclip import StableUnCLIPImg2ImgPipeline
from Era3D.mvdiffusion.data.single_image_dataset import SingleImageDataset as Era3DSingleImageDataset
from Era3D.utils.misc import load_config as load_config_era3d
from Unique3D.custum_3d_diffusion.custum_pipeline.unifield_pipeline_img2mvimg import StableDiffusionImage2MVCustomPipeline
from Unique3D.custum_3d_diffusion.custum_pipeline.unifield_pipeline_img2img import StableDiffusionImageCustomPipeline
from Unique3D.scripts.mesh_init import fast_geo
from Unique3D.scripts.utils import from_py3d_mesh, to_py3d_mesh, to_pyml_mesh, simple_clean_mesh
from Unique3D.scripts.project_mesh import multiview_color_projection, multiview_color_projection_texture, get_cameras_list, get_orbit_cameras_list
from Unique3D.mesh_reconstruction.recon import reconstruct_stage1
from Unique3D.mesh_reconstruction.refine import run_mesh_refine
from CharacterGen.character_inference import Inference2D_API, Inference3D_API
from CharacterGen.Stage_3D.lrm.utils.config import load_config as load_config_cg3d
import craftsman
from craftsman.systems.base import BaseSystem
from craftsman.utils.config import ExperimentConfig as ExperimentConfigCraftsman, load_config as load_config_craftsman
from CRM_T2I_V2.model.crm.sampler import CRMSamplerV2
from CRM_T2I_V2.model.t2i_adapter_v2 import T2IAdapterV2
from CRM_T2I_V3.model.crm.sampler import CRMSamplerV3
from Hunyuan3D_V1.mvd.hunyuan3d_mvd_std_pipeline import HunYuan3D_MVD_Std_Pipeline
from Hunyuan3D_V1.mvd.hunyuan3d_mvd_lite_pipeline import Hunyuan3D_MVD_Lite_Pipeline
from Hunyuan3D_V1.infer import Views2Mesh
from Hunyuan3D_V2.hy3dgen.shapegen import FaceReducer, FloaterRemover, DegenerateFaceRemover, Hunyuan3DDiTFlowMatchingPipeline
from Hunyuan3D_V2.hy3dgen.texgen import Hunyuan3DPaintPipeline
from TRELLIS.trellis.pipelines import TrellisImageTo3DPipeline
from TRELLIS.trellis.utils import postprocessing_utils
os.environ['SPCONV_ALGO'] = 'native'
from .shared_utils.image_utils import (
prepare_torch_img, torch_imgs_to_pils, troch_image_dilate,
pils_rgba_to_rgb, pil_make_image_grid, pil_split_image, pils_to_torch_imgs, pils_resize_foreground
)
from .shared_utils.camera_utils import (
ORBITPOSE_PRESET_DICT, ELEVATION_MIN, ELEVATION_MAX, AZIMUTH_MIN, AZIMUTH_MAX,
compose_orbit_camposes
)
from .shared_utils.log_utils import cstr
from .shared_utils.common_utils import parse_save_filename, get_list_filenames, resume_or_download_model_from_hf
DIFFUSERS_PIPE_DICT = OrderedDict([
("MVDreamPipeline", MVDreamPipeline),
("Wonder3DMVDiffusionPipeline", MVDiffusionImagePipeline),
("Zero123PlusPipeline", Zero123PlusPipeline),
("DiffusionPipeline", DiffusionPipeline),
("StableDiffusionPipeline", StableDiffusionPipeline),
("Era3DPipeline", StableUnCLIPImg2ImgPipeline),
("Unique3DImage2MVCustomPipeline", StableDiffusionImage2MVCustomPipeline),
("Unique3DImageCustomPipeline", StableDiffusionImageCustomPipeline),
("HunYuan3DMVDStdPipeline", HunYuan3D_MVD_Std_Pipeline),
("Hunyuan3DMVDLitePipeline", Hunyuan3D_MVD_Lite_Pipeline),
("Hunyuan3DDiTFlowMatchingPipeline", Hunyuan3DDiTFlowMatchingPipeline),
("Hunyuan3DPaintPipeline", Hunyuan3DPaintPipeline),
])
DIFFUSERS_SCHEDULER_DICT = OrderedDict([
("EulerAncestralDiscreteScheduler", EulerAncestralDiscreteScheduler),
("Wonder3DMVDiffusionPipeline", MVDiffusionImagePipeline),
("EulerDiscreteScheduler,", EulerDiscreteScheduler),
("DDIMScheduler,", DDIMScheduler),
("DDIMParallelScheduler,", DDIMParallelScheduler),
("LCMScheduler,", LCMScheduler),
("KDPM2AncestralDiscreteScheduler,", KDPM2AncestralDiscreteScheduler),
("KDPM2DiscreteScheduler,", KDPM2DiscreteScheduler),
])
ROOT_PATH = os.path.join(comfy_paths.get_folder_paths("custom_nodes")[0], "ComfyUI-3D-Pack")
CKPT_ROOT_PATH = os.path.join(ROOT_PATH, "Checkpoints")
CKPT_DIFFUSERS_PATH = os.path.join(CKPT_ROOT_PATH, "Diffusers")
CONFIG_ROOT_PATH = os.path.join(ROOT_PATH, "Configs")
MODULE_ROOT_PATH = os.path.join(ROOT_PATH, "Gen_3D_Modules")
MANIFEST = {
"name": "ComfyUI-3D-Pack",
"version": (0,0,2),
"author": "Mr. For Example",
"project": "https://github.com/MrForExample/ComfyUI-3D-Pack",
"description": "An extensive node suite that enables ComfyUI to process 3D inputs (Mesh & UV Texture, etc) using cutting edge algorithms (3DGS, NeRF, etc.)",
}
SUPPORTED_3D_EXTENSIONS = (
'.obj',
'.ply',
'.glb',
)
SUPPORTED_3DGS_EXTENSIONS = (
'.ply',
)
SUPPORTED_CHECKPOINTS_EXTENSIONS = (
'.ckpt',
'.bin',
'.safetensors',
)
WEIGHT_DTYPE = torch.float16
DEVICE_STR = "cuda" if torch.cuda.is_available() else "cpu"
DEVICE = torch.device(DEVICE_STR)
HF_DOWNLOAD_IGNORE = ["*.yaml", "*.json", "*.py", ".png", ".jpg", ".gif"]
class Preview_3DGS:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"gs_file_path": ("STRING", {"default": '', "multiline": False}),
},
}
OUTPUT_NODE = True
RETURN_TYPES = ()
FUNCTION = "preview_gs"
CATEGORY = "Comfy3D/Visualize"
def preview_gs(self, gs_file_path):
gs_folder_path, filename = os.path.split(gs_file_path)
if not os.path.isabs(gs_file_path):
gs_file_path = os.path.join(comfy_paths.output_directory, gs_folder_path)
if not filename.lower().endswith(SUPPORTED_3DGS_EXTENSIONS):
cstr(f"[{self.__class__.__name__}] File name {filename} does not end with supported 3DGS file extensions: {SUPPORTED_3DGS_EXTENSIONS}").error.print()
gs_file_path = ""
previews = [
{
"filepath": gs_file_path,
}
]
return {"ui": {"previews": previews}, "result": ()}
class Preview_3DMesh:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"mesh_file_path": ("STRING", {"default": '', "multiline": False}),
},
}
OUTPUT_NODE = True
RETURN_TYPES = ()
FUNCTION = "preview_mesh"
CATEGORY = "Comfy3D/Visualize"
def preview_mesh(self, mesh_file_path):
mesh_folder_path, filename = os.path.split(mesh_file_path)
if not os.path.isabs(mesh_file_path):
mesh_file_path = os.path.join(comfy_paths.output_directory, mesh_folder_path)
if not filename.lower().endswith(SUPPORTED_3D_EXTENSIONS):
cstr(f"[{self.__class__.__name__}] File name {filename} does not end with supported 3D file extensions: {SUPPORTED_3D_EXTENSIONS}").error.print()
mesh_file_path = ""
previews = [
{
"filepath": mesh_file_path,
}
]
return {"ui": {"previews": previews}, "result": ()}
class Load_3D_Mesh:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"mesh_file_path": ("STRING", {"default": '', "multiline": False}),
"resize": ("BOOLEAN", {"default": False},),
"renormal": ("BOOLEAN", {"default": True},),
"retex": ("BOOLEAN", {"default": False},),
"optimizable": ("BOOLEAN", {"default": False},),
"clean": ("BOOLEAN", {"default": False},),
"resize_bound": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1000.0, "step": 0.001}),
},
}
RETURN_TYPES = (
"MESH",
)
RETURN_NAMES = (
"mesh",
)
FUNCTION = "load_mesh"
CATEGORY = "Comfy3D/Import|Export"
def load_mesh(self, mesh_file_path, resize, renormal, retex, optimizable, clean, resize_bound):
mesh = None
if not os.path.isabs(mesh_file_path):
mesh_file_path = os.path.join(comfy_paths.input_directory, mesh_file_path)
if os.path.exists(mesh_file_path):
folder, filename = os.path.split(mesh_file_path)
if filename.lower().endswith(SUPPORTED_3D_EXTENSIONS):
with torch.inference_mode(not optimizable):
mesh = Mesh.load(mesh_file_path, resize, renormal, retex, clean, resize_bound)
else:
cstr(f"[{self.__class__.__name__}] File name {filename} does not end with supported 3D file extensions: {SUPPORTED_3D_EXTENSIONS}").error.print()
else:
cstr(f"[{self.__class__.__name__}] File {mesh_file_path} does not exist").error.print()
return (mesh, )
class Load_3DGS:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"gs_file_path": ("STRING", {"default": '', "multiline": False}),
},
}
RETURN_TYPES = (
"GS_PLY",
)
RETURN_NAMES = (
"gs_ply",
)
FUNCTION = "load_gs"
CATEGORY = "Comfy3D/Import|Export"
def load_gs(self, gs_file_path):
gs_ply = None
if not os.path.isabs(gs_file_path):
gs_file_path = os.path.join(comfy_paths.input_directory, gs_file_path)
if os.path.exists(gs_file_path):
folder, filename = os.path.split(gs_file_path)
if filename.lower().endswith(SUPPORTED_3DGS_EXTENSIONS):
gs_ply = PlyData.read(gs_file_path)
else:
cstr(f"[{self.__class__.__name__}] File name {filename} does not end with supported 3DGS file extensions: {SUPPORTED_3DGS_EXTENSIONS}").error.print()
else:
cstr(f"[{self.__class__.__name__}] File {gs_file_path} does not exist").error.print()
return (gs_ply, )
class Save_3D_Mesh:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"mesh": ("MESH",),
"save_path": ("STRING", {"default": 'Mesh_%Y-%m-%d-%M-%S-%f.glb', "multiline": False}),
},
}
OUTPUT_NODE = True
RETURN_TYPES = (
"STRING",
)
RETURN_NAMES = (
"save_path",
)
FUNCTION = "save_mesh"
CATEGORY = "Comfy3D/Import|Export"
def save_mesh(self, mesh, save_path):
save_path = parse_save_filename(save_path, comfy_paths.output_directory, SUPPORTED_3D_EXTENSIONS, self.__class__.__name__)
if save_path is not None:
mesh.write(save_path)
return (save_path, )
class Save_3DGS:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"gs_ply": ("GS_PLY",),
"save_path": ("STRING", {"default": '3DGS_%Y-%m-%d-%M-%S-%f.ply', "multiline": False}),
},
}
OUTPUT_NODE = True
RETURN_TYPES = (
"STRING",
)
RETURN_NAMES = (
"save_path",
)
FUNCTION = "save_gs"
CATEGORY = "Comfy3D/Import|Export"
def save_gs(self, gs_ply, save_path):
save_path = parse_save_filename(save_path, comfy_paths.output_directory, SUPPORTED_3DGS_EXTENSIONS, self.__class__.__name__)
if save_path is not None:
gs_ply.write(save_path)
return (save_path, )
class Image_Add_Pure_Color_Background:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"images": ("IMAGE",),
"masks": ("MASK",),
"R": ("INT", {"default": 255, "min": 0, "max": 255}),
"G": ("INT", {"default": 255, "min": 0, "max": 255}),
"B": ("INT", {"default": 255, "min": 0, "max": 255}),
},
}
RETURN_TYPES = (
"IMAGE",
)
RETURN_NAMES = (
"images",
)
FUNCTION = "image_add_bg"
CATEGORY = "Comfy3D/Preprocessor"
def image_add_bg(self, images, masks, R, G, B):
"""
bg_mask = bg_mask.unsqueeze(3)
inv_bg_mask = torch.ones_like(bg_mask) - bg_mask
color = torch.tensor([R, G, B]).to(image.dtype) / 255
color_bg = color.repeat(bg_mask.shape)
image = inv_bg_mask * image + bg_mask * color_bg
"""
image_pils = torch_imgs_to_pils(images, masks)
image_pils = pils_rgba_to_rgb(image_pils, (R, G, B))
images = pils_to_torch_imgs(image_pils, images.dtype, images.device)
return (images,)
class Resize_Image_Foreground:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"images": ("IMAGE",),
"masks": ("MASK",),
"foreground_ratio": ("FLOAT", {"default": 0.85, "min": 0.01, "max": 1.0, "step": 0.01}),
},
}
RETURN_TYPES = (
"IMAGE",
"MASK",
)
RETURN_NAMES = (
"images",
"masks",
)
FUNCTION = "resize_img_foreground"
CATEGORY = "Comfy3D/Preprocessor"
def resize_img_foreground(self, images, masks, foreground_ratio):
image_pils = torch_imgs_to_pils(images, masks)
image_pils = pils_resize_foreground(image_pils, foreground_ratio)
images = pils_to_torch_imgs(image_pils, images.dtype, images.device, force_rgb=False)
images, masks = images[:, :, :, 0:-1], images[:, :, :, -1]
return (images, masks,)
class Make_Image_Grid:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"images": ("IMAGE",),
"grid_side_num": ("INT", {"default": 1, "min": 1, "max": 8192}),
"use_rows": ("BOOLEAN", {"default": True},),
},
}
RETURN_TYPES = (
"IMAGE",
)
RETURN_NAMES = (
"image_grid",
)
FUNCTION = "make_image_grid"
CATEGORY = "Comfy3D/Preprocessor"
def make_image_grid(self, images, grid_side_num, use_rows):
pil_image_list = torch_imgs_to_pils(images)
if use_rows:
rows = grid_side_num
clos = None
else:
clos = grid_side_num
rows = None
image_grid = pil_make_image_grid(pil_image_list, rows, clos)
image_grid = TF.to_tensor(image_grid).permute(1, 2, 0).unsqueeze(0) # [1, H, W, 3]
return (image_grid,)
class Split_Image_Grid:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"grid_side_num": ("INT", {"default": 1, "min": 1, "max": 8192}),
"use_rows": ("BOOLEAN", {"default": True},),
},
}
RETURN_TYPES = (
"IMAGE",
)
RETURN_NAMES = (
"images",
)
FUNCTION = "split_image_grid"
CATEGORY = "Comfy3D/Preprocessor"
def split_image_grid(self, image, grid_side_num, use_rows):
images = []
for image_pil in torch_imgs_to_pils(image):
if use_rows:
rows = grid_side_num
clos = None
else:
clos = grid_side_num
rows = None
image_pils = pil_split_image(image_pil, rows, clos)
images.append(pils_to_torch_imgs(image_pils, image.dtype, image.device))
images = torch.cat(images, dim=0)
return (images,)
class Get_Masks_From_Normal_Maps:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"normal_maps": ("IMAGE",),
},
}
RETURN_TYPES = (
"MASK",
)
RETURN_NAMES = (
"normal_masks",
)
FUNCTION = "make_image_grid"
CATEGORY = "Comfy3D/Preprocessor"
def make_image_grid(self, normal_maps):
from Unique3D.scripts.utils import get_normal_map_masks
pil_normal_list = torch_imgs_to_pils(normal_maps)
normal_masks = get_normal_map_masks(pil_normal_list)
normal_masks = torch.stack(normal_masks, dim=0).to(normal_maps.dtype).to(normal_maps.device)
return (normal_masks,)
class Rotate_Normal_Maps_Horizontally:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"normal_maps": ("IMAGE",),
"normal_masks": ("MASK",),
"clockwise": ("BOOLEAN", {"default": True},),
},
}
RETURN_TYPES = (
"IMAGE",
)
RETURN_NAMES = (
"normal_maps",
)
FUNCTION = "make_image_grid"
CATEGORY = "Comfy3D/Preprocessor"
def make_image_grid(self, normal_maps, normal_masks, clockwise):
rotate_direction = 1 if clockwise is True else -1
if normal_maps.shape[0] > 1:
from Unique3D.scripts.utils import rotate_normals_torch
pil_image_list = torch_imgs_to_pils(normal_maps, normal_masks)
pil_image_list = rotate_normals_torch(pil_image_list, return_types='pil', rotate_direction=rotate_direction)
normal_maps = pils_to_torch_imgs(pil_image_list, normal_maps.dtype, normal_maps.device)
return (normal_maps,)
class Fast_Clean_Mesh:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"mesh": ("MESH",),
"apply_smooth": ("BOOLEAN", {"default": True},),
"smooth_step": ("INT", {"default": 1, "min": 0, "max": 0xffffffffffffffff}),
"apply_sub_divide": ("BOOLEAN", {"default": True},),
"sub_divide_threshold": ("FLOAT", {"default": 0.25, "step": 0.001}),
},
}
RETURN_TYPES = (
"MESH",
)
RETURN_NAMES = (
"mesh",
)
FUNCTION = "clean_mesh"
CATEGORY = "Comfy3D/Preprocessor"
def clean_mesh(self, mesh, apply_smooth, smooth_step, apply_sub_divide, sub_divide_threshold):
meshes = simple_clean_mesh(to_pyml_mesh(mesh.v, mesh.f), apply_smooth=apply_smooth, stepsmoothnum=smooth_step, apply_sub_divide=apply_sub_divide, sub_divide_threshold=sub_divide_threshold).to(DEVICE)
vertices, faces, _ = from_py3d_mesh(meshes)
mesh = Mesh(v=vertices, f=faces, device=DEVICE)
return (mesh,)
