|
import os |
|
import gc |
|
import math |
|
import copy |
|
from enum import Enum |
|
from collections import OrderedDict |
|
import folder_paths as comfy_paths |
|
from omegaconf import OmegaConf |
|
import json |
|
|
|
import torch |
|
from torch.utils.data import DataLoader |
|
from torchvision.transforms import v2 |
|
import torchvision.transforms.functional as TF |
|
import numpy as np |
|
from safetensors.torch import load_file |
|
from einops import rearrange |
|
|
|
from diffusers import ( |
|
DiffusionPipeline, |
|
StableDiffusionPipeline |
|
) |
|
|
|
from diffusers import ( |
|
EulerAncestralDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
DDIMScheduler, |
|
DDIMParallelScheduler, |
|
LCMScheduler, |
|
KDPM2AncestralDiscreteScheduler, |
|
KDPM2DiscreteScheduler, |
|
) |
|
from huggingface_hub import snapshot_download |
|
|
|
from plyfile import PlyData |
|
import trimesh |
|
from PIL import Image |
|
|
|
from .mesh_processer.mesh import Mesh |
|
from .mesh_processer.mesh_utils import ( |
|
ply_to_points_cloud, |
|
get_target_axis_and_scale, |
|
switch_ply_axis_and_scale, |
|
switch_mesh_axis_and_scale, |
|
calculate_max_sh_degree_from_gs_ply, |
|
marching_cubes_density_to_mesh, |
|
color_func_to_albedo, |
|
interpolate_texture_map_attr, |
|
decimate_mesh, |
|
) |
|
|
|
from FlexiCubes.flexicubes_trainer import FlexiCubesTrainer |
|
from DiffRastMesh.diff_mesh import DiffMesh, DiffMeshCameraController |
|
from DiffRastMesh.diff_mesh import DiffRastRenderer |
|
from GaussianSplatting.main_3DGS import GaussianSplatting3D, GaussianSplattingCameraController, GSParams |
|
from GaussianSplatting.main_3DGS_renderer import GaussianSplattingRenderer |
|
from NeRF.Instant_NGP import InstantNGP |
|
|
|
from TriplaneGaussian.triplane_gaussian_transformers import TGS |
|
from TriplaneGaussian.utils.config import ExperimentConfig as ExperimentConfigTGS, load_config as load_config_tgs |
|
from TriplaneGaussian.data import CustomImageOrbitDataset |
|
from TriplaneGaussian.utils.misc import todevice, get_device |
|
from LGM.core.options import config_defaults |
|
from LGM.mvdream.pipeline_mvdream import MVDreamPipeline |
|
from LGM.large_multiview_gaussian_model import LargeMultiviewGaussianModel |
|
from LGM.nerf_marching_cubes_converter import GSConverterNeRFMarchingCubes |
|
from TripoSR.system import TSR |
|
from StableFast3D.sf3d import utils as sf3d_utils |
|
from StableFast3D.sf3d.system import SF3D |
|
from InstantMesh.utils.camera_util import oribt_camera_poses_to_input_cameras |
|
from CRM.model.crm.model import ConvolutionalReconstructionModel |
|
from CRM.model.crm.sampler import CRMSampler |
|
from Wonder3D.pipelines.pipeline_mvdiffusion_image import MVDiffusionImagePipeline |
|
from Wonder3D.data.single_image_dataset import SingleImageDataset as MVSingleImageDataset |
|
from Wonder3D.utils.misc import load_config as load_config_wonder3d |
|
from Zero123Plus.pipeline import Zero123PlusPipeline |
|
from Era3D.mvdiffusion.pipelines.pipeline_mvdiffusion_unclip import StableUnCLIPImg2ImgPipeline |
|
from Era3D.mvdiffusion.data.single_image_dataset import SingleImageDataset as Era3DSingleImageDataset |
|
from Era3D.utils.misc import load_config as load_config_era3d |
|
from Unique3D.custum_3d_diffusion.custum_pipeline.unifield_pipeline_img2mvimg import StableDiffusionImage2MVCustomPipeline |
|
from Unique3D.custum_3d_diffusion.custum_pipeline.unifield_pipeline_img2img import StableDiffusionImageCustomPipeline |
|
from Unique3D.scripts.mesh_init import fast_geo |