class Decimate_Mesh:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"mesh": ("MESH",),
"target": ("INT", {"default": 5e4, "min": 0, "max": 0xffffffffffffffff}),
"remesh": ("BOOLEAN", {"default": True},),
"optimalplacement": ("BOOLEAN", {"default": True},),
},
}
RETURN_TYPES = (
"MESH",
)
RETURN_NAMES = (
"mesh",
)
FUNCTION = "process_mesh"
CATEGORY = "Comfy3D/Preprocessor"
def process_mesh(self, mesh, target, remesh, optimalplacement):
vertices, faces = decimate_mesh(mesh.v, mesh.f, target, remesh, optimalplacement)
mesh.v = vertices
mesh.f = faces
return (mesh,)
class Switch_3DGS_Axis:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"gs_ply": ("GS_PLY",),
"axis_x_to": (["+x", "-x", "+y", "-y", "+z", "-z"],),
"axis_y_to": (["+y", "-y", "+z", "-z", "+x", "-x"],),
"axis_z_to": (["+z", "-z", "+x", "-x", "+y", "-y"],),
},
}
RETURN_TYPES = (
"GS_PLY",
)
RETURN_NAMES = (
"switched_gs_ply",
)
FUNCTION = "switch_axis_and_scale"
CATEGORY = "Comfy3D/Preprocessor"
def switch_axis_and_scale(self, gs_ply, axis_x_to, axis_y_to, axis_z_to):
switched_gs_ply = None
if axis_x_to[1] != axis_y_to[1] and axis_x_to[1] != axis_z_to[1] and axis_y_to[1] != axis_z_to[1]:
target_axis, target_scale, coordinate_invert_count = get_target_axis_and_scale([axis_x_to, axis_y_to, axis_z_to])
switched_gs_ply = switch_ply_axis_and_scale(gs_ply, target_axis, target_scale, coordinate_invert_count)
else:
cstr(f"[{self.__class__.__name__}] axis_x_to: {axis_x_to}, axis_y_to: {axis_y_to}, axis_z_to: {axis_z_to} have to be on separated axis").error.print()
return (switched_gs_ply, )
class Switch_Mesh_Axis:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"mesh": ("MESH",),
"axis_x_to": (["+x", "-x", "+y", "-y", "+z", "-z"],),
"axis_y_to": (["+y", "-y", "+z", "-z", "+x", "-x"],),
"axis_z_to": (["+z", "-z", "+x", "-x", "+y", "-y"],),
"flip_normal": ("BOOLEAN", {"default": False},),
"scale": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 100, "step": 0.01}),
},
}
RETURN_TYPES = (
"MESH",
)
RETURN_NAMES = (
"switched_mesh",
)
FUNCTION = "switch_axis_and_scale"
CATEGORY = "Comfy3D/Preprocessor"
def switch_axis_and_scale(self, mesh, axis_x_to, axis_y_to, axis_z_to, flip_normal, scale):
switched_mesh = None
if axis_x_to[1] != axis_y_to[1] and axis_x_to[1] != axis_z_to[1] and axis_y_to[1] != axis_z_to[1]:
target_axis, target_scale, coordinate_invert_count = get_target_axis_and_scale([axis_x_to, axis_y_to, axis_z_to], scale)
switched_mesh = switch_mesh_axis_and_scale(mesh, target_axis, target_scale, flip_normal)
else:
cstr(f"[{self.__class__.__name__}] axis_x_to: {axis_x_to}, axis_y_to: {axis_y_to}, axis_z_to: {axis_z_to} have to be on separated axis").error.print()
return (switched_mesh, )
class Convert_3DGS_To_Pointcloud:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"gs_ply": ("GS_PLY",),
},
}
RETURN_TYPES = (
"POINTCLOUD",
)
RETURN_NAMES = (
"points_cloud",
)
FUNCTION = "convert_gs_ply"
CATEGORY = "Comfy3D/Preprocessor"
def convert_gs_ply(self, gs_ply):
points_cloud = ply_to_points_cloud(gs_ply)
return (points_cloud, )
class Convert_Mesh_To_Pointcloud:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"mesh": ("MESH",),
},
}
RETURN_TYPES = (
"POINTCLOUD",
)
RETURN_NAMES = (
"points_cloud",
)
FUNCTION = "convert_mesh"
CATEGORY = "Comfy3D/Preprocessor"
def convert_mesh(self, mesh):
points_cloud = mesh.convert_to_pointcloud()
return (points_cloud, )
class Stack_Orbit_Camera_Poses:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"orbit_radius_start": ("FLOAT", {"default": 1.75, "step": 0.0001}),
"orbit_radius_stop": ("FLOAT", {"default": 1.75, "step": 0.0001}),
"orbit_radius_step": ("FLOAT", {"default": 0.1, "step": 0.0001}),
"elevation_start": ("FLOAT", {"default": 0.0, "min": ELEVATION_MIN, "max": ELEVATION_MAX, "step": 0.0001}),
"elevation_stop": ("FLOAT", {"default": 0.0, "min": ELEVATION_MIN, "max": ELEVATION_MAX, "step": 0.0001}),
"elevation_step": ("FLOAT", {"default": 0.0, "min": ELEVATION_MIN, "max": ELEVATION_MAX, "step": 0.0001}),
"azimuth_start": ("FLOAT", {"default": 0.0, "min": AZIMUTH_MIN, "max": AZIMUTH_MAX, "step": 0.0001}),
"azimuth_stop": ("FLOAT", {"default": 0.0, "min": AZIMUTH_MIN, "max": AZIMUTH_MAX, "step": 0.0001}),
"azimuth_step": ("FLOAT", {"default": 0.0, "min": AZIMUTH_MIN, "max": AZIMUTH_MAX, "step": 0.0001}),
"orbit_center_X_start": ("FLOAT", {"default": 0.0, "step": 0.0001}),
"orbit_center_X_stop": ("FLOAT", {"default": 0.0, "step": 0.0001}),
"orbit_center_X_step": ("FLOAT", {"default": 0.1, "step": 0.0001}),
"orbit_center_Y_start": ("FLOAT", {"default": 0.0, "step": 0.0001}),
"orbit_center_Y_stop": ("FLOAT", {"default": 0.0, "step": 0.0001}),
"orbit_center_Y_step": ("FLOAT", {"default": 0.1, "step": 0.0001}),
"orbit_center_Z_start": ("FLOAT", {"default": 0.0, "step": 0.0001}),
"orbit_center_Z_stop": ("FLOAT", {"default": 0.0, "step": 0.0001}),
"orbit_center_Z_step": ("FLOAT", {"default": 0.1, "step": 0.0001}),
},
}
RETURN_TYPES = (
"ORBIT_CAMPOSES", # [[orbit radius, elevation, azimuth, orbit center X, orbit center Y, orbit center Z], ...]
"FLOAT",
"FLOAT",
"FLOAT",
"FLOAT",
"FLOAT",
"FLOAT",
)
RETURN_NAMES = (
"orbit_camposes",
"orbit_radius_list",
"elevation_list",
"azimuth_list",
"orbit_center_X_list",
"orbit_center_Y_list",
"orbit_center_Z_list",
)
OUTPUT_IS_LIST = (
False,
True,
True,
True,
True,
True,
True,
)
FUNCTION = "get_camposes"
CATEGORY = "Comfy3D/Preprocessor"
class Pose_Config(Enum):
STOP_LARGER_STEP_POS = 0
START_LARGER_STEP_POS = 1
START_LARGER_STEP_NEG = 2
STOP_LARGER_STEP_NEG = 3
class Pose_Type:
def __init__(self, start, stop, step, min_value=-math.inf, max_value=math.inf, is_linear = True):
if abs(step) < 0.0001:
step = 0.0001 * (-1.0 if step < 0 else 1.0)
if is_linear and ( (step > 0 and stop < start) or (step < 0 and stop > start)):
cstr(f"[{self.__class__.__name__}] stop value: {stop} cannot be reached from start value {start} with step value {step}, will reverse the sign of step value to {-step}").warning.print()
self.step = -step
else:
self.step = step
self.start = start
self.stop = stop
self.min = min_value
self.max = max_value
self.is_linear = is_linear # linear or circular (i.e. min and max value are connected, e.g. -180 & 180 degree in azimuth angle) value
def stack_camposes(self, pose_type_index=None, last_camposes=[[]]):
if pose_type_index == None:
pose_type_index = len(self.all_pose_types) - 1
if pose_type_index == -1:
return last_camposes
else:
current_pose_type = self.all_pose_types[pose_type_index]
all_camposes = []
# There are four different kind of situation we need to deal with to make this function generalize for any combination of inputs
if current_pose_type.step > 0:
if current_pose_type.start < current_pose_type.stop or current_pose_type.is_linear:
pose_config = Stack_Orbit_Camera_Poses.Pose_Config.STOP_LARGER_STEP_POS
else:
pose_config = Stack_Orbit_Camera_Poses.Pose_Config.START_LARGER_STEP_POS
else:
if current_pose_type.start > current_pose_type.stop or current_pose_type.is_linear:
pose_config = Stack_Orbit_Camera_Poses.Pose_Config.START_LARGER_STEP_NEG
else:
pose_config = Stack_Orbit_Camera_Poses.Pose_Config.STOP_LARGER_STEP_NEG
p = current_pose_type.start
p_passed_min_max_seam = False
while ( (pose_config == Stack_Orbit_Camera_Poses.Pose_Config.STOP_LARGER_STEP_POS and p <= current_pose_type.stop) or
(pose_config == Stack_Orbit_Camera_Poses.Pose_Config.START_LARGER_STEP_POS and (not p_passed_min_max_seam or p <= current_pose_type.stop)) or
(pose_config == Stack_Orbit_Camera_Poses.Pose_Config.START_LARGER_STEP_NEG and p >= current_pose_type.stop) or
(pose_config == Stack_Orbit_Camera_Poses.Pose_Config.STOP_LARGER_STEP_NEG and (not p_passed_min_max_seam or p >= current_pose_type.stop)) ):
# If current pose value surpass the either min/max value then we map its vaule to the oppsite sign
if pose_config == Stack_Orbit_Camera_Poses.Pose_Config.START_LARGER_STEP_POS and p > current_pose_type.max:
p = current_pose_type.min + p % current_pose_type.max
p_passed_min_max_seam = True
elif pose_config == Stack_Orbit_Camera_Poses.Pose_Config.STOP_LARGER_STEP_NEG and p < current_pose_type.min:
p = current_pose_type.max + p % current_pose_type.min
p_passed_min_max_seam = True
new_camposes = copy.deepcopy(last_camposes)
for campose in new_camposes:
campose.insert(0, p)
all_camposes.extend(new_camposes)
p += current_pose_type.step
return self.stack_camposes(pose_type_index-1, all_camposes)
def get_camposes(self,
orbit_radius_start,
orbit_radius_stop,
orbit_radius_step,
elevation_start,
elevation_stop,
elevation_step,
azimuth_start,
azimuth_stop,
azimuth_step,
orbit_center_X_start,
orbit_center_X_stop,
orbit_center_X_step,
orbit_center_Y_start,
orbit_center_Y_stop,
orbit_center_Y_step,
orbit_center_Z_start,
orbit_center_Z_stop,
orbit_center_Z_step):
"""
Return the combination of all the pose types interpolation values
Return values in two ways:
orbit_camposes: CAMPOSES type list can directly input to other 3D process node (e.g. GaussianSplatting)
all the camera pose types seperated in different list, becasue some 3D model's conditioner only takes a sub set of all camera pose types (e.g. StableZero123)
"""
orbit_radius_list = []
elevation_list = []
azimuth_list = []
orbit_center_X_list = []
orbit_center_Y_list = []
orbit_center_Z_list = []
self.all_pose_types = []
self.all_pose_types.append( Stack_Orbit_Camera_Poses.Pose_Type(orbit_radius_start, orbit_radius_stop, orbit_radius_step) )
self.all_pose_types.append( Stack_Orbit_Camera_Poses.Pose_Type(elevation_start, elevation_stop, elevation_step, ELEVATION_MIN, ELEVATION_MAX) )
self.all_pose_types.append( Stack_Orbit_Camera_Poses.Pose_Type(azimuth_start, azimuth_stop, azimuth_step, AZIMUTH_MIN, AZIMUTH_MAX, False) )
self.all_pose_types.append( Stack_Orbit_Camera_Poses.Pose_Type(orbit_center_X_start, orbit_center_X_stop, orbit_center_X_step) )
self.all_pose_types.append( Stack_Orbit_Camera_Poses.Pose_Type(orbit_center_Y_start, orbit_center_Y_stop, orbit_center_Y_step) )
self.all_pose_types.append( Stack_Orbit_Camera_Poses.Pose_Type(orbit_center_Z_start, orbit_center_Z_stop, orbit_center_Z_step) )
orbit_camposes = self.stack_camposes()
for campose in orbit_camposes:
orbit_radius_list.append(campose[0])
elevation_list.append(campose[1])
azimuth_list.append(campose[2])
orbit_center_X_list.append(campose[3])
orbit_center_Y_list.append(campose[4])
orbit_center_Z_list.append(campose[5])
return (orbit_camposes, orbit_radius_list, elevation_list, azimuth_list, orbit_center_X_list, orbit_center_Y_list, orbit_center_Z_list, )
class Get_Camposes_From_List_Indexed:
RETURN_TYPES = ("ORBIT_CAMPOSES",)
FUNCTION = "get_indexed_camposes"
CATEGORY = "Comfy3D/Preprocessor"
DESCRIPTION = """
Selects and returns the camera poses at the specified indices as an list.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"original_orbit_camera_poses": ("ORBIT_CAMPOSES",), # [orbit radius, elevation, azimuth, orbit center X, orbit center Y, orbit center Z]
"indexes": ("STRING", {"default": "0, 1, 2", "multiline": True}),
},
}
def get_indexed_camposes(self, original_orbit_camera_poses, indexes):
# Parse the indexes string into a list of integers
index_list = [int(index.strip()) for index in indexes.split(',')]
# Select the camposes at the specified indices
orbit_camera_poses = []
for pose_list in original_orbit_camera_poses:
new_pose_list = [pose_list[i] for i in index_list]
orbit_camera_poses.append(new_pose_list)
return (orbit_camera_poses,)
class Mesh_Orbit_Renderer:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"mesh": ("MESH",),
"render_image_width": ("INT", {"default": 1024, "min": 128, "max": 8192}),
"render_image_height": ("INT", {"default": 1024, "min": 128, "max": 8192}),
"render_orbit_camera_poses": ("ORBIT_CAMPOSES",), # [orbit radius, elevation, azimuth, orbit center X, orbit center Y, orbit center Z]
"render_orbit_camera_fovy": ("FLOAT", {"default": 49.1, "min": 0.0, "max": 180.0, "step": 0.1}),
"render_background_color_r": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"render_background_color_g": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"render_background_color_b": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"force_cuda_rasterize": ("BOOLEAN", {"default": False},),
},
"optional": {
"render_depth": ("BOOLEAN", {"default": False},),
"render_normal": ("BOOLEAN", {"default": False},),
}
}
RETURN_TYPES = (
"IMAGE",
"MASK",
"IMAGE",
"IMAGE",
"IMAGE",
)
RETURN_NAMES = (
"rendered_mesh_images", # [Number of Poses, H, W, 3]
"rendered_mesh_masks", # [Number of Poses, H, W, 1]
"all_rendered_depths", # [Number of Poses, H, W, 3]
"all_rendered_normals", # [Number of Poses, H, W, 3]
"all_rendered_viewcos", # [Number of Poses, H, W, 3]
)
FUNCTION = "render_mesh"
CATEGORY = "Comfy3D/Preprocessor"
def render_mesh(
self,
mesh,
render_image_width,
render_image_height,
render_orbit_camera_poses,
render_orbit_camera_fovy,
render_background_color_r,
render_background_color_g,
render_background_color_b,
force_cuda_rasterize,
render_depth=False,
render_normal=False,
):
renderer = DiffRastRenderer(mesh, force_cuda_rasterize)
optional_render_types = []
if render_depth:
optional_render_types.append('depth')
if render_normal:
optional_render_types.append('normal')
cam_controller = DiffMeshCameraController(
renderer,
render_image_width,
render_image_height,
render_orbit_camera_fovy,
static_bg=[render_background_color_r, render_background_color_g, render_background_color_b]
)
extra_kwargs = {"optional_render_types": optional_render_types}
all_rendered_images, all_rendered_masks, extra_outputs = cam_controller.render_all_pose(render_orbit_camera_poses, **extra_kwargs)
all_rendered_masks = all_rendered_masks.squeeze(-1) # [N, H, W, 1] -> [N, H, W]
if 'depth' in extra_outputs:
all_rendered_depths = extra_outputs['depth'].repeat(1, 1, 1, 3) # [N, H, W, 1] -> [N, H, W, 3]
else:
all_rendered_depths = None
if 'normal' in extra_outputs:
all_rendered_normals = extra_outputs['normal']
all_rendered_viewcos = extra_outputs['viewcos']
else:
all_rendered_normals = None
all_rendered_viewcos = None
return (all_rendered_images, all_rendered_masks, all_rendered_depths, all_rendered_normals, all_rendered_viewcos)
class Gaussian_Splatting_Orbit_Renderer:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"gs_ply": ("GS_PLY",),
"render_image_width": ("INT", {"default": 1024, "min": 128, "max": 8192}),
"render_image_height": ("INT", {"default": 1024, "min": 128, "max": 8192}),
"render_orbit_camera_poses": ("ORBIT_CAMPOSES",), # [orbit radius, elevation, azimuth, orbit center X, orbit center Y, orbit center Z]
"render_orbit_camera_fovy": ("FLOAT", {"default": 49.1, "min": 0.0, "max": 180.0, "step": 0.1}),
"render_background_color_r": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"render_background_color_g": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"render_background_color_b": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
}
}
RETURN_TYPES = (
"IMAGE",
"MASK",
"IMAGE",
)
RETURN_NAMES = (
"rendered_gs_images", # [Number of Poses, H, W, 3]
"rendered_gs_masks", # [Number of Poses, H, W, 1]
"rendered_gs_depths", # [Number of Poses, H, W, 3]
)
FUNCTION = "render_gs"
CATEGORY = "Comfy3D/Preprocessor"
def render_gs(
self,
gs_ply,
render_image_width,
render_image_height,
render_orbit_camera_poses,
render_orbit_camera_fovy,
render_background_color_r,
render_background_color_g,
render_background_color_b,
):
sh_degree, _ = calculate_max_sh_degree_from_gs_ply(gs_ply)
renderer = GaussianSplattingRenderer(sh_degree=sh_degree)
renderer.initialize(gs_ply)
cam_controller = GaussianSplattingCameraController(
renderer,
render_image_width,
render_image_height,
render_orbit_camera_fovy,
static_bg=[render_background_color_r, render_background_color_g, render_background_color_b]
)
all_rendered_images, all_rendered_masks, extra_outputs = cam_controller.render_all_pose(render_orbit_camera_poses)
all_rendered_images = all_rendered_images.permute(0, 2, 3, 1) # [N, 3, H, W] -> [N, H, W, 3]
all_rendered_masks = all_rendered_masks.squeeze(1) # [N, 1, H, W] -> [N, H, W]
if 'depth' in extra_outputs:
all_rendered_depths = extra_outputs['depth'].permute(0, 2, 3, 1).repeat(1, 1, 1, 3) # [N, 1, H, W] -> [N, H, W, 3]
else:
all_rendered_depths = None
return (all_rendered_images, all_rendered_masks, all_rendered_depths)
class Gaussian_Splatting_3D:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"reference_images": ("IMAGE",),
"reference_masks": ("MASK",),
"reference_orbit_camera_poses": ("ORBIT_CAMPOSES",), # [orbit radius, elevation, azimuth, orbit center X, orbit center Y, orbit center Z]
"reference_orbit_camera_fovy": ("FLOAT", {"default": 49.1, "min": 0.0, "max": 180.0, "step": 0.1}),
"training_iterations": ("INT", {"default": 30_000, "min": 1, "max": 0xffffffffffffffff}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 0xffffffffffffffff}),
"ms_ssim_loss_weight": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, }),
"alpha_loss_weight": ("FLOAT", {"default": 3, "min": 0.0, }),
"offset_loss_weight": ("FLOAT", {"default": 0.0, "min": 0.0, }),
"offset_opacity_loss_weight": ("FLOAT", {"default": 0.0, "min": 0.0, }),
"invert_background_probability": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.1}),
"feature_learning_rate": ("FLOAT", {"default": 0.0025, "min": 0.000001, "step": 0.000001}),
"opacity_learning_rate": ("FLOAT", {"default": 0.05, "min": 0.000001, "step": 0.000001}),
"scaling_learning_rate": ("FLOAT", {"default": 0.005, "min": 0.000001, "step": 0.000001}),
"rotation_learning_rate": ("FLOAT", {"default": 0.001, "min": 0.000001, "step": 0.000001}),
"position_learning_rate_init": ("FLOAT", {"default": 0.00016, "min": 0.000001, "step": 0.000001}),
"position_learning_rate_final": ("FLOAT", {"default": 0.0000016, "min": 0.0000001, "step": 0.0000001}),
"position_learning_rate_delay_mult": ("FLOAT", {"default": 0.01, "min": 0.000001, "step": 0.000001}),
"position_learning_rate_max_steps": ("INT", {"default": 30_000, "min": 1, "max": 0xffffffffffffffff}),
"initial_gaussians_num": ("INT", {"default": 10_000, "min": 1, "max": 0xffffffffffffffff}),
"K_nearest_neighbors": ("INT", {"default": 3, "min": 1, "max": 0xffffffffffffffff}),
"percent_dense": ("FLOAT", {"default": 0.01, "min": 0.00001, "step": 0.00001}),
"density_start_iterations": ("INT", {"default": 500, "min": 0, "max": 0xffffffffffffffff}),
"density_end_iterations": ("INT", {"default": 15_000, "min": 0, "max": 0xffffffffffffffff}),
"densification_interval": ("INT", {"default": 100, "min": 1, "max": 0xffffffffffffffff}),
"opacity_reset_interval": ("INT", {"default": 3000, "min": 1, "max": 0xffffffffffffffff}),
"densify_grad_threshold": ("FLOAT", {"default": 0.0002, "min": 0.00001, "step": 0.00001}),
"gaussian_sh_degree": ("INT", {"default": 3, "min": 0}),
},
"optional": {
"points_cloud_to_initialize_gaussian": ("POINTCLOUD",),
"ply_to_initialize_gaussian": ("GS_PLY",),
"mesh_to_initialize_gaussian": ("MESH",),
}
}
RETURN_TYPES = (
"GS_PLY",
)
RETURN_NAMES = (
"gs_ply",
)
FUNCTION = "run_gs"
CATEGORY = "Comfy3D/Algorithm"
def run_gs(
self,
reference_images,
reference_masks,
reference_orbit_camera_poses,
reference_orbit_camera_fovy,
training_iterations,
batch_size,
ms_ssim_loss_weight,
alpha_loss_weight,
offset_loss_weight,
offset_opacity_loss_weight,
invert_background_probability,
feature_learning_rate,
opacity_learning_rate,
scaling_learning_rate,
rotation_learning_rate,
position_learning_rate_init,
position_learning_rate_final,
position_learning_rate_delay_mult,
position_learning_rate_max_steps,
initial_gaussians_num,
K_nearest_neighbors,
percent_dense,
density_start_iterations,
density_end_iterations,
densification_interval,
opacity_reset_interval,
densify_grad_threshold,
gaussian_sh_degree,
points_cloud_to_initialize_gaussian=None,
ply_to_initialize_gaussian=None,
mesh_to_initialize_gaussian=None,
):
gs_ply = None
ref_imgs_num = len(reference_images)
ref_masks_num = len(reference_masks)
if ref_imgs_num == ref_masks_num:
ref_cam_poses_num = len(reference_orbit_camera_poses)
if ref_imgs_num == ref_cam_poses_num:
if batch_size > ref_imgs_num:
cstr(f"[{self.__class__.__name__}] Batch size {batch_size} is bigger than number of reference images {ref_imgs_num}! Set batch size to {ref_imgs_num} instead").warning.print()
batch_size = ref_imgs_num
with torch.inference_mode(False):
gs_params = GSParams(
training_iterations,
batch_size,
ms_ssim_loss_weight,
alpha_loss_weight,
offset_loss_weight,
offset_opacity_loss_weight,
invert_background_probability,
feature_learning_rate,
opacity_learning_rate,
scaling_learning_rate,
rotation_learning_rate,
position_learning_rate_init,
position_learning_rate_final,
position_learning_rate_delay_mult,
position_learning_rate_max_steps,
initial_gaussians_num,
K_nearest_neighbors,
percent_dense,
density_start_iterations,
density_end_iterations,
densification_interval,
opacity_reset_interval,
densify_grad_threshold,
gaussian_sh_degree
)
if points_cloud_to_initialize_gaussian is not None:
gs_init_input = points_cloud_to_initialize_gaussian
elif ply_to_initialize_gaussian is not None:
gs_init_input = ply_to_initialize_gaussian
else:
gs_init_input = mesh_to_initialize_gaussian
gs = GaussianSplatting3D(gs_params, gs_init_input)
gs.prepare_training(reference_images, reference_masks, reference_orbit_camera_poses, reference_orbit_camera_fovy)
gs.training()
gs_ply = gs.renderer.gaussians.to_ply()
else:
cstr(f"[{self.__class__.__name__}] Number of reference images {ref_imgs_num} does not equal to number of reference camera poses {ref_cam_poses_num}").error.print()
else:
cstr(f"[{self.__class__.__name__}] Number of reference images {ref_imgs_num} does not equal to number of masks {ref_masks_num}").error.print()
return (gs_ply, )
class Fitting_Mesh_With_Multiview_Images:
def __init__(self):
self.need_update = False
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"reference_images": ("IMAGE",),
"reference_masks": ("MASK",),
"reference_orbit_camera_poses": ("ORBIT_CAMPOSES",), # [orbit radius, elevation, azimuth, orbit center X, orbit center Y, orbit center Z]
"reference_orbit_camera_fovy": ("FLOAT", {"default": 49.1, "min": 0.0, "max": 180.0, "step": 0.1}),
"mesh": ("MESH",),
"mesh_albedo_width": ("INT", {"default": 1024, "min": 128, "max": 8192}),
"mesh_albedo_height": ("INT", {"default": 1024, "min": 128, "max": 8192}),
"training_iterations": ("INT", {"default": 1024, "min": 1, "max": 100000}),
"batch_size": ("INT", {"default": 3, "min": 1, "max": 0xffffffffffffffff}),
"texture_learning_rate": ("FLOAT", {"default": 0.001, "min": 0.00001, "step": 0.00001}),
"train_mesh_geometry": ("BOOLEAN", {"default": False},),
"geometry_learning_rate": ("FLOAT", {"default": 0.0001, "min": 0.00001, "step": 0.00001}),
"ms_ssim_loss_weight": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"remesh_after_n_iteration": ("INT", {"default": 512, "min": 128, "max": 100000}),
"invert_background_probability": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.1}),
"force_cuda_rasterize": ("BOOLEAN", {"default": False},),
},
}
RETURN_TYPES = (
"MESH",
"IMAGE",
)
RETURN_NAMES = (
"trained_mesh",
"baked_texture", # [1, H, W, 3]
)
FUNCTION = "fitting_mesh"
CATEGORY = "Comfy3D/Algorithm"
def fitting_mesh(
self,
reference_images,
reference_masks,
reference_orbit_camera_poses,
reference_orbit_camera_fovy,
mesh,
mesh_albedo_width,
mesh_albedo_height,
training_iterations,
batch_size,
texture_learning_rate,
train_mesh_geometry,
geometry_learning_rate,
ms_ssim_loss_weight,
remesh_after_n_iteration,
invert_background_probability,
force_cuda_rasterize,
):
if mesh.vt is None:
mesh.auto_uv()
mesh.set_new_albedo(mesh_albedo_width, mesh_albedo_height)
trained_mesh = None
baked_texture = None
ref_imgs_num = len(reference_images)
ref_masks_num = len(reference_masks)
if ref_imgs_num == ref_masks_num:
ref_cam_poses_num = len(reference_orbit_camera_poses)
if ref_imgs_num == ref_cam_poses_num:
if batch_size > ref_imgs_num:
cstr(f"[{self.__class__.__name__}] Batch size {batch_size} is bigger than number of reference images {ref_imgs_num}! Set batch size to {ref_imgs_num} instead").warning.print()
batch_size = ref_imgs_num
with torch.inference_mode(False):
mesh_fitter = DiffMesh(
mesh,
training_iterations,
batch_size,
texture_learning_rate,
train_mesh_geometry,
geometry_learning_rate,
ms_ssim_loss_weight,
remesh_after_n_iteration,
invert_background_probability,
force_cuda_rasterize
)
mesh_fitter.prepare_training(reference_images, reference_masks, reference_orbit_camera_poses, reference_orbit_camera_fovy)
mesh_fitter.training()
trained_mesh, baked_texture = mesh_fitter.get_mesh_and_texture()
else:
cstr(f"[{self.__class__.__name__}] Number of reference images {ref_imgs_num} does not equal to number of reference camera poses {ref_cam_poses_num}").error.print()
else:
cstr(f"[{self.__class__.__name__}] Number of reference images {ref_imgs_num} does not equal to number of masks {ref_masks_num}").error.print()
return (trained_mesh, baked_texture, )
class Load_Triplane_Gaussian_Transformers:
checkpoints_dir = "TriplaneGaussian"
default_ckpt_name = "model_lvis_rel.ckpt"
default_repo_id = "VAST-AI/TriplaneGaussian"
config_path = "TriplaneGaussian_config.yaml"
@classmethod
def INPUT_TYPES(cls):
cls.checkpoints_dir_abs = os.path.join(CKPT_ROOT_PATH, cls.checkpoints_dir)
cls.config_path_abs = os.path.join(CONFIG_ROOT_PATH, cls.config_path)
all_models_names = get_list_filenames(cls.checkpoints_dir_abs, SUPPORTED_CHECKPOINTS_EXTENSIONS)
if cls.default_ckpt_name not in all_models_names:
all_models_names += [cls.default_ckpt_name]
return {
"required": {
"model_name": (all_models_names, ),
},
}
RETURN_TYPES = (
"TGS_MODEL",
)
RETURN_NAMES = (
"tgs_model",
)
FUNCTION = "load_TGS"
CATEGORY = "Comfy3D/Import|Export"
def load_TGS(self, model_name):
device = get_device()
cfg: ExperimentConfigTGS = load_config_tgs(self.config_path_abs)
ckpt_path = resume_or_download_model_from_hf(self.checkpoints_dir_abs, self.default_repo_id, model_name, self.__class__.__name__)
cfg.system.weights=ckpt_path
tgs_model = TGS(cfg=cfg.system).to(device)
cstr(f"[{self.__class__.__name__}] loaded model ckpt from {ckpt_path}").msg.print()
return (tgs_model, )
class Triplane_Gaussian_Transformers:
config_path = "TriplaneGaussian_config.yaml"
@classmethod
def INPUT_TYPES(cls):
cls.config_path_abs = os.path.join(CONFIG_ROOT_PATH, cls.config_path)
return {
"required": {
"reference_image": ("IMAGE", ),
"reference_mask": ("MASK",),
"tgs_model": ("TGS_MODEL", ),
"cam_dist": ("FLOAT", {"default": 1.9, "min": 0.01, "step": 0.01}),
},
}
RETURN_TYPES = (
"GS_PLY",
)
RETURN_NAMES = (
"gs_ply",
)
FUNCTION = "run_TGS"
CATEGORY = "Comfy3D/Algorithm"
def run_TGS(self, reference_image, reference_mask, tgs_model, cam_dist):
cfg: ExperimentConfigTGS = load_config_tgs(self.config_path_abs)
cfg.data.cond_camera_distance = cam_dist
cfg.data.eval_camera_distance = cam_dist
dataset = CustomImageOrbitDataset(reference_image, reference_mask, cfg.data)
dataloader = DataLoader(
dataset,
batch_size=cfg.data.eval_batch_size,
shuffle=False,
collate_fn=dataset.collate
)
gs_ply = []
for batch in dataloader:
batch = todevice(batch)
gs_ply.extend(tgs_model(batch))
return (gs_ply[0], )
class Load_Diffusers_Pipeline:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"diffusers_pipeline_name": (list(DIFFUSERS_PIPE_DICT.keys()),),
"repo_id": ("STRING", {"default": "ashawkey/imagedream-ipmv-diffusers", "multiline": False}),
"custom_pipeline": ("STRING", {"default": "", "multiline": False}),
"force_download": ("BOOLEAN", {"default": False}),
},
"optional": {
"checkpoint_sub_dir": ("STRING", {"default": "", "multiline": False}),
}
}
RETURN_TYPES = (
"DIFFUSERS_PIPE",
)
RETURN_NAMES = (
"pipe",
)
FUNCTION = "load_diffusers_pipe"
CATEGORY = "Comfy3D/Import|Export"
def load_diffusers_pipe(self, diffusers_pipeline_name, repo_id, custom_pipeline, force_download, checkpoint_sub_dir=""):
# resume download pretrained checkpoint
ckpt_download_dir = os.path.join(CKPT_DIFFUSERS_PATH, repo_id)
snapshot_download(repo_id=repo_id, local_dir=ckpt_download_dir, force_download=force_download, repo_type="model", ignore_patterns=HF_DOWNLOAD_IGNORE)
diffusers_pipeline_class = DIFFUSERS_PIPE_DICT[diffusers_pipeline_name]
# load diffusers pipeline
if not custom_pipeline:
custom_pipeline = None
ckpt_path = ckpt_download_dir if not checkpoint_sub_dir else os.path.join(ckpt_download_dir, checkpoint_sub_dir)
pipe = diffusers_pipeline_class.from_pretrained(
ckpt_path,
torch_dtype=WEIGHT_DTYPE,
custom_pipeline=custom_pipeline,
).to(DEVICE)
if hasattr(pipe, 'enable_xformers_memory_efficient_attention'):
pipe.enable_xformers_memory_efficient_attention()
return (pipe, )
class Set_Diffusers_Pipeline_Scheduler:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"pipe": ("DIFFUSERS_PIPE",),
"diffusers_scheduler_name": (list(DIFFUSERS_SCHEDULER_DICT.keys()),),
},
}
RETURN_TYPES = (
"DIFFUSERS_PIPE",
)
RETURN_NAMES = (
"pipe",
)
FUNCTION = "set_pipe_scheduler"
CATEGORY = "Comfy3D/Import|Export"
def set_pipe_scheduler(self, pipe, diffusers_scheduler_name):
diffusers_scheduler_class = DIFFUSERS_SCHEDULER_DICT[diffusers_scheduler_name]
pipe.scheduler = diffusers_scheduler_class.from_config(
pipe.scheduler.config, timestep_spacing='trailing'
)
return (pipe, )
class Set_Diffusers_Pipeline_State_Dict:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"pipe": ("DIFFUSERS_PIPE",),