|
from Unique3D.scripts.utils import from_py3d_mesh, to_py3d_mesh, to_pyml_mesh, simple_clean_mesh |
|
from Unique3D.scripts.project_mesh import multiview_color_projection, multiview_color_projection_texture, get_cameras_list, get_orbit_cameras_list |
|
from Unique3D.mesh_reconstruction.recon import reconstruct_stage1 |
|
from Unique3D.mesh_reconstruction.refine import run_mesh_refine |
|
from CharacterGen.character_inference import Inference2D_API, Inference3D_API |
|
from CharacterGen.Stage_3D.lrm.utils.config import load_config as load_config_cg3d |
|
import craftsman |
|
from craftsman.systems.base import BaseSystem |
|
from craftsman.utils.config import ExperimentConfig as ExperimentConfigCraftsman, load_config as load_config_craftsman |
|
from CRM_T2I_V2.model.crm.sampler import CRMSamplerV2 |
|
from CRM_T2I_V2.model.t2i_adapter_v2 import T2IAdapterV2 |
|
from CRM_T2I_V3.model.crm.sampler import CRMSamplerV3 |
|
from Hunyuan3D_V1.mvd.hunyuan3d_mvd_std_pipeline import HunYuan3D_MVD_Std_Pipeline |
|
from Hunyuan3D_V1.mvd.hunyuan3d_mvd_lite_pipeline import Hunyuan3D_MVD_Lite_Pipeline |
|
from Hunyuan3D_V1.infer import Views2Mesh |
|
from Hunyuan3D_V2.hy3dgen.shapegen import FaceReducer, FloaterRemover, DegenerateFaceRemover, Hunyuan3DDiTFlowMatchingPipeline |
|
from Hunyuan3D_V2.hy3dgen.texgen import Hunyuan3DPaintPipeline |
|
from TRELLIS.trellis.pipelines import TrellisImageTo3DPipeline |
|
from TRELLIS.trellis.utils import postprocessing_utils |
|
|
|
os.environ['SPCONV_ALGO'] = 'native' |
|
|
|
from .shared_utils.image_utils import ( |
|
prepare_torch_img, torch_imgs_to_pils, troch_image_dilate, |
|
pils_rgba_to_rgb, pil_make_image_grid, pil_split_image, pils_to_torch_imgs, pils_resize_foreground |
|
) |
|
from .shared_utils.camera_utils import ( |
|
ORBITPOSE_PRESET_DICT, ELEVATION_MIN, ELEVATION_MAX, AZIMUTH_MIN, AZIMUTH_MAX, |
|
compose_orbit_camposes |
|
) |
|
from .shared_utils.log_utils import cstr |
|
from .shared_utils.common_utils import parse_save_filename, get_list_filenames, resume_or_download_model_from_hf |
|
|
|
DIFFUSERS_PIPE_DICT = OrderedDict([ |
|
("MVDreamPipeline", MVDreamPipeline), |
|
("Wonder3DMVDiffusionPipeline", MVDiffusionImagePipeline), |
|
("Zero123PlusPipeline", Zero123PlusPipeline), |
|
("DiffusionPipeline", DiffusionPipeline), |
|
("StableDiffusionPipeline", StableDiffusionPipeline), |
|
("Era3DPipeline", StableUnCLIPImg2ImgPipeline), |
|
("Unique3DImage2MVCustomPipeline", StableDiffusionImage2MVCustomPipeline), |
|
("Unique3DImageCustomPipeline", StableDiffusionImageCustomPipeline), |
|
("HunYuan3DMVDStdPipeline", HunYuan3D_MVD_Std_Pipeline), |
|
("Hunyuan3DMVDLitePipeline", Hunyuan3D_MVD_Lite_Pipeline), |
|
("Hunyuan3DDiTFlowMatchingPipeline", Hunyuan3DDiTFlowMatchingPipeline), |
|
("Hunyuan3DPaintPipeline", Hunyuan3DPaintPipeline), |
|
]) |
|
|
|
DIFFUSERS_SCHEDULER_DICT = OrderedDict([ |
|
("EulerAncestralDiscreteScheduler", EulerAncestralDiscreteScheduler), |
|
("Wonder3DMVDiffusionPipeline", MVDiffusionImagePipeline), |
|
("EulerDiscreteScheduler,", EulerDiscreteScheduler), |
|
("DDIMScheduler,", DDIMScheduler), |
|
("DDIMParallelScheduler,", DDIMParallelScheduler), |
|
("LCMScheduler,", LCMScheduler), |
|
("KDPM2AncestralDiscreteScheduler,", KDPM2AncestralDiscreteScheduler), |
|
("KDPM2DiscreteScheduler,", KDPM2DiscreteScheduler), |
|
]) |
|
|
|
ROOT_PATH = os.path.join(comfy_paths.get_folder_paths("custom_nodes")[0], "ComfyUI-3D-Pack") |
|
CKPT_ROOT_PATH = os.path.join(ROOT_PATH, "Checkpoints") |
|
CKPT_DIFFUSERS_PATH = os.path.join(CKPT_ROOT_PATH, "Diffusers") |
|
CONFIG_ROOT_PATH = os.path.join(ROOT_PATH, "Configs") |
|
MODULE_ROOT_PATH = os.path.join(ROOT_PATH, "Gen_3D_Modules") |
|
|
|
MANIFEST = { |
|
"name": "ComfyUI-3D-Pack", |
|
"version": (0,0,2), |
|
"author": "Mr. For Example", |
|
"project": "https://github.com/MrForExample/ComfyUI-3D-Pack", |
|
"description": "An extensive node suite that enables ComfyUI to process 3D inputs (Mesh & UV Texture, etc) using cutting edge algorithms (3DGS, NeRF, etc.)", |
|
} |
|
|
|
SUPPORTED_3D_EXTENSIONS = ( |
|
'.obj', |
|
'.ply', |
|
'.glb', |
|
) |
|
|
|
SUPPORTED_3DGS_EXTENSIONS = ( |
|
'.ply', |
|
) |
|
|
|
SUPPORTED_CHECKPOINTS_EXTENSIONS = ( |
|
'.ckpt', |
|
'.bin', |
|
'.safetensors', |
|
) |
|
|
|
WEIGHT_DTYPE = torch.float16 |
|
|
|
DEVICE_STR = "cuda" if torch.cuda.is_available() else "cpu" |
|
DEVICE = torch.device(DEVICE_STR) |
|
|
|
HF_DOWNLOAD_IGNORE = ["*.yaml", "*.json", "*.py", ".png", ".jpg", ".gif"] |
|
|
|
class Preview_3DGS: |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"gs_file_path": ("STRING", {"default": '', "multiline": False}), |
|
}, |
|
} |
|
|
|
OUTPUT_NODE = True |
|
RETURN_TYPES = () |
|
FUNCTION = "preview_gs" |
|
CATEGORY = "Comfy3D/Visualize" |
|
|
|
def preview_gs(self, gs_file_path): |
|
|
|
gs_folder_path, filename = os.path.split(gs_file_path) |
|
|
|
if not os.path.isabs(gs_file_path): |
|
gs_file_path = os.path.join(comfy_paths.output_directory, gs_folder_path) |
|
|
|
if not filename.lower().endswith(SUPPORTED_3DGS_EXTENSIONS): |
|
cstr(f"[{self.__class__.__name__}] File name {filename} does not end with supported 3DGS file extensions: {SUPPORTED_3DGS_EXTENSIONS}").error.print() |
|
gs_file_path = "" |
|
|
|
previews = [ |
|
{ |
|
"filepath": gs_file_path, |
|
} |
|
] |
|
return {"ui": {"previews": previews}, "result": ()} |
|
|
|
class Preview_3DMesh: |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"mesh_file_path": ("STRING", {"default": '', "multiline": False}), |
|
}, |
|
} |
|
|
|
OUTPUT_NODE = True |
|
RETURN_TYPES = () |
|
FUNCTION = "preview_mesh" |
|
CATEGORY = "Comfy3D/Visualize" |
|
|
|
def preview_mesh(self, mesh_file_path): |
|
|
|
mesh_folder_path, filename = os.path.split(mesh_file_path) |
|
|
|
if not os.path.isabs(mesh_file_path): |
|
mesh_file_path = os.path.join(comfy_paths.output_directory, mesh_folder_path) |
|
|
|
if not filename.lower().endswith(SUPPORTED_3D_EXTENSIONS): |
|
cstr(f"[{self.__class__.__name__}] File name {filename} does not end with supported 3D file extensions: {SUPPORTED_3D_EXTENSIONS}").error.print() |
|
mesh_file_path = "" |
|
|
|
previews = [ |
|
{ |
|
"filepath": mesh_file_path, |
|
} |
|
] |
|
return {"ui": {"previews": previews}, "result": ()} |
|
|
|
class Load_3D_Mesh: |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"mesh_file_path": ("STRING", {"default": '', "multiline": False}), |
|
"resize": ("BOOLEAN", {"default": False},), |
|
"renormal": ("BOOLEAN", {"default": True},), |
|
"retex": ("BOOLEAN", {"default": False},), |
|
"optimizable": ("BOOLEAN", {"default": False},), |
|
"clean": ("BOOLEAN", {"default": False},), |
|
"resize_bound": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1000.0, "step": 0.001}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"MESH", |
|
) |
|
RETURN_NAMES = ( |
|
"mesh", |
|
) |
|
FUNCTION = "load_mesh" |
|
CATEGORY = "Comfy3D/Import|Export" |
|
|
|
def load_mesh(self, mesh_file_path, resize, renormal, retex, optimizable, clean, resize_bound): |