"repo_id": ("STRING", {"default": "TencentARC/InstantMesh", "multiline": False}),
"model_name": ("STRING", {"default": "diffusion_pytorch_model.bin", "multiline": False}),
},
}
RETURN_TYPES = (
"DIFFUSERS_PIPE",
)
RETURN_NAMES = (
"pipe",
)
FUNCTION = "set_pipe_state_dict"
CATEGORY = "Comfy3D/Import|Export"
def set_pipe_state_dict(self, pipe, repo_id, model_name):
checkpoints_dir_abs = os.path.join(CKPT_DIFFUSERS_PATH, repo_id)
ckpt_path = resume_or_download_model_from_hf(checkpoints_dir_abs, repo_id, model_name, self.__class__.__name__)
state_dict = torch.load(ckpt_path, map_location='cpu')
pipe.unet.load_state_dict(state_dict, strict=True)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(DEVICE)
return (pipe, )
class Wonder3D_MVDiffusion_Model:
config_path = "Wonder3D_config.yaml"
fix_cam_pose_dir = "Wonder3D/data/fixed_poses/nine_views"
@classmethod
def INPUT_TYPES(cls):
cls.config_path_abs = os.path.join(CONFIG_ROOT_PATH, cls.config_path)
cls.fix_cam_pose_dir_abs = os.path.join(MODULE_ROOT_PATH, cls.fix_cam_pose_dir)
return {
"required": {
"mvdiffusion_pipe": ("DIFFUSERS_PIPE",),
"reference_image": ("IMAGE",),
"reference_mask": ("MASK",),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"mv_guidance_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "step": 0.01}),
"num_inference_steps": ("INT", {"default": 50, "min": 1}),
},
}
RETURN_TYPES = (
"IMAGE",
"IMAGE",
"ORBIT_CAMPOSES",
)
RETURN_NAMES = (
"multiview_images",
"multiview_normals",
"orbit_camposes",
)
FUNCTION = "run_mvdiffusion"
CATEGORY = "Comfy3D/Algorithm"
@torch.no_grad()
def run_mvdiffusion(
self,
mvdiffusion_pipe,
reference_image, # [1, H, W, 3]
reference_mask, # [1, H, W]
seed,
mv_guidance_scale,
num_inference_steps,
):
cfg = load_config_wonder3d(self.config_path_abs)
batch = self.prepare_data(reference_image, reference_mask)
mvdiffusion_pipe.set_progress_bar_config(disable=True)
seed = int(seed)
generator = torch.Generator(device=mvdiffusion_pipe.unet.device).manual_seed(seed)
# repeat (2B, Nv, 3, H, W)
imgs_in = torch.cat([batch['imgs_in']] * 2, dim=0).to(WEIGHT_DTYPE)
# (2B, Nv, Nce)
camera_embeddings = torch.cat([batch['camera_embeddings']] * 2, dim=0).to(WEIGHT_DTYPE)
task_embeddings = torch.cat([batch['normal_task_embeddings'], batch['color_task_embeddings']], dim=0).to(WEIGHT_DTYPE)
camera_embeddings = torch.cat([camera_embeddings, task_embeddings], dim=-1).to(WEIGHT_DTYPE)
# (B*Nv, 3, H, W)
imgs_in = rearrange(imgs_in, "Nv C H W -> (Nv) C H W")
# (B*Nv, Nce)
# camera_embeddings = rearrange(camera_embeddings, "B Nv Nce -> (B Nv) Nce")
out = mvdiffusion_pipe(
imgs_in,
# camera_embeddings,
generator=generator,
guidance_scale=mv_guidance_scale,
num_inference_steps=num_inference_steps,
output_type='pt',
num_images_per_prompt=1,
**cfg.pipe_validation_kwargs,
).images
num_views = out.shape[0] // 2
# [N, 3, H, W] -> [N, H, W, 3]
mv_images = out[num_views:].permute(0, 2, 3, 1)
mv_normals = out[:num_views].permute(0, 2, 3, 1)
orbit_radius = [4.0] * 6
orbit_center = [0.0] * 6
orbit_elevations, orbit_azimuths = ORBITPOSE_PRESET_DICT["Wonder3D(6)"]
orbit_camposes = compose_orbit_camposes(orbit_radius, orbit_elevations, orbit_azimuths, orbit_center, orbit_center, orbit_center)
return (mv_images, mv_normals, orbit_camposes)
def prepare_data(self, ref_image, ref_mask):
single_image = torch_imgs_to_pils(ref_image, ref_mask)[0]
dataset = MVSingleImageDataset(fix_cam_pose_dir=self.fix_cam_pose_dir_abs, num_views=6, img_wh=[256, 256], bg_color='white', single_image=single_image)
return dataset[0]
class MVDream_Model:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"mvdream_pipe": ("DIFFUSERS_PIPE",),
"reference_image": ("IMAGE",),
"reference_mask": ("MASK",),
"prompt": ("STRING", {
"default": "",
"multiline": True
}),
"prompt_neg": ("STRING", {
"default": "ugly, blurry, pixelated obscure, unnatural colors, poor lighting, dull, unclear, cropped, lowres, low quality, artifacts, duplicate",
"multiline": True
}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"mv_guidance_scale": ("FLOAT", {"default": 5.0, "min": 0.0, "step": 0.01}),
"num_inference_steps": ("INT", {"default": 30, "min": 1}),
"elevation": ("FLOAT", {"default": 0.0, "min": ELEVATION_MIN, "max": ELEVATION_MAX, "step": 0.0001}),
},
}
RETURN_TYPES = (
"IMAGE",
"ORBIT_CAMPOSES",
)
RETURN_NAMES = (
"multiview_images",
"orbit_camposes",
)
FUNCTION = "run_mvdream"
CATEGORY = "Comfy3D/Algorithm"
def run_mvdream(
self,
mvdream_pipe,
reference_image, # [1, H, W, 3]
reference_mask, # [1, H, W]
prompt,
prompt_neg,
seed,
mv_guidance_scale,
num_inference_steps,
elevation,
):
if len(reference_image.shape) == 4:
reference_image = reference_image.squeeze(0)
if len(reference_mask.shape) == 3:
reference_mask = reference_mask.squeeze(0)
generator = torch.manual_seed(seed)
reference_mask = reference_mask.unsqueeze(2)
# give the white background to reference_image
reference_image = (reference_image * reference_mask + (1 - reference_mask)).detach().cpu().numpy()
# generate multi-view images
mv_images = mvdream_pipe(prompt, reference_image, generator=generator, negative_prompt=prompt_neg, guidance_scale=mv_guidance_scale, num_inference_steps=num_inference_steps, elevation=elevation)
mv_images = torch.from_numpy(np.stack([mv_images[1], mv_images[2], mv_images[3], mv_images[0]], axis=0)).float() # [4, H, W, 3], float32
orbit_radius = [4.0] * 4
orbit_center = [0.0] * 4
orbit_elevations, orbit_azimuths = ORBITPOSE_PRESET_DICT["MVDream(4)"]
orbit_camposes = compose_orbit_camposes(orbit_radius, orbit_elevations, orbit_azimuths, orbit_center, orbit_center, orbit_center)
return (mv_images, orbit_camposes)
class Load_Large_Multiview_Gaussian_Model:
checkpoints_dir = "LGM"
default_ckpt_name = "model_fp16.safetensors"
default_repo_id = "ashawkey/LGM"
@classmethod
def INPUT_TYPES(cls):
cls.checkpoints_dir_abs = os.path.join(CKPT_ROOT_PATH, cls.checkpoints_dir)
all_models_names = get_list_filenames(cls.checkpoints_dir_abs, SUPPORTED_CHECKPOINTS_EXTENSIONS)
if cls.default_ckpt_name not in all_models_names:
all_models_names += [cls.default_ckpt_name]
return {
"required": {
"model_name": (all_models_names, ),
"lgb_config": (['big', 'default', 'small', 'tiny'], )
},
}
RETURN_TYPES = (
"LGM_MODEL",
)
RETURN_NAMES = (
"lgm_model",
)
FUNCTION = "load_LGM"
CATEGORY = "Comfy3D/Import|Export"
def load_LGM(self, model_name, lgb_config):
lgm_model = LargeMultiviewGaussianModel(config_defaults[lgb_config])
ckpt_path = resume_or_download_model_from_hf(self.checkpoints_dir_abs, self.default_repo_id, model_name, self.__class__.__name__)
if ckpt_path.endswith('safetensors'):
ckpt = load_file(ckpt_path, device='cpu')
else:
ckpt = torch.load(ckpt_path, map_location='cpu')
lgm_model.load_state_dict(ckpt, strict=False)
lgm_model = lgm_model.half().to(DEVICE)
lgm_model.eval()
cstr(f"[{self.__class__.__name__}] loaded model ckpt from {ckpt_path}").msg.print()
return (lgm_model, )
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
class Large_Multiview_Gaussian_Model:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"multiview_images": ("IMAGE", ),
"lgm_model": ("LGM_MODEL", ),
},
}
OUTPUT_NODE = True
RETURN_TYPES = (
"GS_PLY",
)
RETURN_NAMES = (
"gs_ply",
)
FUNCTION = "run_LGM"
CATEGORY = "Comfy3D/Algorithm"
@torch.no_grad()
def run_LGM(self, multiview_images, lgm_model):
ref_image_torch = prepare_torch_img(multiview_images, lgm_model.opt.input_size, lgm_model.opt.input_size, DEVICE_STR) # [4, 3, 256, 256]
ref_image_torch = TF.normalize(ref_image_torch, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
rays_embeddings = lgm_model.prepare_default_rays(DEVICE_STR)
ref_image_torch = torch.cat([ref_image_torch, rays_embeddings], dim=1).unsqueeze(0) # [1, 4, 9, 256, 256]
with torch.autocast(device_type=DEVICE_STR, dtype=WEIGHT_DTYPE):
# generate gaussians
gaussians = lgm_model.forward_gaussians(ref_image_torch)
# convert gaussians to ply
gs_ply = lgm_model.gs.to_ply(gaussians)
return (gs_ply, )
class Convert_3DGS_to_Mesh_with_NeRF_and_Marching_Cubes:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"gs_ply": ("GS_PLY",),
"gs_config": (['big', 'default', 'small', 'tiny'], ),
"training_nerf_iterations": ("INT", {"default": 512, "min": 1, "max": 0xffffffffffffffff}),
"training_nerf_resolution": ("INT", {"default": 128, "min": 1, "max": 0xffffffffffffffff}),
"marching_cude_grids_resolution": ("INT", {"default": 256, "min": 1, "max": 0xffffffffffffffff}),
"marching_cude_grids_batch_size": ("INT", {"default": 128, "min": 1, "max": 0xffffffffffffffff}),
"marching_cude_threshold": ("FLOAT", {"default": 10.0, "min": 0.0, "step": 0.01}),
"training_mesh_iterations": ("INT", {"default": 2048, "min": 1, "max": 0xffffffffffffffff}),
"training_mesh_resolution": ("INT", {"default": 512, "min": 1, "max": 0xffffffffffffffff}),
"remesh_after_n_iteration": ("INT", {"default": 512, "min": 128, "max": 100000}),
"training_albedo_iterations": ("INT", {"default": 512, "min": 1, "max": 0xffffffffffffffff}),
"training_albedo_resolution": ("INT", {"default": 512, "min": 1, "max": 0xffffffffffffffff}),
"texture_resolution": ("INT", {"default": 1024, "min": 128, "max": 8192}),
"force_cuda_rast": ("BOOLEAN", {"default": False}),
},
}
RETURN_TYPES = (
"MESH",
"IMAGE",
"MASK",
)
RETURN_NAMES = (
"mesh",
"imgs",
"alphas",
)
FUNCTION = "convert_gs_ply"
CATEGORY = "Comfy3D/Algorithm"
def convert_gs_ply(
self,
gs_ply,
gs_config,
training_nerf_iterations,
training_nerf_resolution,
marching_cude_grids_resolution,
marching_cude_grids_batch_size,
marching_cude_threshold,
training_mesh_iterations,
training_mesh_resolution,
remesh_after_n_iteration,
training_albedo_iterations,
training_albedo_resolution,
texture_resolution,
force_cuda_rast,
):
with torch.inference_mode(False):
chosen_config = config_defaults[gs_config]
chosen_config.force_cuda_rast = force_cuda_rast
converter = GSConverterNeRFMarchingCubes(config_defaults[gs_config], gs_ply).cuda()
imgs, alphas = converter.fit_nerf(training_nerf_iterations, training_nerf_resolution)
converter.fit_mesh(
training_mesh_iterations, remesh_after_n_iteration, training_mesh_resolution,
marching_cude_grids_resolution, marching_cude_grids_batch_size, marching_cude_threshold
)
converter.fit_mesh_uv(training_albedo_iterations, training_albedo_resolution, texture_resolution)
return(converter.get_mesh(), imgs, alphas)
class Load_TripoSR_Model:
checkpoints_dir = "TripoSR"
default_ckpt_name = "model.ckpt"
default_repo_id = "stabilityai/TripoSR"
config_path = "TripoSR_config.yaml"
@classmethod
def INPUT_TYPES(cls):
cls.checkpoints_dir_abs = os.path.join(CKPT_ROOT_PATH, cls.checkpoints_dir)
all_models_names = get_list_filenames(cls.checkpoints_dir_abs, SUPPORTED_CHECKPOINTS_EXTENSIONS)
if cls.default_ckpt_name not in all_models_names:
all_models_names += [cls.default_ckpt_name]
cls.config_path_abs = os.path.join(CONFIG_ROOT_PATH, cls.config_path)
return {
"required": {
"model_name": (all_models_names, ),
"chunk_size": ("INT", {"default": 8192, "min": 1, "max": 10000})
},
}
RETURN_TYPES = (
"TSR_MODEL",
)
RETURN_NAMES = (
"tsr_model",
)
FUNCTION = "load_TSR"
CATEGORY = "Comfy3D/Import|Export"
def load_TSR(self, model_name, chunk_size):
ckpt_path = resume_or_download_model_from_hf(self.checkpoints_dir_abs, self.default_repo_id, model_name, self.__class__.__name__)
tsr_model = TSR.from_pretrained(
weight_path=ckpt_path,
config_path=self.config_path_abs
)
tsr_model.renderer.set_chunk_size(chunk_size)
tsr_model.to(DEVICE)
cstr(f"[{self.__class__.__name__}] loaded model ckpt from {ckpt_path}").msg.print()
return (tsr_model, )
class TripoSR:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"tsr_model": ("TSR_MODEL", ),
"reference_image": ("IMAGE",),
"reference_mask": ("MASK",),
"geometry_extract_resolution": ("INT", {"default": 256, "min": 1, "max": 0xffffffffffffffff}),
"marching_cude_threshold": ("FLOAT", {"default": 25.0, "min": 0.0, "step": 0.01}),
}
}
RETURN_TYPES = (
"MESH",
)
RETURN_NAMES = (
"mesh",
)
FUNCTION = "run_TSR"
CATEGORY = "Comfy3D/Algorithm"
@torch.no_grad()
def run_TSR(self, tsr_model, reference_image, reference_mask, geometry_extract_resolution, marching_cude_threshold):
mesh = None
image = reference_image[0]
mask = reference_mask[0].unsqueeze(2)
image = torch.cat((image, mask), dim=2).detach().cpu().numpy()
image = Image.fromarray(np.clip(255. * image, 0, 255).astype(np.uint8))
image = self.fill_background(image)
image = image.convert('RGB')
scene_codes = tsr_model([image], DEVICE)
meshes = tsr_model.extract_mesh(scene_codes, resolution=geometry_extract_resolution, threshold=marching_cude_threshold)
mesh = Mesh.load_trimesh(given_mesh=meshes[0])
return (mesh,)
# Default model are trained on images with this background
def fill_background(self, image):
image = np.array(image).astype(np.float32) / 255.0
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
image = Image.fromarray((image * 255.0).astype(np.uint8))
return image
class Load_SF3D_Model:
checkpoints_dir = "StableFast3D"
default_ckpt_name = "model.safetensors"
default_repo_id = "stabilityai/stable-fast-3d"
config_path = "StableFast3D_config.yaml"
@classmethod
def INPUT_TYPES(cls):
cls.checkpoints_dir_abs = os.path.join(CKPT_ROOT_PATH, cls.checkpoints_dir)
all_models_names = get_list_filenames(cls.checkpoints_dir_abs, SUPPORTED_CHECKPOINTS_EXTENSIONS)
if cls.default_ckpt_name not in all_models_names:
all_models_names += [cls.default_ckpt_name]
cls.config_path_abs = os.path.join(CONFIG_ROOT_PATH, cls.config_path)
return {
"required": {
"model_name": (all_models_names, ),
},
}
RETURN_TYPES = (
"SF3D_MODEL",
)
RETURN_NAMES = (
"sf3d_model",
)
FUNCTION = "load_SF3D"
CATEGORY = "Comfy3D/Import|Export"
def load_SF3D(self, model_name):
ckpt_path = resume_or_download_model_from_hf(self.checkpoints_dir_abs, self.default_repo_id, model_name, self.__class__.__name__)
sf3d_model = SF3D.from_pretrained(
config_path=self.config_path_abs,
weight_path=ckpt_path
)
sf3d_model.eval()
sf3d_model.to(DEVICE)
cstr(f"[{self.__class__.__name__}] loaded model ckpt from {ckpt_path}").msg.print()
return (sf3d_model, )
class StableFast3D:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"sf3d_model": ("SF3D_MODEL", ),
"reference_image": ("IMAGE",),
"reference_mask": ("MASK",),
"texture_resolution": ("INT", {"default": 1024, "min": 128, "max": 8192}),
"remesh_option": (["None", "Triangle"], ),
}
}
RETURN_TYPES = (
"MESH",
)
RETURN_NAMES = (
"mesh",
)
FUNCTION = "run_SF3D"
CATEGORY = "Comfy3D/Algorithm"
@torch.no_grad()
def run_SF3D(self, sf3d_model, reference_image, reference_mask, texture_resolution, remesh_option):
single_image = torch_imgs_to_pils(reference_image, reference_mask)[0]
with torch.autocast(device_type=DEVICE_STR, dtype=WEIGHT_DTYPE):