|
mesh = None |
|
|
|
if not os.path.isabs(mesh_file_path): |
|
mesh_file_path = os.path.join(comfy_paths.input_directory, mesh_file_path) |
|
|
|
if os.path.exists(mesh_file_path): |
|
folder, filename = os.path.split(mesh_file_path) |
|
if filename.lower().endswith(SUPPORTED_3D_EXTENSIONS): |
|
with torch.inference_mode(not optimizable): |
|
mesh = Mesh.load(mesh_file_path, resize, renormal, retex, clean, resize_bound) |
|
else: |
|
cstr(f"[{self.__class__.__name__}] File name {filename} does not end with supported 3D file extensions: {SUPPORTED_3D_EXTENSIONS}").error.print() |
|
else: |
|
cstr(f"[{self.__class__.__name__}] File {mesh_file_path} does not exist").error.print() |
|
return (mesh, ) |
|
|
|
class Load_3DGS: |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"gs_file_path": ("STRING", {"default": '', "multiline": False}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"GS_PLY", |
|
) |
|
RETURN_NAMES = ( |
|
"gs_ply", |
|
) |
|
FUNCTION = "load_gs" |
|
CATEGORY = "Comfy3D/Import|Export" |
|
|
|
def load_gs(self, gs_file_path): |
|
gs_ply = None |
|
|
|
if not os.path.isabs(gs_file_path): |
|
gs_file_path = os.path.join(comfy_paths.input_directory, gs_file_path) |
|
|
|
if os.path.exists(gs_file_path): |
|
folder, filename = os.path.split(gs_file_path) |
|
if filename.lower().endswith(SUPPORTED_3DGS_EXTENSIONS): |
|
gs_ply = PlyData.read(gs_file_path) |
|
else: |
|
cstr(f"[{self.__class__.__name__}] File name {filename} does not end with supported 3DGS file extensions: {SUPPORTED_3DGS_EXTENSIONS}").error.print() |
|
else: |
|
cstr(f"[{self.__class__.__name__}] File {gs_file_path} does not exist").error.print() |
|
return (gs_ply, ) |
|
|
|
class Save_3D_Mesh: |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"mesh": ("MESH",), |
|
"save_path": ("STRING", {"default": 'Mesh_%Y-%m-%d-%M-%S-%f.glb', "multiline": False}), |
|
}, |
|
} |
|
|
|
OUTPUT_NODE = True |
|
RETURN_TYPES = ( |
|
"STRING", |
|
) |
|
RETURN_NAMES = ( |
|
"save_path", |
|
) |
|
FUNCTION = "save_mesh" |
|
CATEGORY = "Comfy3D/Import|Export" |
|
|
|
def save_mesh(self, mesh, save_path): |
|
save_path = parse_save_filename(save_path, comfy_paths.output_directory, SUPPORTED_3D_EXTENSIONS, self.__class__.__name__) |
|
|
|
if save_path is not None: |
|
mesh.write(save_path) |
|
|
|
return (save_path, ) |
|
|
|
class Save_3DGS: |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"gs_ply": ("GS_PLY",), |
|
"save_path": ("STRING", {"default": '3DGS_%Y-%m-%d-%M-%S-%f.ply', "multiline": False}), |
|
}, |
|
} |
|
|
|
OUTPUT_NODE = True |
|
RETURN_TYPES = ( |
|
"STRING", |
|
) |
|
RETURN_NAMES = ( |
|
"save_path", |
|
) |
|
FUNCTION = "save_gs" |
|
CATEGORY = "Comfy3D/Import|Export" |
|
|
|
def save_gs(self, gs_ply, save_path): |
|
|
|
save_path = parse_save_filename(save_path, comfy_paths.output_directory, SUPPORTED_3DGS_EXTENSIONS, self.__class__.__name__) |
|
|
|
if save_path is not None: |
|
gs_ply.write(save_path) |
|
|
|
return (save_path, ) |
|
|
|
class Image_Add_Pure_Color_Background: |
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"images": ("IMAGE",), |
|
"masks": ("MASK",), |
|
"R": ("INT", {"default": 255, "min": 0, "max": 255}), |
|
"G": ("INT", {"default": 255, "min": 0, "max": 255}), |
|
"B": ("INT", {"default": 255, "min": 0, "max": 255}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"IMAGE", |
|
) |
|
RETURN_NAMES = ( |
|
"images", |
|
) |
|
|
|
FUNCTION = "image_add_bg" |
|
CATEGORY = "Comfy3D/Preprocessor" |
|
|
|
def image_add_bg(self, images, masks, R, G, B): |
|
""" |
|
bg_mask = bg_mask.unsqueeze(3) |
|
inv_bg_mask = torch.ones_like(bg_mask) - bg_mask |
|
color = torch.tensor([R, G, B]).to(image.dtype) / 255 |
|
color_bg = color.repeat(bg_mask.shape) |
|
image = inv_bg_mask * image + bg_mask * color_bg |
|
""" |
|
|
|
image_pils = torch_imgs_to_pils(images, masks) |
|
image_pils = pils_rgba_to_rgb(image_pils, (R, G, B)) |
|
|
|
images = pils_to_torch_imgs(image_pils, images.dtype, images.device) |
|
return (images,) |
|
|
|
class Resize_Image_Foreground: |
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"images": ("IMAGE",), |
|
"masks": ("MASK",), |
|
"foreground_ratio": ("FLOAT", {"default": 0.85, "min": 0.01, "max": 1.0, "step": 0.01}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"IMAGE", |
|
"MASK", |
|
) |
|
RETURN_NAMES = ( |
|
"images", |
|
"masks", |
|
) |
|
|
|
FUNCTION = "resize_img_foreground" |
|
CATEGORY = "Comfy3D/Preprocessor" |
|
|
|
def resize_img_foreground(self, images, masks, foreground_ratio): |
|
image_pils = torch_imgs_to_pils(images, masks) |
|
image_pils = pils_resize_foreground(image_pils, foreground_ratio) |
|
|
|
images = pils_to_torch_imgs(image_pils, images.dtype, images.device, force_rgb=False) |
|
images, masks = images[:, :, :, 0:-1], images[:, :, :, -1] |
|
return (images, masks,) |
|
|
|
class Make_Image_Grid: |
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"images": ("IMAGE",), |
|
"grid_side_num": ("INT", {"default": 1, "min": 1, "max": 8192}), |
|
"use_rows": ("BOOLEAN", {"default": True},), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"IMAGE", |
|
) |
|
RETURN_NAMES = ( |
|
"image_grid", |
|
) |
|
|
|
FUNCTION = "make_image_grid" |
|
CATEGORY = "Comfy3D/Preprocessor" |
|
|
|
def make_image_grid(self, images, grid_side_num, use_rows): |
|
pil_image_list = torch_imgs_to_pils(images) |
|
|
|
if use_rows: |
|
rows = grid_side_num |
|
clos = None |
|
else: |
|
clos = grid_side_num |
|
rows = None |
|
|
|
image_grid = pil_make_image_grid(pil_image_list, rows, clos) |
|
|
|
image_grid = TF.to_tensor(image_grid).permute(1, 2, 0).unsqueeze(0) |
|
|
|
return (image_grid,) |
|
|
|
class Split_Image_Grid: |
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"grid_side_num": ("INT", {"default": 1, "min": 1, "max": 8192}), |
|
"use_rows": ("BOOLEAN", {"default": True},), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"IMAGE", |
|
) |
|
RETURN_NAMES = ( |
|
"images", |
|
) |
|
|
|
FUNCTION = "split_image_grid" |
|
CATEGORY = "Comfy3D/Preprocessor" |
|
|
|
def split_image_grid(self, image, grid_side_num, use_rows): |
|
images = [] |
|
for image_pil in torch_imgs_to_pils(image): |
|
|
|
if use_rows: |
|
rows = grid_side_num |
|
clos = None |
|
else: |
|
clos = grid_side_num |
|
rows = None |
|
|
|
image_pils = pil_split_image(image_pil, rows, clos) |
|
|
|
images.append(pils_to_torch_imgs(image_pils, image.dtype, image.device)) |
|
|
|
images = torch.cat(images, dim=0) |
|
return (images,) |
|
|
|
class Get_Masks_From_Normal_Maps: |
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"normal_maps": ("IMAGE",), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"MASK", |
|
) |
|
RETURN_NAMES = ( |
|
"normal_masks", |
|
) |
|
|
|
FUNCTION = "make_image_grid" |
|
CATEGORY = "Comfy3D/Preprocessor" |
|
|
|
def make_image_grid(self, normal_maps): |
|
from Unique3D.scripts.utils import get_normal_map_masks |
|
pil_normal_list = torch_imgs_to_pils(normal_maps) |
|
normal_masks = get_normal_map_masks(pil_normal_list) |