model_batch = self.create_batch(single_image)
model_batch = {k: v.cuda() for k, v in model_batch.items()}
trimesh_mesh, _ = sf3d_model.generate_mesh(
model_batch, texture_resolution, remesh_option
)
mesh = Mesh.load_trimesh(given_mesh=trimesh_mesh[0])
return (mesh,)
# Default model are trained on images with this background
def create_batch(self, input_image: Image):
COND_WIDTH = 512
COND_HEIGHT = 512
COND_DISTANCE = 1.6
COND_FOVY_DEG = 40
BACKGROUND_COLOR = [0.5, 0.5, 0.5]
# Cached. Doesn't change
c2w_cond = sf3d_utils.default_cond_c2w(COND_DISTANCE)
intrinsic, intrinsic_normed_cond = sf3d_utils.create_intrinsic_from_fov_deg(
COND_FOVY_DEG, COND_HEIGHT, COND_WIDTH
)
img_cond = (
torch.from_numpy(
np.asarray(input_image.resize((COND_WIDTH, COND_HEIGHT))).astype(np.float32)
/ 255.0
)
.float()
.clip(0, 1)
)
mask_cond = img_cond[:, :, -1:]
rgb_cond = torch.lerp(
torch.tensor(BACKGROUND_COLOR)[None, None, :], img_cond[:, :, :3], mask_cond
)
batch_elem = {
"rgb_cond": rgb_cond,
"mask_cond": mask_cond,
"c2w_cond": c2w_cond.unsqueeze(0),
"intrinsic_cond": intrinsic.unsqueeze(0),
"intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0),
}
# Add batch dim
batched = {k: v.unsqueeze(0) for k, v in batch_elem.items()}
return batched
class Load_CRM_MVDiffusion_Model:
checkpoints_dir = "CRM"
default_ckpt_name = ["pixel-diffusion.pth", "ccm-diffusion.pth"]
default_conf_name = ["sd_v2_base_ipmv_zero_SNR.yaml", "sd_v2_base_ipmv_chin8_zero_snr.yaml"]
default_repo_id = "Zhengyi/CRM"
config_path = "CRM_configs"
@classmethod
def INPUT_TYPES(cls):
cls.checkpoints_dir_abs = os.path.join(CKPT_ROOT_PATH, cls.checkpoints_dir)
all_models_names = get_list_filenames(cls.checkpoints_dir_abs, SUPPORTED_CHECKPOINTS_EXTENSIONS)
for ckpt_name in cls.default_ckpt_name:
if ckpt_name not in all_models_names:
all_models_names += [ckpt_name]
cls.config_root_path_abs = os.path.join(CONFIG_ROOT_PATH, cls.config_path)
return {
"required": {
"model_name": (all_models_names, ),
"crm_config_path": (cls.default_conf_name, ),
},
}
RETURN_TYPES = (
"CRM_MVDIFFUSION_SAMPLER",
)
RETURN_NAMES = (
"crm_mvdiffusion_sampler",
)
FUNCTION = "load_CRM"
CATEGORY = "Comfy3D/Import|Export"
def load_CRM(self, model_name, crm_config_path):
from CRM.imagedream.ldm.util import (
instantiate_from_config,
get_obj_from_str,
)
crm_config_path = os.path.join(self.config_root_path_abs, crm_config_path)
ckpt_path = resume_or_download_model_from_hf(self.checkpoints_dir_abs, self.default_repo_id, model_name, self.__class__.__name__)
crm_config = OmegaConf.load(crm_config_path)
crm_mvdiffusion_model = instantiate_from_config(crm_config.model)
crm_mvdiffusion_model.load_state_dict(torch.load(ckpt_path, map_location="cpu"), strict=False)
crm_mvdiffusion_model = crm_mvdiffusion_model.to(DEVICE).to(WEIGHT_DTYPE)
crm_mvdiffusion_model.device = DEVICE
crm_mvdiffusion_sampler = get_obj_from_str(crm_config.sampler.target)(
crm_mvdiffusion_model, device=DEVICE, dtype=WEIGHT_DTYPE, **crm_config.sampler.params
)
cstr(f"[{self.__class__.__name__}] loaded model ckpt from {ckpt_path}").msg.print()
return (crm_mvdiffusion_sampler, )
class CRM_Images_MVDiffusion_Model:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"crm_mvdiffusion_sampler": ("CRM_MVDIFFUSION_SAMPLER",),
"reference_image": ("IMAGE",),
"reference_mask": ("MASK",),
"prompt": ("STRING", {
"default": "3D assets",
"multiline": True
}),
"prompt_neg": ("STRING", {
"default": "uniform low no texture ugly, boring, bad anatomy, blurry, pixelated, obscure, unnatural colors, poor lighting, dull, and unclear.",
"multiline": True
}),
"seed": ("INT", {"default": 1234, "min": 0, "max": 0xffffffffffffffff}),
"mv_guidance_scale": ("FLOAT", {"default": 5.5, "min": 0.0, "step": 0.01}),
"num_inference_steps": ("INT", {"default": 50, "min": 1}),
},
}
RETURN_TYPES = (
"IMAGE",
"ORBIT_CAMPOSES",
)
RETURN_NAMES = (
"multiview_images",
"orbit_camposes",
)
FUNCTION = "run_model"
CATEGORY = "Comfy3D/Algorithm"
def run_model(
self,
crm_mvdiffusion_sampler,
reference_image, # [1, H, W, 3]
reference_mask, # [1, H, W]
prompt,
prompt_neg,
seed,
mv_guidance_scale,
num_inference_steps,
):
pixel_img = torch_imgs_to_pils(reference_image, reference_mask)[0]
pixel_img = CRMSampler.process_pixel_img(pixel_img)
multiview_images = CRMSampler.stage1_sample(
crm_mvdiffusion_sampler,
pixel_img,
prompt,
prompt_neg,
seed,
mv_guidance_scale,
num_inference_steps
).to(dtype=reference_image.dtype, device=reference_image.device)
orbit_radius = [4.0] * 6
orbit_center = [0.0] * 6
orbit_elevations, orbit_azimuths = ORBITPOSE_PRESET_DICT["CRM(6)"]
orbit_camposes = compose_orbit_camposes(orbit_radius, orbit_elevations, orbit_azimuths, orbit_center, orbit_center, orbit_center)
return (multiview_images, orbit_camposes)
class CRM_CCMs_MVDiffusion_Model:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"crm_mvdiffusion_sampler": ("CRM_MVDIFFUSION_SAMPLER",),
"reference_image": ("IMAGE",),
"reference_mask": ("MASK",),
"multiview_images": ("IMAGE",),
"prompt": ("STRING", {
"default": "3D assets",
"multiline": True
}),
"prompt_neg": ("STRING", {
"default": "uniform low no texture ugly, boring, bad anatomy, blurry, pixelated, obscure, unnatural colors, poor lighting, dull, and unclear.",
"multiline": True
}),
"seed": ("INT", {"default": 1234, "min": 0, "max": 0xffffffffffffffff}),
"mv_guidance_scale": ("FLOAT", {"default": 5.5, "min": 0.0, "step": 0.01}),
"num_inference_steps": ("INT", {"default": 50, "min": 1}),
},
}
RETURN_TYPES = (
"IMAGE",
)
RETURN_NAMES = (
"multiview_CCMs",
)
FUNCTION = "run_model"
CATEGORY = "Comfy3D/Algorithm"
@torch.no_grad()
def run_model(
self,
crm_mvdiffusion_sampler,
reference_image, # [1, H, W, 3]
reference_mask, # [1, H, W]
multiview_images, # [6, H, W, 3]
prompt,
prompt_neg,
seed,
mv_guidance_scale,
num_inference_steps,
):
pixel_img = torch_imgs_to_pils(reference_image, reference_mask)[0]
pixel_img = CRMSampler.process_pixel_img(pixel_img)
multiview_CCMs = CRMSampler.stage2_sample(
crm_mvdiffusion_sampler,
pixel_img,
multiview_images,
prompt,
prompt_neg,
seed,
mv_guidance_scale,
num_inference_steps
)
return(multiview_CCMs, )
class Load_Convolutional_Reconstruction_Model:
checkpoints_dir = "CRM"
default_ckpt_name = "CRM.pth"
default_repo_id = "Zhengyi/CRM"
config_path = "CRM_configs/specs_objaverse_total.json"
@classmethod
def INPUT_TYPES(cls):
cls.checkpoints_dir_abs = os.path.join(CKPT_ROOT_PATH, cls.checkpoints_dir)
all_models_names = get_list_filenames(cls.checkpoints_dir_abs, SUPPORTED_CHECKPOINTS_EXTENSIONS)
if cls.default_ckpt_name not in all_models_names:
all_models_names += [cls.default_ckpt_name]
cls.config_path_abs = os.path.join(CONFIG_ROOT_PATH, cls.config_path)
return {
"required": {
"model_name": (all_models_names, ),
},
}
RETURN_TYPES = (
"CRM_MODEL",
)
RETURN_NAMES = (
"crm_model",
)
FUNCTION = "load_CRM"
CATEGORY = "Comfy3D/Import|Export"
def load_CRM(self, model_name):
ckpt_path = resume_or_download_model_from_hf(self.checkpoints_dir_abs, self.default_repo_id, model_name, self.__class__.__name__)
crm_conf = json.load(open(self.config_path_abs))
crm_model = ConvolutionalReconstructionModel(crm_conf).to(DEVICE)
crm_model.load_state_dict(torch.load(ckpt_path, map_location="cpu"), strict=False)
cstr(f"[{self.__class__.__name__}] loaded model ckpt from {ckpt_path}").msg.print()
return (crm_model, )
class Convolutional_Reconstruction_Model:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"crm_model": ("CRM_MODEL", ),
"multiview_images": ("IMAGE",),
"multiview_CCMs": ("IMAGE",),
}
}
RETURN_TYPES = (
"MESH",
)
RETURN_NAMES = (
"mesh",
)
FUNCTION = "run_CRM"
CATEGORY = "Comfy3D/Algorithm"
@torch.no_grad()
def run_CRM(self, crm_model, multiview_images, multiview_CCMs):
np_imgs = np.concatenate(multiview_images.cpu().numpy(), 1) # (256, 256*6==1536, 3)
np_xyzs = np.concatenate(multiview_CCMs.cpu().numpy(), 1) # (256, 1536, 3)
mesh = CRMSampler.generate3d(crm_model, np_imgs, np_xyzs, DEVICE)
return (mesh,)
class Zero123Plus_Diffusion_Model:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"zero123plus_pipe": ("DIFFUSERS_PIPE",),
"reference_image": ("IMAGE",),
"reference_mask": ("MASK",),
"seed": ("INT", {"default": 1234, "min": 0, "max": 0xffffffffffffffff}),
"guidance_scale": ("FLOAT", {"default": 4.0, "min": 0.0, "step": 0.01}),
"num_inference_steps": ("INT", {"default": 28, "min": 1}),
},
}
RETURN_TYPES = (
"IMAGE",
"ORBIT_CAMPOSES",
)
RETURN_NAMES = (
"multiviews",
"orbit_camposes",
)
FUNCTION = "run_model"
CATEGORY = "Comfy3D/Algorithm"
@torch.no_grad()
def run_model(
self,
zero123plus_pipe,
reference_image,
reference_mask,
seed,
guidance_scale,
num_inference_steps,
):
single_image = torch_imgs_to_pils(reference_image, reference_mask)[0]
seed = int(seed)
generator = torch.Generator(device=zero123plus_pipe.unet.device).manual_seed(seed)
# sampling
output_image = zero123plus_pipe(
single_image,
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
).images[0]
multiview_images = np.asarray(output_image, dtype=np.float32) / 255.0
multiview_images = torch.from_numpy(multiview_images).permute(2, 0, 1).contiguous() # (3, 960, 640)
multiview_images = rearrange(multiview_images, 'c (n h) (m w) -> (n m) h w c', n=3, m=2) # (6, 320, 320, 3)
multiview_images = multiview_images.to(dtype=reference_image.dtype, device=reference_image.device)
orbit_radius = [4.0] * 6
orbit_center = [0.0] * 6
orbit_elevations, orbit_azimuths = ORBITPOSE_PRESET_DICT["Zero123Plus(6)"]
orbit_camposes = compose_orbit_camposes(orbit_radius, orbit_elevations, orbit_azimuths, orbit_center, orbit_center, orbit_center)
return (multiview_images, orbit_camposes)
class Load_InstantMesh_Reconstruction_Model:
checkpoints_dir = "InstantMesh"
default_ckpt_names = ["instant_mesh_large.ckpt", "instant_mesh_base.ckpt", "instant_nerf_large.ckpt", "instant_nerf_base.ckpt"]
default_repo_id = "TencentARC/InstantMesh"
config_root_dir = "InstantMesh_configs"
@classmethod
def INPUT_TYPES(cls):
cls.checkpoints_dir_abs = os.path.join(CKPT_ROOT_PATH, cls.checkpoints_dir)
all_models_names = get_list_filenames(cls.checkpoints_dir_abs, SUPPORTED_CHECKPOINTS_EXTENSIONS)
for ckpt_name in cls.default_ckpt_names:
if ckpt_name not in all_models_names:
all_models_names += [ckpt_name]
cls.config_root_path_abs = os.path.join(CONFIG_ROOT_PATH, cls.config_root_dir)
return {
"required": {
"model_name": (all_models_names, ),
},
}
RETURN_TYPES = (
"LRM_MODEL",
)
RETURN_NAMES = (
"lrm_model",
)
FUNCTION = "load_LRM"
CATEGORY = "Comfy3D/Import|Export"
def load_LRM(self, model_name):
from InstantMesh.utils.train_util import instantiate_from_config
is_flexicubes = True if model_name.startswith('instant_mesh') else False
config_name = model_name.split(".")[0] + ".yaml"
config_path = os.path.join(self.config_root_path_abs, config_name)
config = OmegaConf.load(config_path)
lrm_model = instantiate_from_config(config.model_config)
ckpt_path = resume_or_download_model_from_hf(self.checkpoints_dir_abs, self.default_repo_id, model_name, self.__class__.__name__)
state_dict = torch.load(ckpt_path, map_location='cpu')['state_dict']
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.')}
lrm_model.load_state_dict(state_dict, strict=True)
lrm_model = lrm_model.to(DEVICE)
if is_flexicubes:
lrm_model.init_flexicubes_geometry(DEVICE, fovy=30.0)
lrm_model = lrm_model.eval()
cstr(f"[{self.__class__.__name__}] loaded model ckpt from {ckpt_path}").msg.print()
return (lrm_model, )
class InstantMesh_Reconstruction_Model:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"lrm_model": ("LRM_MODEL", ),
"multiview_images": ("IMAGE",),
"orbit_camera_poses": ("ORBIT_CAMPOSES",), # [orbit radius, elevation, azimuth, orbit center X, orbit center Y, orbit center Z]
"orbit_camera_fovy": ("FLOAT", {"default": 30.0, "min": 0.0, "max": 180.0, "step": 0.1}),
"texture_resolution": ("INT", {"default": 1024, "min": 128, "max": 8192}),
}
}
RETURN_TYPES = (
"MESH",
)
RETURN_NAMES = (
"mesh",
)
FUNCTION = "run_LRM"
CATEGORY = "Comfy3D/Algorithm"
@torch.no_grad()
def run_LRM(self, lrm_model, multiview_images, orbit_camera_poses, orbit_camera_fovy, texture_resolution):
images = multiview_images.permute(0, 3, 1, 2).unsqueeze(0).to(DEVICE) # [N, H, W, 3] -> [1, N, 3, H, W]
images = v2.functional.resize(images, 320, interpolation=3, antialias=True).clamp(0, 1)
# convert camera format from orbit to lrm inputs
azimuths, elevations, radius = [], [], []
for i in range(len(orbit_camera_poses)):
azimuths.append(orbit_camera_poses[i][2])
elevations.append(orbit_camera_poses[i][1])
radius.append(orbit_camera_poses[i][0])
input_cameras = oribt_camera_poses_to_input_cameras(azimuths, elevations, radius=radius, fov=orbit_camera_fovy).to(DEVICE)
# get triplane
planes = lrm_model.forward_planes(images, input_cameras)
# get mesh
mesh_out = lrm_model.extract_mesh(
planes,
use_texture_map=True,
texture_resolution=texture_resolution,
)
vertices, faces, uvs, mesh_tex_idx, tex_map = mesh_out
tex_map = troch_image_dilate(tex_map.permute(1, 2, 0)) # [3, H, W] -> [H, W, 3]
mesh = Mesh(v=vertices, f=faces, vt=uvs, ft=mesh_tex_idx, albedo=tex_map, device=DEVICE)
mesh.auto_normal()
return (mesh,)
class Era3D_MVDiffusion_Model:
config_path = "Era3D_config.yaml"
@classmethod
def INPUT_TYPES(cls):
cls.config_path_abs = os.path.join(CONFIG_ROOT_PATH, cls.config_path)
return {
"required": {
"era3d_pipe": ("DIFFUSERS_PIPE",),
"reference_image": ("IMAGE",),
"reference_mask": ("MASK",),
"image_crop_size": ("INT", {"default": 420, "min": 400, "max": 8192}),
"seed": ("INT", {"default": 600, "min": 0, "max": 0xffffffffffffffff}),
"guidance_scale": ("FLOAT", {"default": 3.0, "min": 0.0, "step": 0.01}),
"num_inference_steps": ("INT", {"default": 40, "min": 1}),
"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "step": 0.01}),
"radius": ("FLOAT", {"default": 4.0, "min": 0.1, "step": 0.01}),
},
}
RETURN_TYPES = (
"IMAGE",
"IMAGE",
"ORBIT_CAMPOSES",
)
RETURN_NAMES = (
"multiviews",
"multiview_normals",
"orbit_camposes",
)
FUNCTION = "run_model"
CATEGORY = "Comfy3D/Algorithm"
@torch.no_grad()
def run_model(
self,
era3d_pipe,
reference_image,
reference_mask,
image_crop_size,
seed,
guidance_scale,
num_inference_steps,
eta,
radius,
):
cfg = load_config_era3d(self.config_path_abs)
single_image = torch_imgs_to_pils(reference_image, reference_mask)[0]
# Get the dataset
cfg.dataset.prompt_embeds_path = os.path.join(ROOT_PATH, cfg.dataset.prompt_embeds_path)
dataset = Era3DSingleImageDataset(
single_image=single_image,
crop_size=image_crop_size,
dtype=WEIGHT_DTYPE,
**cfg.dataset
)
# Get input data
img_batch = dataset.__getitem__(0)
imgs_in = torch.cat([img_batch['imgs_in']]*2, dim=0).to(DEVICE, dtype=WEIGHT_DTYPE) # (B*Nv, 3, H, W) B==1