|
normal_masks = torch.stack(normal_masks, dim=0).to(normal_maps.dtype).to(normal_maps.device) |
|
return (normal_masks,) |
|
|
|
class Rotate_Normal_Maps_Horizontally: |
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"normal_maps": ("IMAGE",), |
|
"normal_masks": ("MASK",), |
|
"clockwise": ("BOOLEAN", {"default": True},), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"IMAGE", |
|
) |
|
RETURN_NAMES = ( |
|
"normal_maps", |
|
) |
|
|
|
FUNCTION = "make_image_grid" |
|
CATEGORY = "Comfy3D/Preprocessor" |
|
|
|
def make_image_grid(self, normal_maps, normal_masks, clockwise): |
|
rotate_direction = 1 if clockwise is True else -1 |
|
if normal_maps.shape[0] > 1: |
|
from Unique3D.scripts.utils import rotate_normals_torch |
|
pil_image_list = torch_imgs_to_pils(normal_maps, normal_masks) |
|
pil_image_list = rotate_normals_torch(pil_image_list, return_types='pil', rotate_direction=rotate_direction) |
|
normal_maps = pils_to_torch_imgs(pil_image_list, normal_maps.dtype, normal_maps.device) |
|
return (normal_maps,) |
|
|
|
class Fast_Clean_Mesh: |
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"mesh": ("MESH",), |
|
"apply_smooth": ("BOOLEAN", {"default": True},), |
|
"smooth_step": ("INT", {"default": 1, "min": 0, "max": 0xffffffffffffffff}), |
|
"apply_sub_divide": ("BOOLEAN", {"default": True},), |
|
"sub_divide_threshold": ("FLOAT", {"default": 0.25, "step": 0.001}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"MESH", |
|
) |
|
RETURN_NAMES = ( |
|
"mesh", |
|
) |
|
FUNCTION = "clean_mesh" |
|
CATEGORY = "Comfy3D/Preprocessor" |
|
|
|
def clean_mesh(self, mesh, apply_smooth, smooth_step, apply_sub_divide, sub_divide_threshold): |
|
|
|
meshes = simple_clean_mesh(to_pyml_mesh(mesh.v, mesh.f), apply_smooth=apply_smooth, stepsmoothnum=smooth_step, apply_sub_divide=apply_sub_divide, sub_divide_threshold=sub_divide_threshold).to(DEVICE) |
|
vertices, faces, _ = from_py3d_mesh(meshes) |
|
|
|
mesh = Mesh(v=vertices, f=faces, device=DEVICE) |
|
|
|
return (mesh,) |
|
|
|
class Decimate_Mesh: |
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"mesh": ("MESH",), |
|
"target": ("INT", {"default": 5e4, "min": 0, "max": 0xffffffffffffffff}), |
|
"remesh": ("BOOLEAN", {"default": True},), |
|
"optimalplacement": ("BOOLEAN", {"default": True},), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"MESH", |
|
) |
|
RETURN_NAMES = ( |
|
"mesh", |
|
) |
|
FUNCTION = "process_mesh" |
|
CATEGORY = "Comfy3D/Preprocessor" |
|
|
|
def process_mesh(self, mesh, target, remesh, optimalplacement): |
|
|
|
vertices, faces = decimate_mesh(mesh.v, mesh.f, target, remesh, optimalplacement) |
|
mesh.v = vertices |
|
mesh.f = faces |
|
|
|
return (mesh,) |
|
|
|
class Switch_3DGS_Axis: |
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"gs_ply": ("GS_PLY",), |
|
"axis_x_to": (["+x", "-x", "+y", "-y", "+z", "-z"],), |
|
"axis_y_to": (["+y", "-y", "+z", "-z", "+x", "-x"],), |
|
"axis_z_to": (["+z", "-z", "+x", "-x", "+y", "-y"],), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"GS_PLY", |
|
) |
|
RETURN_NAMES = ( |
|
"switched_gs_ply", |
|
) |
|
FUNCTION = "switch_axis_and_scale" |
|
CATEGORY = "Comfy3D/Preprocessor" |
|
|
|
def switch_axis_and_scale(self, gs_ply, axis_x_to, axis_y_to, axis_z_to): |
|
switched_gs_ply = None |
|
if axis_x_to[1] != axis_y_to[1] and axis_x_to[1] != axis_z_to[1] and axis_y_to[1] != axis_z_to[1]: |
|
target_axis, target_scale, coordinate_invert_count = get_target_axis_and_scale([axis_x_to, axis_y_to, axis_z_to]) |