#num_views = imgs_in.shape[1]
normal_prompt_embeddings, clr_prompt_embeddings = img_batch['normal_prompt_embeddings'], img_batch['color_prompt_embeddings']
prompt_embeddings = torch.cat([normal_prompt_embeddings, clr_prompt_embeddings], dim=0).to(DEVICE, dtype=WEIGHT_DTYPE) # (B*Nv, N, C) B==1
generator = torch.Generator(device=era3d_pipe.unet.device).manual_seed(seed)
# sampling
with torch.autocast(DEVICE_STR):
unet_out = era3d_pipe(
imgs_in, None, prompt_embeds=prompt_embeddings,
generator=generator, guidance_scale=guidance_scale, output_type='pt', num_images_per_prompt=1,
num_inference_steps=num_inference_steps, eta=eta
)
out = unet_out.images
bsz = out.shape[0] // 2
# (1, 3, 512, 512)
normals_pred = out[:bsz]
images_pred = out[bsz:]
# [N, 3, H, W] -> [N, H, W, 3]
multiview_images = images_pred.permute(0, 2, 3, 1).to(reference_image.device, dtype=reference_image.dtype)
multiview_normals = normals_pred.permute(0, 2, 3, 1).to(reference_image.device, dtype=reference_image.dtype)
azimuths = [0, 45, 90, 180, -90, -45]
elevations = [0.0] * 6
radius = [radius] * 6
center = [0.0] * 6
orbit_camposes = [azimuths, elevations, radius, center, center, center]
return (multiview_images, multiview_normals, orbit_camposes)
class Instant_NGP:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"reference_image": ("IMAGE",),
"reference_mask": ("MASK",),
"reference_orbit_camera_poses": ("ORBIT_CAMPOSES",), # [orbit radius, elevation, azimuth, orbit center X, orbit center Y, orbit center Z]
"reference_orbit_camera_fovy": ("FLOAT", {"default": 49.1, "min": 0.0, "max": 180.0, "step": 0.1}),
"training_iterations": ("INT", {"default": 512, "min": 1, "max": 0xffffffffffffffff}),
"training_resolution": ("INT", {"default": 128, "min": 128, "max": 8192}),
"marching_cude_grids_resolution": ("INT", {"default": 256, "min": 1, "max": 0xffffffffffffffff}),
"marching_cude_grids_batch_size": ("INT", {"default": 128, "min": 1, "max": 0xffffffffffffffff}),
"marching_cude_threshold": ("FLOAT", {"default": 10.0, "min": 0.0, "step": 0.01}),
"texture_resolution": ("INT", {"default": 1024, "min": 128, "max": 8192}),
"background_color": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"force_cuda_rast": ("BOOLEAN", {"default": False}),
},
}
RETURN_TYPES = (
"MESH",
)
RETURN_NAMES = (
"mesh",
)
FUNCTION = "run_instant_ngp"
CATEGORY = "Comfy3D/Algorithm"
def run_instant_ngp(
self,
reference_image,
reference_mask,
reference_orbit_camera_poses,
reference_orbit_camera_fovy,
training_iterations,
training_resolution,
marching_cude_grids_resolution,
marching_cude_grids_batch_size,
marching_cude_threshold,
texture_resolution,
background_color,
force_cuda_rast
):
with torch.inference_mode(False):
ngp = InstantNGP(training_resolution).to(DEVICE)
ngp.prepare_training(reference_image, reference_mask, reference_orbit_camera_poses, reference_orbit_camera_fovy)
ngp.fit_nerf(training_iterations, background_color)
vertices, triangles = marching_cubes_density_to_mesh(ngp.get_density, marching_cude_grids_resolution, marching_cude_grids_batch_size, marching_cude_threshold)
v = torch.from_numpy(vertices).contiguous().float().to(DEVICE)
f = torch.from_numpy(triangles).contiguous().int().to(DEVICE)
mesh = Mesh(v=v, f=f, device=DEVICE)
mesh.auto_normal()
mesh.auto_uv()
mesh.albedo = color_func_to_albedo(mesh, ngp.get_color, texture_resolution, device=DEVICE, force_cuda_rast=force_cuda_rast)
return (mesh, )
class FlexiCubes_MVS:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"reference_depth_maps": ("IMAGE",),
"reference_masks": ("MASK",),
"reference_orbit_camera_poses": ("ORBIT_CAMPOSES",), # [orbit radius, elevation, azimuth, orbit center X, orbit center Y, orbit center Z]
"reference_orbit_camera_fovy": ("FLOAT", {"default": 49.1, "min": 0.0, "max": 180.0, "step": 0.1}),
"training_iterations": ("INT", {"default": 512, "min": 1, "max": 0xffffffffffffffff}),
"batch_size": ("INT", {"default": 4, "min": 1, "max": 0xffffffffffffffff}),
"learning_rate": ("FLOAT", {"default": 0.01, "min": 0.001, "step": 0.001}),
"voxel_grids_resolution": ("INT", {"default": 128, "min": 1, "max": 0xffffffffffffffff}),
"depth_min_distance": ("FLOAT", {"default": 0.5, "min": 0.0, "step": 0.01}),
"depth_max_distance": ("FLOAT", {"default": 5.5, "min": 0.0, "step": 0.01}),
"mask_loss_weight": ("FLOAT", {"default": 1.0, "min": 0.01, "step": 0.01}),
"depth_loss_weight": ("FLOAT", {"default": 100.0, "min": 0.01, "step": 0.01}),
"normal_loss_weight": ("FLOAT", {"default": 1.0, "min": 0.01, "step": 0.01}),
"sdf_regularizer_weight": ("FLOAT", {"default": 0.2, "min": 0.01, "step": 0.01}),
"remove_floaters_weight": ("FLOAT", {"default": 0.5, "min": 0.01, "step": 0.01}),
"cube_stabilizer_weight": ("FLOAT", {"default": 0.1, "min": 0.01, "step": 0.01}),
"force_cuda_rast": ("BOOLEAN", {"default": False}),
},
"optional": {
"reference_normal_maps": ("IMAGE",),
}
}
RETURN_TYPES = (
"MESH",
)
RETURN_NAMES = (
"mesh",
)
FUNCTION = "run_flexicubes"
CATEGORY = "Comfy3D/Algorithm"
def run_flexicubes(
self,
reference_depth_maps,
reference_masks,
reference_orbit_camera_poses,
reference_orbit_camera_fovy,
training_iterations,
batch_size,
learning_rate,
voxel_grids_resolution,
depth_min_distance,
depth_max_distance,
mask_loss_weight,
depth_loss_weight,
normal_loss_weight,
sdf_regularizer_weight,
remove_floaters_weight,
cube_stabilizer_weight,
force_cuda_rast,
reference_normal_maps=None
):
with torch.inference_mode(False):
fc_trainer = FlexiCubesTrainer(
training_iterations,
batch_size,
learning_rate,
voxel_grids_resolution,
depth_min_distance,
depth_max_distance,
mask_loss_weight,
depth_loss_weight,
normal_loss_weight,
sdf_regularizer_weight,
remove_floaters_weight,
cube_stabilizer_weight,
force_cuda_rast,
device=DEVICE
)
fc_trainer.prepare_training(reference_depth_maps, reference_masks, reference_orbit_camera_poses, reference_orbit_camera_fovy, reference_normal_maps)
fc_trainer.training()
mesh = fc_trainer.get_mesh()
return (mesh, )
class Load_Unique3D_Custom_UNet:
default_repo_id = "MrForExample/Unique3D"
config_root_dir = "Unique3D_configs"
@classmethod
def INPUT_TYPES(cls):
cls.checkpoints_dir_abs = os.path.join(CKPT_DIFFUSERS_PATH, cls.default_repo_id)
cls.config_path_abs = os.path.join(CONFIG_ROOT_PATH, cls.config_root_dir)
return {
"required": {
"pipe": ("DIFFUSERS_PIPE",),
"config_name": (["image2mvimage", "image2normal"],),
},
}
RETURN_TYPES = (
"DIFFUSERS_PIPE",
)
RETURN_NAMES = (
"pipe",
)
FUNCTION = "load_diffusers_unet"
CATEGORY = "Comfy3D/Import|Export"
def load_diffusers_unet(self, pipe, config_name):
from Unique3D.custum_3d_diffusion.trainings.config_classes import ExprimentConfig
from Unique3D.custum_3d_diffusion.custum_modules.unifield_processor import AttnConfig, ConfigurableUNet2DConditionModel
from Unique3D.custum_3d_diffusion.trainings.utils import load_config
# Download models and configs
cfg_path = os.path.join(self.config_path_abs, config_name + ".yaml")
checkpoint_dir_path = os.path.join(self.checkpoints_dir_abs, config_name)
checkpoint_path = os.path.join(checkpoint_dir_path, "unet_state_dict.pth")
cfg: ExprimentConfig = load_config(ExprimentConfig, cfg_path)
if cfg.init_config.init_unet_path == "":
cfg.init_config.init_unet_path = checkpoint_dir_path
init_config: AttnConfig = load_config(AttnConfig, cfg.init_config)
configurable_unet = ConfigurableUNet2DConditionModel(init_config, WEIGHT_DTYPE)
configurable_unet.enable_xformers_memory_efficient_attention()
state_dict = torch.load(checkpoint_path)
configurable_unet.unet.load_state_dict(state_dict, strict=False)
# Move unet, vae and text_encoder to device and cast to weight_dtype
configurable_unet.unet.to(DEVICE, dtype=WEIGHT_DTYPE)
pipe.unet = configurable_unet.unet
cstr(f"[{self.__class__.__name__}] loaded unet ckpt from {checkpoint_path}").msg.print()
return (pipe, )
class Unique3D_MVDiffusion_Model:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"unique3d_pipe": ("DIFFUSERS_PIPE",),
"reference_image": ("IMAGE",),
"seed": ("INT", {"default": 1145, "min": 0, "max": 0xffffffffffffffff}),
"guidance_scale": ("FLOAT", {"default": 1.5, "min": 0.0, "step": 0.01}),
"num_inference_steps": ("INT", {"default": 30, "min": 1}),
"image_resolution": ([256, 512],),
"radius": ("FLOAT", {"default": 4.0, "min": 0.1, "step": 0.01}),
"preprocess_images": ("BOOLEAN", {"default": True},),
},
}
RETURN_TYPES = (
"IMAGE",
"ORBIT_CAMPOSES",
)
RETURN_NAMES = (
"multiviews",
"orbit_camposes",
)
FUNCTION = "run_model"
CATEGORY = "Comfy3D/Algorithm"
@torch.no_grad()
def run_model(
self,
unique3d_pipe,
reference_image, # Need to have white background
seed,
guidance_scale,
num_inference_steps,
image_resolution,
radius,
preprocess_images,
):
from Unique3D.scripts.utils import simple_image_preprocess
pil_image_list = torch_imgs_to_pils(reference_image)
for i in range(len(pil_image_list)):
if preprocess_images:
pil_image_list[i] = simple_image_preprocess(pil_image_list[i])
pil_image_list = pils_rgba_to_rgb(pil_image_list, bkgd="WHITE")
generator = torch.Generator(device=unique3d_pipe.unet.device).manual_seed(seed)
image_pils = unique3d_pipe(
image=pil_image_list,
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=image_resolution,
height=image_resolution,
height_cond=image_resolution,
width_cond=image_resolution,
).images
# [N, H, W, 3]
multiview_images = pils_to_torch_imgs(image_pils, reference_image.dtype, reference_image.device)
orbit_radius = [radius] * 4
orbit_center = [0.0] * 4
orbit_elevations, orbit_azimuths = ORBITPOSE_PRESET_DICT["Unique3D(4)"]
orbit_camposes = compose_orbit_camposes(orbit_radius, orbit_elevations, orbit_azimuths, orbit_center, orbit_center, orbit_center)
return (multiview_images, orbit_camposes)
class Fast_Normal_Maps_To_Mesh:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"front_side_back_normal_maps": ("IMAGE",),
"front_side_back_normal_masks": ("MASK",),
},
}
RETURN_TYPES = (
"MESH",
)
RETURN_NAMES = (
"mesh",
)
FUNCTION = "run_fast_recon"
CATEGORY = "Comfy3D/Algorithm"
def run_fast_recon(self, front_side_back_normal_maps, front_side_back_normal_masks):
pil_normal_list = torch_imgs_to_pils(front_side_back_normal_maps, front_side_back_normal_masks)
meshes = fast_geo(pil_normal_list[0], pil_normal_list[2], pil_normal_list[1])
vertices, faces, _ = from_py3d_mesh(meshes)
mesh = Mesh(v=vertices, f=faces, device=DEVICE)
return (mesh,)
class ExplicitTarget_Mesh_Optimization:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"mesh": ("MESH",),
"normal_maps": ("IMAGE",),
"normal_masks": ("MASK",),
"reconstruction_steps": ("INT", {"default": 200, "min": 0, "max": 0xffffffffffffffff}),
"coarse_reconstruct_resolution": ("INT", {"default": 512, "min": 128, "max": 8192}),
"loss_expansion_weight": ("FLOAT", {"default": 0.1, "min": 0.01, "step": 0.01}),
"refinement_steps": ("INT", {"default": 100, "min": 0, "max": 0xffffffffffffffff}),
"target_warmup_update_num": ("INT", {"default": 5, "min": 1, "max": 0xffffffffffffffff}),
"target_update_interval": ("INT", {"default": 20, "min": 1, "max": 0xffffffffffffffff}),
},
"optional": {
"normal_orbit_camera_poses": ("ORBIT_CAMPOSES",), # [orbit radius, elevation, azimuth, orbit center X, orbit center Y, orbit center Z]
}
}
RETURN_TYPES = (
"MESH",
)
RETURN_NAMES = (
"mesh",
)
FUNCTION = "run_ET_mesh_optimization"
CATEGORY = "Comfy3D/Algorithm"
def run_ET_mesh_optimization(
self,
mesh,
normal_maps,
normal_masks,
reconstruction_steps,
coarse_reconstruct_resolution,
loss_expansion_weight,
refinement_steps,
target_warmup_update_num,
target_update_interval,
normal_orbit_camera_poses=None,
):
#TODO For now only support four orthographic view with elevation equals zero
#azimuths, elevations, radius = normal_orbit_camera_poses[0], normal_orbit_camera_poses[1], normal_orbit_camera_poses[2]
pil_normal_list = torch_imgs_to_pils(normal_maps, normal_masks)
normal_stg1 = [img.resize((coarse_reconstruct_resolution, coarse_reconstruct_resolution)) for img in pil_normal_list]
with torch.inference_mode(False):
vertices, faces = mesh.v.detach().clone().to(DEVICE), mesh.f.detach().clone().to(DEVICE).type(torch.int64)
if reconstruction_steps > 0:
vertices, faces = reconstruct_stage1(normal_stg1, steps=reconstruction_steps, vertices=vertices, faces=faces, loss_expansion_weight=loss_expansion_weight)
if refinement_steps > 0:
vertices, faces = run_mesh_refine(vertices, faces, pil_normal_list, steps=refinement_steps, update_normal_interval=target_update_interval, update_warmup=target_warmup_update_num, )
mesh = Mesh(v=vertices, f=faces, device=DEVICE)
return (mesh,)
class ExplicitTarget_Color_Projection:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"mesh": ("MESH",),
"reference_images": ("IMAGE",),
"reference_masks": ("MASK",),
"projection_resolution": ("INT", {"default": 1024, "min": 128, "max": 8192}),
"complete_unseen_rgb": ("BOOLEAN", {"default": True},),
"render_orbit_camera_fovy": ("FLOAT", {"default": 47.5, "min": 0.0, "max": 180.0, "step": 0.1}),
"projection_weights": ("STRING", {"default": "2.0, 0.2, 1.0, 0.2"}),
"confidence_threshold": ("FLOAT", {"default": 0.02, "min": 0.001, "max": 1.0, "step": 0.001}),
"texture_projecton": ("BOOLEAN", {"default": False},),
"texture_type": (["Albedo", "Metallic_and_Roughness"],),
},
"optional": {
"reference_orbit_camera_poses": ("ORBIT_CAMPOSES",), # [orbit radius, elevation, azimuth, orbit center X, orbit center Y, orbit center Z]
}
}
RETURN_TYPES = (
"MESH",
)
RETURN_NAMES = (
"mesh",
)
FUNCTION = "run_color_projection"
CATEGORY = "Comfy3D/Algorithm"
def run_color_projection(
self,
mesh,
reference_images,
reference_masks,
projection_resolution,
complete_unseen_rgb,
render_orbit_camera_fovy,
projection_weights,
confidence_threshold,
texture_projecton,
texture_type,
reference_orbit_camera_poses=None,
):
pil_image_list = torch_imgs_to_pils(reference_images, reference_masks)
meshes = to_py3d_mesh(mesh.v, mesh.f)
#TODO Convert camera format, currently only support elevation equal to zero
if reference_orbit_camera_poses is None:
img_num = len(reference_images)
interval = 360 / img_num
angle = 0
azimuths = []
for i in range(0, img_num):
azimuths.append(angle)
angle += interval
cam_list = get_cameras_list(azimuths, DEVICE, focal=1)
else:
#reference_orbit_camera_poses[0] = [360 + angle if angle < 0 else angle for angle in reference_orbit_camera_poses[0]]
cam_list = get_orbit_cameras_list(reference_orbit_camera_poses, DEVICE, render_orbit_camera_fovy)
weights = projection_weights.split(",")
if len(weights) == len(cam_list):
weights = [float(item) for item in weights]
else:
weights = None
if texture_projecton:
target_img = multiview_color_projection_texture(meshes, mesh, pil_image_list, weights=weights, resolution=projection_resolution, device=DEVICE, complete_unseen=complete_unseen_rgb, confidence_threshold=confidence_threshold, cameras_list=cam_list)
target_img = troch_image_dilate(target_img)
if texture_type == "Albedo":
mesh.albedo = target_img
elif texture_type == "Metallic_and_Roughness":
mesh.metallicRoughness = target_img
else:
cstr(f"[{self.__class__.__name__}] Unknow texture type: {texture_type}").error.print()
else:
new_meshes = multiview_color_projection(meshes, pil_image_list, weights=weights, resolution=projection_resolution, device=DEVICE, complete_unseen=complete_unseen_rgb, confidence_threshold=confidence_threshold, cameras_list=cam_list)
vertices, faces, vertex_colors = from_py3d_mesh(new_meshes)
mesh = Mesh(v=vertices, f=faces,
vn=None if mesh.vn is None else mesh.vn.clone(), fn=None if mesh.fn is None else mesh.fn.clone(),
vt=None if mesh.vt is None else mesh.vt.clone(), ft=None if mesh.ft is None else mesh.ft.clone(),
vc=vertex_colors, device=DEVICE)
if mesh.vn is None:
mesh.auto_normal()
return (mesh,)
class Convert_Vertex_Color_To_Texture:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"mesh": ("MESH",),
"texture_resolution": ("INT", {"default": 1024, "min": 128, "max": 8192}),
"batch_size": ("INT", {"default": 128, "min": 1, "max": 0xffffffffffffffff}),
},
}
RETURN_TYPES = (
"MESH",
)
RETURN_NAMES = (
"mesh",
)
FUNCTION = "run_convert_func"
CATEGORY = "Comfy3D/Algorithm"
def run_convert_func(self, mesh, texture_resolution, batch_size):
if mesh.vc is not None:
albedo_img, _ = interpolate_texture_map_attr(mesh, texture_resolution, batch_size, interpolate_color=True)
mesh.albedo = troch_image_dilate(albedo_img)
else:
cstr(f"[{self.__class__.__name__}] skip this node since there is no vertex color found in mesh").msg.print()
return (mesh,)
class Load_CharacterGen_MVDiffusion_Model:
checkpoints_dir = "CharacterGen"
default_repo_id = "zjpshadow/CharacterGen"
config_path = "CharacterGen_configs/Stage_2D_infer.yaml"
@classmethod
def INPUT_TYPES(cls):
cls.checkpoints_dir_abs = os.path.join(CKPT_ROOT_PATH, cls.checkpoints_dir)
cls.config_root_path_abs = os.path.join(CONFIG_ROOT_PATH, cls.config_path)
return {
"required": {
"force_download": ("BOOLEAN", {"default": False}),
},
}
RETURN_TYPES = (
"CHARACTER_MV_GEN_PIPE",
)
RETURN_NAMES = (
"character_mv_gen_pipe",
)
FUNCTION = "load_model"
CATEGORY = "Comfy3D/Import|Export"
def load_model(self, force_download):
# Download checkpoints
snapshot_download(repo_id=self.default_repo_id, local_dir=self.checkpoints_dir_abs, force_download=force_download, repo_type="model", ignore_patterns=HF_DOWNLOAD_IGNORE)
# Load pre-trained models
character_mv_gen_pipe = Inference2D_API(checkpoint_root_path=self.checkpoints_dir_abs, **OmegaConf.load(self.config_root_path_abs))
cstr(f"[{self.__class__.__name__}] loaded model ckpt from {self.checkpoints_dir_abs}").msg.print()
return (character_mv_gen_pipe,)
class CharacterGen_MVDiffusion_Model:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"character_mv_gen_pipe": ("CHARACTER_MV_GEN_PIPE",),
"reference_image": ("IMAGE", ),
"reference_mask": ("MASK",),
"target_image_width": ("INT", {"default": 512, "min": 128, "max": 8192}),
"target_image_height": ("INT", {"default": 768, "min": 128, "max": 8192}),
"seed": ("INT", {"default": 2333, "min": 0, "max": 0xffffffffffffffff}),
"guidance_scale": ("FLOAT", {"default": 5.0, "min": 0.0, "step": 0.01}),
"num_inference_steps": ("INT", {"default": 40, "min": 1}),
"prompt": ("STRING", {
"default": "high quality, best quality",
"multiline": True
}),
"prompt_neg": ("STRING", {
"default": "",
"multiline": True
}),
"radius": ("FLOAT", {"default": 1.5, "min": 0.1, "step": 0.01})
},
}
RETURN_TYPES = (
"IMAGE",
"ORBIT_CAMPOSES",
)
RETURN_NAMES = (
"multiviews",
"orbit_camposes",
)
FUNCTION = "run_model"
CATEGORY = "Comfy3D/Algorithm"
@torch.no_grad()
def run_model(
self,
character_mv_gen_pipe,
reference_image,
reference_mask,
target_image_width,
target_image_height,
seed,
guidance_scale,
num_inference_steps,
prompt,
prompt_neg,
radius
):
single_image = torch_imgs_to_pils(reference_image, reference_mask)[0]
multiview_images = character_mv_gen_pipe.inference(
single_image, target_image_width, target_image_height, prompt=prompt, prompt_neg=prompt_neg,
guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, seed=seed
).to(dtype=reference_image.dtype, device=reference_image.device)
orbit_radius = [radius] * 4
orbit_center = [0.0] * 4
orbit_elevations, orbit_azimuths = ORBITPOSE_PRESET_DICT["CharacterGen(4)"]
orbit_camposes = compose_orbit_camposes(orbit_radius, orbit_elevations, orbit_azimuths, orbit_center, orbit_center, orbit_center)
return (multiview_images, orbit_camposes)
class Load_CharacterGen_Reconstruction_Model:
checkpoints_dir = "CharacterGen"
default_repo_id = "zjpshadow/CharacterGen"
config_path = "CharacterGen_configs/Stage_3D_infer.yaml"
@classmethod
def INPUT_TYPES(cls):
cls.checkpoints_dir_abs = os.path.join(CKPT_ROOT_PATH, cls.checkpoints_dir)
cls.config_root_path_abs = os.path.join(CONFIG_ROOT_PATH, cls.config_path)
return {
"required": {
"force_download": ("BOOLEAN", {"default": False}),
},
}
RETURN_TYPES = (
"CHARACTER_LRM_PIPE",
)
RETURN_NAMES = (
"character_lrm_pipe",
)
FUNCTION = "load_model"
CATEGORY = "Comfy3D/Import|Export"
def load_model(self, force_download):
# Download checkpoints
snapshot_download(repo_id=self.default_repo_id, local_dir=self.checkpoints_dir_abs, force_download=force_download, repo_type="model", ignore_patterns=HF_DOWNLOAD_IGNORE)
# Load pre-trained models
character_lrm_pipe = Inference3D_API(checkpoint_root_path=self.checkpoints_dir_abs, cfg=load_config_cg3d(self.config_root_path_abs))
cstr(f"[{self.__class__.__name__}] loaded model ckpt from {self.checkpoints_dir_abs}").msg.print()
return (character_lrm_pipe,)
class CharacterGen_Reconstruction_Model:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"character_lrm_pipe": ("CHARACTER_LRM_PIPE", ),
"multiview_images": ("IMAGE",),
"multiview_masks": ("MASK",),
}
}
RETURN_TYPES = (
"MESH",
)
RETURN_NAMES = (
"mesh",
)
FUNCTION = "run_LRM"
CATEGORY = "Comfy3D/Algorithm"
@torch.no_grad()
def run_LRM(self, character_lrm_pipe, multiview_images, multiview_masks):
pil_mv_image_list = torch_imgs_to_pils(multiview_images, multiview_masks, alpha_min=0.2)
vertices, faces = character_lrm_pipe.inference(pil_mv_image_list)
mesh = Mesh(v=vertices, f=faces.to(torch.int64), device=DEVICE)
mesh.auto_normal()
mesh.auto_uv()
return (mesh,)
class Load_Craftsman_Shape_Diffusion_Model:
checkpoints_dir = "Craftsman"
default_repo_id = "wyysf/CraftsMan"
default_ckpt_name = "image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6-aligned-vae/model.ckpt"
config_path = "Craftsman_config.yaml"
@classmethod
def INPUT_TYPES(cls):
cls.checkpoints_dir_abs = os.path.join(CKPT_ROOT_PATH, cls.checkpoints_dir)
cls.config_root_path_abs = os.path.join(CONFIG_ROOT_PATH, cls.config_path)
all_models_names = get_list_filenames(cls.checkpoints_dir_abs, SUPPORTED_CHECKPOINTS_EXTENSIONS, recursive=True)
if cls.default_ckpt_name not in all_models_names:
all_models_names += [cls.default_ckpt_name]
return {
"required": {
"model_name": (all_models_names, ),
},
}
RETURN_TYPES = (
"CRAFTSMAN_MODEL",
)
RETURN_NAMES = (
"craftsman_model",
)
FUNCTION = "load_model"
CATEGORY = "Comfy3D/Import|Export"
def load_model(self, model_name):
ckpt_path = resume_or_download_model_from_hf(self.checkpoints_dir_abs, self.default_repo_id, model_name, self.__class__.__name__)
cfg: ExperimentConfigCraftsman
cfg = load_config_craftsman(self.config_root_path_abs)
craftsman_model: BaseSystem = craftsman.find(cfg.system_type)(
cfg.system,
)
craftsman_model.load_state_dict(torch.load(ckpt_path, map_location=torch.device('cpu'))['state_dict'])
craftsman_model = craftsman_model.to(DEVICE).eval()
cstr(f"[{self.__class__.__name__}] loaded model ckpt from {self.checkpoints_dir_abs}").msg.print()
return (craftsman_model,)
class Craftsman_Shape_Diffusion_Model:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"craftsman_model": ("CRAFTSMAN_MODEL", ),
"multiview_images": ("IMAGE",),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"guidance_scale": ("FLOAT", {"default": 5.0, "min": 0.0, "step": 0.01}),
"num_inference_steps": ("INT", {"default": 50, "min": 1}),
"marching_cude_grids_resolution": ("INT", {"default": 256, "min": 1, "max": 0xffffffffffffffff}),
}
}
RETURN_TYPES = (
"MESH",
)
RETURN_NAMES = (
"mesh",
)
FUNCTION = "run_model"
CATEGORY = "Comfy3D/Algorithm"
@torch.no_grad()
def run_model(self, craftsman_model, multiview_images, seed, guidance_scale, num_inference_steps, marching_cude_grids_resolution):
pil_mv_image_list = torch_imgs_to_pils(multiview_images)
sample_inputs = {"mvimages": [pil_mv_image_list]} # view order: front, right, back, left
latents = craftsman_model.sample(
sample_inputs,
sample_times=1,
steps=num_inference_steps,
guidance_scale=guidance_scale,
return_intermediates=False,
seed=seed
)[0]
cstr(f"[{self.__class__.__name__}] Starting to extract mesh...").msg.print()
# decode the latents to mesh
box_v = 1.1
mesh_outputs, _ = craftsman_model.shape_model.extract_geometry(
latents,
bounds=[-box_v, -box_v, -box_v, box_v, box_v, box_v],
grids_resolution=marching_cude_grids_resolution
)
vertices, faces = torch.from_numpy(mesh_outputs[0][0]).to(DEVICE), torch.from_numpy(mesh_outputs[0][1]).to(torch.int64).to(DEVICE)
mesh = Mesh(v=vertices, f=faces, device=DEVICE)
mesh.auto_normal()
mesh.auto_uv()
return (mesh,)
class OrbitPoses_JK:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"orbitpose_preset": (list(ORBITPOSE_PRESET_DICT.keys()),),
"radius": ("STRING", {"default": "4.0, 4.0, 4.0, 4.0, 4.0, 4.0"}),
"elevations": ("STRING", {"default": "0.0, 90.0, 0.0, 0.0, -90.0, 0.0"}),
"azimuths": ("STRING", {"default": "-90.0, 0.0, 180.0, 90.0, 0.0, 0.0"}),
"centerX": ("STRING", {"default": "0.0, 0.0, 0.0, 0.0, 0.0, 0.0"}),
"centerY": ("STRING", {"default": "0.0, 0.0, 0.0, 0.0, 0.0, 0.0"}),
"centerZ": ("STRING", {"default": "0.0, 0.0, 0.0, 0.0, 0.0, 0.0"}),
},
}
RETURN_TYPES = ("ORBIT_CAMPOSES",)
RETURN_NAMES = ("orbit_camposes",)
FUNCTION = "get_orbit_poses"
CATEGORY = "Comfy3D/Preprocessor"
def get_orbit_poses(self, orbitpose_preset, azimuths, elevations, radius, centerX, centerY, centerZ):
radius = radius.split(",")
orbit_radius = [float(item) for item in radius]
centerX = centerX.split(",")
centerY = centerY.split(",")
centerZ = centerZ.split(",")
orbit_center_x = [float(item) for item in centerX]
orbit_center_y = [float(item) for item in centerY]
orbit_center_z = [float(item) for item in centerZ]
if orbitpose_preset == "Custom":
elevations = elevations.split(",")
azimuths = azimuths.split(",")
orbit_elevations = [float(item) for item in elevations]
orbit_azimuths = [float(item) for item in azimuths]
else:
orbit_elevations, orbit_azimuths = ORBITPOSE_PRESET_DICT[orbitpose_preset]
orbit_camposes = compose_orbit_camposes(orbit_radius, orbit_elevations, orbit_azimuths, orbit_center_x, orbit_center_y, orbit_center_z)
return (orbit_camposes,)
class Load_CRM_T2I_V2_Models:
crm_checkpoints_dir = "CRM"
t2i_v2_checkpoints_dir = "T2I_V2"
default_crm_ckpt_name = ["pixel-diffusion.pth"]
default_crm_conf_name = ["sd_v2_base_ipmv_zero_SNR.yaml"]
default_crm_repo_id = "Zhengyi/CRM"
config_path = "CRM_T2I_V2_configs"
@classmethod
def INPUT_TYPES(cls):
cls.crm_checkpoints_dir_abs = os.path.join(CKPT_ROOT_PATH, cls.crm_checkpoints_dir)
all_crm_models_names = get_list_filenames(cls.crm_checkpoints_dir_abs, SUPPORTED_CHECKPOINTS_EXTENSIONS)
for ckpt_name in cls.default_crm_ckpt_name:
if ckpt_name not in all_crm_models_names:
all_crm_models_names += [ckpt_name]
cls.t2i_v2_checkpoints_dir_abs = os.path.join(CKPT_ROOT_PATH, cls.t2i_v2_checkpoints_dir)
cls.config_root_path_abs = os.path.join(CONFIG_ROOT_PATH, cls.config_path)
return {
"required": {
"crm_model_name": (all_crm_models_names, ),
"crm_config_path": (cls.default_crm_conf_name, ),
},
}
RETURN_TYPES = (
"T2IADAPTER_V2",
"CRM_MVDIFFUSION_SAMPLER_V2",
)
RETURN_NAMES = (
"t2iadapter_v2",
"crm_mvdiffusion_sampler_v2",
)
FUNCTION = "load_CRM"
CATEGORY = "Comfy3D/Import|Export"
def load_CRM(self, crm_model_name, crm_config_path):
from CRM_T2I_V2.imagedream.ldm.util import (
instantiate_from_config,
get_obj_from_str,
)
t2iadapter_v2 = T2IAdapterV2.from_pretrained(self.t2i_v2_checkpoints_dir_abs).to(DEVICE, dtype=WEIGHT_DTYPE)
crm_config_path = os.path.join(self.config_root_path_abs, crm_config_path)
ckpt_path = resume_or_download_model_from_hf(self.crm_checkpoints_dir_abs, self.default_crm_repo_id, crm_model_name, self.__class__.__name__)
crm_config = OmegaConf.load(crm_config_path)
crm_mvdiffusion_model = instantiate_from_config(crm_config.model)
crm_mvdiffusion_model.load_state_dict(torch.load(ckpt_path, map_location="cpu"), strict=False)
crm_mvdiffusion_model.device = DEVICE
crm_mvdiffusion_model.clip_model = crm_mvdiffusion_model.clip_model.to(DEVICE, dtype=WEIGHT_DTYPE)
crm_mvdiffusion_model.vae_model = crm_mvdiffusion_model.vae_model.to(DEVICE, dtype=WEIGHT_DTYPE)
crm_mvdiffusion_model = crm_mvdiffusion_model.to(DEVICE, dtype=WEIGHT_DTYPE)
crm_mvdiffusion_sampler_v2 = get_obj_from_str(crm_config.sampler.target)(
crm_mvdiffusion_model, device=DEVICE, dtype=WEIGHT_DTYPE, **crm_config.sampler.params
)
cstr(f"[{self.__class__.__name__}] loaded model ckpt from {ckpt_path}").msg.print()
return (t2iadapter_v2, crm_mvdiffusion_sampler_v2, )
class CRM_T2I_V2_Models:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"t2iadapter_v2": ("T2IADAPTER_V2",),
"crm_mvdiffusion_sampler_v2": ("CRM_MVDIFFUSION_SAMPLER_V2",),
"reference_image": ("IMAGE",),
"reference_mask": ("MASK",),
"normal_maps": ("IMAGE",),
"prompt": ("STRING", {
"default": "3D assets",
"multiline": True
}),
"prompt_neg": ("STRING", {
"default": "uniform low no texture ugly, boring, bad anatomy, blurry, pixelated, obscure, unnatural colors, poor lighting, dull, and unclear.",
"multiline": True
}),
"seed": ("INT", {"default": 1234, "min": 0, "max": 0xffffffffffffffff}),
"mv_guidance_scale": ("FLOAT", {"default": 5.5, "min": 0.0, "step": 0.01}),
"num_inference_steps": ("INT", {"default": 50, "min": 1}),
},
}
RETURN_TYPES = (
"IMAGE",
"ORBIT_CAMPOSES",
)
RETURN_NAMES = (
"multiview_images",
"orbit_camposes",
)
FUNCTION = "run_model"
CATEGORY = "Comfy3D/Algorithm"
def run_model(
self,
t2iadapter_v2,
crm_mvdiffusion_sampler_v2,
reference_image, # [N, 256, 256, 3]
reference_mask, # [N, 256, 256]
normal_maps, # [N * 6, 512, 512, 3]
prompt,
prompt_neg,
seed,
mv_guidance_scale,
num_inference_steps,
):
# Convert tensores to pil images
batch_reference_images = [CRMSamplerV2.process_pixel_img(img) for img in torch_imgs_to_pils(reference_image, reference_mask)]