|
switched_gs_ply = switch_ply_axis_and_scale(gs_ply, target_axis, target_scale, coordinate_invert_count) |
|
else: |
|
cstr(f"[{self.__class__.__name__}] axis_x_to: {axis_x_to}, axis_y_to: {axis_y_to}, axis_z_to: {axis_z_to} have to be on separated axis").error.print() |
|
|
|
return (switched_gs_ply, ) |
|
|
|
class Switch_Mesh_Axis: |
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"mesh": ("MESH",), |
|
"axis_x_to": (["+x", "-x", "+y", "-y", "+z", "-z"],), |
|
"axis_y_to": (["+y", "-y", "+z", "-z", "+x", "-x"],), |
|
"axis_z_to": (["+z", "-z", "+x", "-x", "+y", "-y"],), |
|
"flip_normal": ("BOOLEAN", {"default": False},), |
|
"scale": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 100, "step": 0.01}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"MESH", |
|
) |
|
RETURN_NAMES = ( |
|
"switched_mesh", |
|
) |
|
FUNCTION = "switch_axis_and_scale" |
|
CATEGORY = "Comfy3D/Preprocessor" |
|
|
|
def switch_axis_and_scale(self, mesh, axis_x_to, axis_y_to, axis_z_to, flip_normal, scale): |
|
|
|
switched_mesh = None |
|
|
|
if axis_x_to[1] != axis_y_to[1] and axis_x_to[1] != axis_z_to[1] and axis_y_to[1] != axis_z_to[1]: |
|
target_axis, target_scale, coordinate_invert_count = get_target_axis_and_scale([axis_x_to, axis_y_to, axis_z_to], scale) |
|
switched_mesh = switch_mesh_axis_and_scale(mesh, target_axis, target_scale, flip_normal) |
|
else: |
|
cstr(f"[{self.__class__.__name__}] axis_x_to: {axis_x_to}, axis_y_to: {axis_y_to}, axis_z_to: {axis_z_to} have to be on separated axis").error.print() |
|
|
|
return (switched_mesh, ) |
|
|
|
class Convert_3DGS_To_Pointcloud: |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"gs_ply": ("GS_PLY",), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"POINTCLOUD", |
|
) |
|
RETURN_NAMES = ( |
|
"points_cloud", |
|
) |
|
FUNCTION = "convert_gs_ply" |
|
CATEGORY = "Comfy3D/Preprocessor" |
|
|
|
def convert_gs_ply(self, gs_ply): |
|
|
|
points_cloud = ply_to_points_cloud(gs_ply) |
|
|
|
return (points_cloud, ) |
|
|
|
class Convert_Mesh_To_Pointcloud: |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"mesh": ("MESH",), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"POINTCLOUD", |
|
) |
|
RETURN_NAMES = ( |
|
"points_cloud", |
|
) |
|
FUNCTION = "convert_mesh" |
|
CATEGORY = "Comfy3D/Preprocessor" |
|
|
|
def convert_mesh(self, mesh): |
|
|
|
points_cloud = mesh.convert_to_pointcloud() |
|
|
|
return (points_cloud, ) |
|
|
|
class Stack_Orbit_Camera_Poses: |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"orbit_radius_start": ("FLOAT", {"default": 1.75, "step": 0.0001}), |
|
"orbit_radius_stop": ("FLOAT", {"default": 1.75, "step": 0.0001}), |
|
"orbit_radius_step": ("FLOAT", {"default": 0.1, "step": 0.0001}), |
|
"elevation_start": ("FLOAT", {"default": 0.0, "min": ELEVATION_MIN, "max": ELEVATION_MAX, "step": 0.0001}), |
|
"elevation_stop": ("FLOAT", {"default": 0.0, "min": ELEVATION_MIN, "max": ELEVATION_MAX, "step": 0.0001}), |
|
"elevation_step": ("FLOAT", {"default": 0.0, "min": ELEVATION_MIN, "max": ELEVATION_MAX, "step": 0.0001}), |
|
"azimuth_start": ("FLOAT", {"default": 0.0, "min": AZIMUTH_MIN, "max": AZIMUTH_MAX, "step": 0.0001}), |
|
"azimuth_stop": ("FLOAT", {"default": 0.0, "min": AZIMUTH_MIN, "max": AZIMUTH_MAX, "step": 0.0001}), |
|
"azimuth_step": ("FLOAT", {"default": 0.0, "min": AZIMUTH_MIN, "max": AZIMUTH_MAX, "step": 0.0001}), |
|
"orbit_center_X_start": ("FLOAT", {"default": 0.0, "step": 0.0001}), |
|
"orbit_center_X_stop": ("FLOAT", {"default": 0.0, "step": 0.0001}), |