# Adapter conditioning.
normal_maps = normal_maps.permute(0, 3, 1, 2).to(DEVICE, dtype=WEIGHT_DTYPE) # [N, H, W, 3] -> [N, 3, H, W]
down_intrablock_additional_residuals = t2iadapter_v2(normal_maps)
down_intrablock_additional_residuals = [
sample.to(dtype=WEIGHT_DTYPE).chunk(reference_image.shape[0]) for sample in down_intrablock_additional_residuals
] # List[ List[ feature maps tensor for one down sample block and for one ip image, ... ], ... ]
# Inference
multiview_images = CRMSamplerV2.stage1_sample(
crm_mvdiffusion_sampler_v2,
batch_reference_images,
prompt,
prompt_neg,
seed,
mv_guidance_scale,
num_inference_steps,
additional_residuals=down_intrablock_additional_residuals
).to(dtype=reference_image.dtype, device=reference_image.device)
gc.collect()
torch.cuda.empty_cache()
orbit_radius = [1.63634] * 6
orbit_center = [0.0] * 6
orbit_elevations, orbit_azimuths = ORBITPOSE_PRESET_DICT["CRM(6)"]
orbit_camposes = compose_orbit_camposes(orbit_radius, orbit_elevations, orbit_azimuths, orbit_center, orbit_center, orbit_center)
return (multiview_images, orbit_camposes)
class Load_CRM_T2I_V3_Models:
crm_checkpoints_dir = "CRM"
crm_t2i_v3_checkpoints_dir = "CRM_T2I_V3"
t2i_v2_checkpoints_dir = "T2I_V2"
default_crm_t2i_v3_ckpt_name = ["pixel-diffusion_lora_80k_rank_60_Hyper.pth", "pixel-diffusion_dora_90k_rank_128_Hyper.pth"]
default_crm_ckpt_name = ["pixel-diffusion_Hyper.pth"]
default_crm_conf_name = ["sd_v2_base_ipmv_zero_SNR_Hyper.yaml"]
default_crm_repo_id = "Zhengyi/CRM"
config_path = "CRM_T2I_V3_configs"
@classmethod
def INPUT_TYPES(cls):
cls.crm_checkpoints_dir_abs = os.path.join(CKPT_ROOT_PATH, cls.crm_checkpoints_dir)
all_crm_models_names = get_list_filenames(cls.crm_checkpoints_dir_abs, SUPPORTED_CHECKPOINTS_EXTENSIONS)
for ckpt_name in cls.default_crm_ckpt_name:
if ckpt_name not in all_crm_models_names:
all_crm_models_names += [ckpt_name]
cls.crm_t2i_v3_checkpoints_dir_abs = os.path.join(CKPT_ROOT_PATH, cls.crm_t2i_v3_checkpoints_dir)
all_crm_t2i_v3_models_names = get_list_filenames(cls.crm_t2i_v3_checkpoints_dir_abs, SUPPORTED_CHECKPOINTS_EXTENSIONS)
for ckpt_name in cls.default_crm_t2i_v3_ckpt_name:
if ckpt_name not in all_crm_t2i_v3_models_names:
all_crm_t2i_v3_models_names += [ckpt_name]
cls.t2i_v2_checkpoints_dir_abs = os.path.join(CKPT_ROOT_PATH, cls.t2i_v2_checkpoints_dir)
cls.config_root_path_abs = os.path.join(CONFIG_ROOT_PATH, cls.config_path)
return {
"required": {
"crm_model_name": (all_crm_models_names, ),
"crm_t2i_v3_model_name": (all_crm_t2i_v3_models_names, ),
"crm_config_path": (cls.default_crm_conf_name, ),
"rank": ("INT", {"default": 64, "min": 1}),
"use_dora": ("BOOLEAN", {"default": False}),
},
}
RETURN_TYPES = (
"T2IADAPTER_V2",
"CRM_MVDIFFUSION_SAMPLER_V3",
)
RETURN_NAMES = (
"t2iadapter_v2",
"crm_mvdiffusion_sampler_v3",
)
FUNCTION = "load_CRM"
CATEGORY = "Comfy3D/Import|Export"
def load_CRM(self, crm_model_name, crm_t2i_v3_model_name, crm_config_path, rank, use_dora):
from CRM_T2I_V3.imagedream.ldm.util import (
instantiate_from_config,
get_obj_from_str,
)
t2iadapter_v2 = T2IAdapterV2.from_pretrained(self.t2i_v2_checkpoints_dir_abs).to(DEVICE, dtype=WEIGHT_DTYPE)
crm_config_path = os.path.join(self.config_root_path_abs, crm_config_path)
ckpt_path = resume_or_download_model_from_hf(self.crm_checkpoints_dir_abs, self.default_crm_repo_id, crm_model_name, self.__class__.__name__)
crm_config = OmegaConf.load(crm_config_path)
crm_mvdiffusion_model = instantiate_from_config(crm_config.model)
crm_mvdiffusion_model.load_state_dict(torch.load(ckpt_path, map_location="cpu"), strict=False)
crm_mvdiffusion_model.device = DEVICE
crm_mvdiffusion_model.clip_model = crm_mvdiffusion_model.clip_model.to(DEVICE, dtype=WEIGHT_DTYPE)
crm_mvdiffusion_model.vae_model = crm_mvdiffusion_model.vae_model.to(DEVICE, dtype=WEIGHT_DTYPE)
crm_mvdiffusion_model = crm_mvdiffusion_model.to(DEVICE, dtype=WEIGHT_DTYPE)
crm_mvdiffusion_sampler_v3 = get_obj_from_str(crm_config.sampler.target)(
crm_mvdiffusion_model, device=DEVICE, dtype=WEIGHT_DTYPE, **crm_config.sampler.params
)
unet = crm_mvdiffusion_model.model
mvdiffusion_model = unet.diffusion_model
self.inject_lora(mvdiffusion_model, rank, use_dora)
pretrained_lora_model_path = os.path.join(self.crm_t2i_v3_checkpoints_dir_abs, crm_t2i_v3_model_name)
unet.load_state_dict(torch.load(pretrained_lora_model_path, map_location="cpu"), strict=False)
cstr(f"[{self.__class__.__name__}] loaded model ckpt from {ckpt_path} and {pretrained_lora_model_path}").msg.print()
return (t2iadapter_v2, crm_mvdiffusion_sampler_v3, )
def inject_lora(self, mvdiffusion_model, rank=64, use_dora=False):
from peft import LoraConfig, inject_adapter_in_model
# Add new LoRA weights to the original attention layers
unet_lora_config = LoraConfig(
r=rank,
use_dora=use_dora,
lora_alpha=rank,
init_lora_weights="gaussian",
target_modules=["to_k", "to_k_ip", "to_q", "to_v", "to_v_ip", "to_out.0"],
)
inject_adapter_in_model(unet_lora_config, mvdiffusion_model.input_blocks, "DoRA" if use_dora else "LoRA")
inject_adapter_in_model(unet_lora_config, mvdiffusion_model.middle_block, "DoRA" if use_dora else "LoRA")
inject_adapter_in_model(unet_lora_config, mvdiffusion_model.output_blocks, "DoRA" if use_dora else "LoRA")
class CRM_T2I_V3_Models:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"t2iadapter_v2": ("T2IADAPTER_V2",),
"crm_mvdiffusion_sampler_v3": ("CRM_MVDIFFUSION_SAMPLER_V3",),
"reference_image": ("IMAGE",),
"reference_mask": ("MASK",),
"normal_maps": ("IMAGE",),
"prompt": ("STRING", {
"default": "3D assets",
"multiline": True
}),
"prompt_neg": ("STRING", {
"default": "uniform low no texture ugly, boring, bad anatomy, blurry, pixelated, obscure, unnatural colors, poor lighting, dull, and unclear.",
"multiline": True
}),
"seed": ("INT", {"default": 1234, "min": 0, "max": 0xffffffffffffffff}),
"mv_guidance_scale": ("FLOAT", {"default": 5.5, "min": 0.0, "step": 0.01}),
"num_inference_steps": ("INT", {"default": 50, "min": 1}),
},
}
RETURN_TYPES = (
"IMAGE",
"IMAGE",
"IMAGE",
"ORBIT_CAMPOSES",
)
RETURN_NAMES = (
"multiview_albedos",
"multiview_metalness",
"multiview_roughness",
"orbit_camposes",
)
FUNCTION = "run_model"
CATEGORY = "Comfy3D/Algorithm"
def run_model(
self,
t2iadapter_v2,
crm_mvdiffusion_sampler_v3,
reference_image, # [N, 256, 256, 3]
reference_mask, # [N, 256, 256]
normal_maps, # [N * 6, 512, 512, 3]
prompt,
prompt_neg,
seed,
mv_guidance_scale,
num_inference_steps,
):
# Convert tensores to pil images
batch_reference_images = [CRMSamplerV3.process_pixel_img(img) for img in torch_imgs_to_pils(reference_image, reference_mask)]
# Adapter conditioning.
normal_maps = normal_maps.permute(0, 3, 1, 2).to(DEVICE, dtype=WEIGHT_DTYPE) # [N, H, W, 3] -> [N, 3, H, W]
down_intrablock_additional_residuals = t2iadapter_v2(normal_maps)
down_intrablock_additional_residuals = [
sample.to(dtype=WEIGHT_DTYPE).chunk(reference_image.shape[0]) for sample in down_intrablock_additional_residuals
] # List[ List[ feature maps tensor for one down sample block and for one ip image, ... ], ... ]
all_multiview_images = [[], [], []] # [list of albedo mvs, list of metalness mvs, list of roughness mvs]
# Inference
multiview_images = CRMSamplerV3.stage1_sample(
crm_mvdiffusion_sampler_v3,
batch_reference_images,
prompt,
prompt_neg,
seed,
mv_guidance_scale,
num_inference_steps,
additional_residuals=down_intrablock_additional_residuals
)
num_mvs = crm_mvdiffusion_sampler_v3.num_frames - 1 # 6
num_branches = crm_mvdiffusion_sampler_v3.model.model.diffusion_model.num_branches # 3
ip_batch_size = reference_image.shape[0]
i_mvs = 0
for i_branch in range(num_branches):
for _ in range(ip_batch_size):
batch_of_mv_imgs = torch.stack(multiview_images[i_mvs:i_mvs+num_mvs], axis=0)
i_mvs += num_mvs
all_multiview_images[i_branch].append(batch_of_mv_imgs)
output_images = [None] * num_branches
for i_branch in range(num_branches):
output_images[i_branch] = torch.cat(all_multiview_images[i_branch], dim=0).to(reference_image.device, dtype=reference_image.dtype)
gc.collect()
torch.cuda.empty_cache()
orbit_radius = [1.63634] * 6
orbit_center = [0.0] * 6
orbit_elevations, orbit_azimuths = ORBITPOSE_PRESET_DICT["CRM(6)"]
orbit_camposes = compose_orbit_camposes(orbit_radius, orbit_elevations, orbit_azimuths, orbit_center, orbit_center, orbit_center)
return (output_images[0], output_images[1], output_images[2], orbit_camposes)
class Hunyuan3D_V1_MVDiffusion_Model:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"mvdiffusion_pipe": ("DIFFUSERS_PIPE",),
"reference_image": ("IMAGE",),
"reference_mask": ("MASK",),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"mv_guidance_scale": ("FLOAT", {"default": 2.0, "min": 0.0, "step": 0.01}),
"num_inference_steps": ("INT", {"default": 50, "min": 1}),
}
}
RETURN_TYPES = (
"IMAGE",
"IMAGE",
)
RETURN_NAMES = (
"multiview_image_grid",
"condition_image",
)
FUNCTION = "run_mvdiffusion"
CATEGORY = "Comfy3D/Algorithm"
@torch.no_grad()
def run_mvdiffusion(
self,
mvdiffusion_pipe,
reference_image, # [1, H, W, 3]
reference_mask, # [1, H, W]
seed,
mv_guidance_scale,
num_inference_steps,
):
single_image = torch_imgs_to_pils(reference_image, reference_mask)[0]
generator = torch.Generator(device=mvdiffusion_pipe.device).manual_seed(seed)
views_grid_pil, cond_pil = mvdiffusion_pipe(single_image,
num_inference_steps=num_inference_steps,
guidance_scale=mv_guidance_scale,
generat=generator
).images
multiview_image_grid = pils_to_torch_imgs(views_grid_pil, reference_image.dtype, reference_image.device)
condition_image = pils_to_torch_imgs(cond_pil, reference_image.dtype, reference_image.device)
return (multiview_image_grid, condition_image)
class Load_Hunyuan3D_V1_Reconstruction_Model:
checkpoints_dir = "svrm/svrm.safetensors"
default_repo_id = "tencent/Hunyuan3D-1"
config_path = "Hunyuan3D_V1_svrm_config.yaml"
@classmethod
def INPUT_TYPES(cls):
cls.config_root_path_abs = os.path.join(CONFIG_ROOT_PATH, cls.config_path)
return {
"required": {
"force_download": ("BOOLEAN", {"default": False}),
"use_lite": ("BOOLEAN", {"default": True}),
},
}
RETURN_TYPES = (
"HUNYUAN3D_V1_RECONSTRUCTION_MODEL",
)
RETURN_NAMES = (
"hunyuan3d_v1_reconstruction_model",
)
FUNCTION = "load_model"
CATEGORY = "Comfy3D/Import|Export"
def load_model(self, force_download, use_lite):
# Download checkpoints
ckpt_download_dir = os.path.join(CKPT_DIFFUSERS_PATH, self.default_repo_id)
snapshot_download(repo_id=self.default_repo_id, local_dir=ckpt_download_dir, force_download=force_download, repo_type="model", ignore_patterns=HF_DOWNLOAD_IGNORE)
# Load pre-trained models
mv23d_ckt_path = os.path.join(ckpt_download_dir, self.checkpoints_dir)
hunyuan3d_v1_reconstruction_model = Views2Mesh(self.config_root_path_abs, mv23d_ckt_path, DEVICE, use_lite=use_lite)
cstr(f"[{self.__class__.__name__}] loaded model ckpt from {mv23d_ckt_path}").msg.print()
return (hunyuan3d_v1_reconstruction_model,)
class Hunyuan3D_V1_Reconstruction_Model:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"hunyuan3d_v1_reconstruction_model": ("HUNYUAN3D_V1_RECONSTRUCTION_MODEL",),
"multiview_image_grid": ("IMAGE",),
"condition_image": ("IMAGE",),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"target_face_count": ("INT", {"default": 90000, "min": 1}),
}
}
RETURN_TYPES = (
"MESH",
)
RETURN_NAMES = (
"mesh",
)
FUNCTION = "run_model"
CATEGORY = "Comfy3D/Algorithm"
@torch.no_grad()
def run_model(self, hunyuan3d_v1_reconstruction_model, multiview_image_grid, condition_image, seed, target_face_count):
mv_grid_pil = torch_imgs_to_pils(multiview_image_grid)[0]
condition_pil = torch_imgs_to_pils(condition_image)[0]
vertices, faces, vtx_colors = hunyuan3d_v1_reconstruction_model(
mv_grid_pil,
condition_pil,
seed=seed,
target_face_count=target_face_count
)
vertices, faces, vtx_colors = torch.from_numpy(vertices).to(DEVICE), torch.from_numpy(faces).to(torch.int64).to(DEVICE), torch.from_numpy(vtx_colors).to(DEVICE)
mesh = Mesh(v=vertices, f=faces.to(torch.int64), vc=vtx_colors, device=DEVICE)
mesh.auto_normal()
return (mesh,)
class Hunyuan3D_V2_DiT_Flow_Matching_Model:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"hunyuan3d_v2_i23d_pipe": ("DIFFUSERS_PIPE",),
"reference_image": ("IMAGE",),
"reference_mask": ("MASK",),
"seed": ("INT", {"default": 1234, "min": 0, "max": 0xffffffffffffffff}),
"guidance_scale": ("FLOAT", {"default": 5.5, "min": 0.0, "step": 0.01}),
"num_inference_steps": ("INT", {"default": 30, "min": 1}),
"octree_resolution": ("INT", {"default": 256, "min": 1}),
}
}
RETURN_TYPES = (
"MESH",
)
RETURN_NAMES = (
"mesh",
)
FUNCTION = "run_model"
CATEGORY = "Comfy3D/Algorithm"
@torch.no_grad()
def run_model(
self,
hunyuan3d_v2_i23d_pipe,
reference_image, # [1, H, W, 3]
reference_mask, # [1, H, W]
seed,
guidance_scale,
num_inference_steps,
octree_resolution,
):
single_image = torch_imgs_to_pils(reference_image, reference_mask)[0]
generator = torch.Generator(device=hunyuan3d_v2_i23d_pipe.device).manual_seed(seed)
mesh = hunyuan3d_v2_i23d_pipe(
image=single_image,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator,
octree_resolution=octree_resolution
)[0]
mesh = FloaterRemover()(mesh)
mesh = DegenerateFaceRemover()(mesh)
mesh = FaceReducer()(mesh)
mesh = Mesh.load_trimesh(given_mesh=mesh)
return (mesh,)
class Hunyuan3D_V2_Paint_Model:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"hunyuan3d_v2_texgen_pipe": ("DIFFUSERS_PIPE",),
"reference_image": ("IMAGE",),
"reference_mask": ("MASK",),
"mesh": ("MESH",),
}
}
RETURN_TYPES = (
"MESH",
)
RETURN_NAMES = (
"mesh",
)
FUNCTION = "run_model"
CATEGORY = "Comfy3D/Algorithm"
@torch.no_grad()
def run_model(
self,
hunyuan3d_v2_texgen_pipe,
reference_image, # [1, H, W, 3]
reference_mask, # [1, H, W]
mesh,
):
single_image = torch_imgs_to_pils(reference_image, reference_mask)[0]
v_np = mesh.v.detach().cpu().numpy()
f_np = mesh.f.detach().cpu().numpy()
mesh = trimesh.Trimesh(vertices=v_np, faces=f_np)
mesh = hunyuan3d_v2_texgen_pipe(mesh, single_image)
mesh = Mesh.load_trimesh(given_mesh=mesh)
mesh.auto_normal()
return (mesh,)
class Load_Trellis_Structured_3D_Latents_Models:
default_repo_id = "JeffreyXiang/TRELLIS-image-large"
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"repo_id": ("STRING", {"default": cls.default_repo_id, "multiline": False}),
},
}
RETURN_TYPES = (
"TRELLIS_PIPE",
)
RETURN_NAMES = (
"trellis_pipe",
)
FUNCTION = "load_pipe"
CATEGORY = "Comfy3D/Import|Export"
def load_pipe(self, repo_id):
pipe = TrellisImageTo3DPipeline.from_pretrained(repo_id)
pipe.to(DEVICE)
return (pipe,)
class Trellis_Structured_3D_Latents_Models:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"trellis_pipe": ("TRELLIS_PIPE",),
"reference_image": ("IMAGE",),
"reference_mask": ("MASK",),
"seed": ("INT", {"default": 1, "min": 0, "max": 0xffffffffffffffff}),
"sparse_structure_guidance_scale": ("FLOAT", {"default": 7.5, "min": 0.0, "step": 0.01}),
"sparse_structure_sample_steps": ("INT", {"default": 12, "min": 1}),
"structured_latent_guidance_scale": ("FLOAT", {"default": 3.0, "min": 0.0, "step": 0.01}),
"structured_latent_sample_steps": ("INT", {"default": 12, "min": 1}),
}
}
RETURN_TYPES = (
"MESH",
)
RETURN_NAMES = (
"mesh",
)
FUNCTION = "run_model"
CATEGORY = "Comfy3D/Algorithm"
@torch.no_grad()
def run_model(
self,
trellis_pipe,
reference_image, # [1, H, W, 3]
reference_mask, # [1, H, W]
seed,
sparse_structure_guidance_scale,
sparse_structure_sample_steps,
structured_latent_guidance_scale,
structured_latent_sample_steps,
):
single_image = torch_imgs_to_pils(reference_image, reference_mask)[0]
with torch.inference_mode(False):
outputs = trellis_pipe.run(
single_image,
# Optional parameters
seed=seed,
formats=["gaussian", "mesh"],
sparse_structure_sampler_params={
"cfg_strength": sparse_structure_guidance_scale,
"steps": sparse_structure_sample_steps,
},
slat_sampler_params={
"cfg_strength": structured_latent_guidance_scale,
"steps": structured_latent_sample_steps,
},
)
# GLB files can be extracted from the outputs
vertices, faces, uvs, texture = postprocessing_utils.finalize_mesh(
outputs['gaussian'][0],
outputs['mesh'][0],
# Optional parameters
simplify=0.95, # Ratio of triangles to remove in the simplification process
texture_size=1024, # Size of the texture used for the GLB
)
vertices, faces, uvs, texture = torch.from_numpy(vertices).to(DEVICE), torch.from_numpy(faces).to(torch.int64).to(DEVICE), torch.from_numpy(uvs).to(DEVICE), torch.from_numpy(texture).to(DEVICE)
mesh = Mesh(v=vertices, f=faces, vt=uvs, ft=faces, albedo=texture, device=DEVICE)
mesh.auto_normal()
return (mesh,)