|
"orbit_center_X_step": ("FLOAT", {"default": 0.1, "step": 0.0001}), |
|
"orbit_center_Y_start": ("FLOAT", {"default": 0.0, "step": 0.0001}), |
|
"orbit_center_Y_stop": ("FLOAT", {"default": 0.0, "step": 0.0001}), |
|
"orbit_center_Y_step": ("FLOAT", {"default": 0.1, "step": 0.0001}), |
|
"orbit_center_Z_start": ("FLOAT", {"default": 0.0, "step": 0.0001}), |
|
"orbit_center_Z_stop": ("FLOAT", {"default": 0.0, "step": 0.0001}), |
|
"orbit_center_Z_step": ("FLOAT", {"default": 0.1, "step": 0.0001}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"ORBIT_CAMPOSES", |
|
"FLOAT", |
|
"FLOAT", |
|
"FLOAT", |
|
"FLOAT", |
|
"FLOAT", |
|
"FLOAT", |
|
) |
|
RETURN_NAMES = ( |
|
"orbit_camposes", |
|
"orbit_radius_list", |
|
"elevation_list", |
|
"azimuth_list", |
|
"orbit_center_X_list", |
|
"orbit_center_Y_list", |
|
"orbit_center_Z_list", |
|
) |
|
OUTPUT_IS_LIST = ( |
|
False, |
|
True, |
|
True, |
|
True, |
|
True, |
|
True, |
|
True, |
|
) |
|
|
|
FUNCTION = "get_camposes" |
|
CATEGORY = "Comfy3D/Preprocessor" |
|
|
|
class Pose_Config(Enum): |
|
STOP_LARGER_STEP_POS = 0 |
|
START_LARGER_STEP_POS = 1 |
|
START_LARGER_STEP_NEG = 2 |
|
STOP_LARGER_STEP_NEG = 3 |
|
|
|
class Pose_Type: |
|
def __init__(self, start, stop, step, min_value=-math.inf, max_value=math.inf, is_linear = True): |
|
if abs(step) < 0.0001: |
|
step = 0.0001 * (-1.0 if step < 0 else 1.0) |
|
|
|
if is_linear and ( (step > 0 and stop < start) or (step < 0 and stop > start)): |
|
cstr(f"[{self.__class__.__name__}] stop value: {stop} cannot be reached from start value {start} with step value {step}, will reverse the sign of step value to {-step}").warning.print() |
|
self.step = -step |
|
else: |
|
self.step = step |
|
|
|
self.start = start |
|
self.stop = stop |
|
|
|
self.min = min_value |
|
self.max = max_value |
|
|
|
self.is_linear = is_linear |
|
|
|
|
|
def stack_camposes(self, pose_type_index=None, last_camposes=[[]]): |
|
if pose_type_index == None: |
|
pose_type_index = len(self.all_pose_types) - 1 |
|
|
|
if pose_type_index == -1: |
|
return last_camposes |
|
else: |
|
current_pose_type = self.all_pose_types[pose_type_index] |
|
|
|
all_camposes = [] |
|
|
|
|
|
if current_pose_type.step > 0: |
|
if current_pose_type.start < current_pose_type.stop or current_pose_type.is_linear: |
|
pose_config = Stack_Orbit_Camera_Poses.Pose_Config.STOP_LARGER_STEP_POS |
|
else: |
|
pose_config = Stack_Orbit_Camera_Poses.Pose_Config.START_LARGER_STEP_POS |
|
else: |
|
if current_pose_type.start > current_pose_type.stop or current_pose_type.is_linear: |
|
pose_config = Stack_Orbit_Camera_Poses.Pose_Config.START_LARGER_STEP_NEG |
|
else: |
|
pose_config = Stack_Orbit_Camera_Poses.Pose_Config.STOP_LARGER_STEP_NEG |
|
|
|
p = current_pose_type.start |
|
p_passed_min_max_seam = False |
|
|
|
while ( (pose_config == Stack_Orbit_Camera_Poses.Pose_Config.STOP_LARGER_STEP_POS and p <= current_pose_type.stop) or |
|
(pose_config == Stack_Orbit_Camera_Poses.Pose_Config.START_LARGER_STEP_POS and (not p_passed_min_max_seam or p <= current_pose_type.stop)) or |
|
(pose_config == Stack_Orbit_Camera_Poses.Pose_Config.START_LARGER_STEP_NEG and p >= current_pose_type.stop) or |
|
(pose_config == Stack_Orbit_Camera_Poses.Pose_Config.STOP_LARGER_STEP_NEG and (not p_passed_min_max_seam or p >= current_pose_type.stop)) ): |
|
|
|
|
|
if pose_config == Stack_Orbit_Camera_Poses.Pose_Config.START_LARGER_STEP_POS and p > current_pose_type.max: |
|
p = current_pose_type.min + p % current_pose_type.max |
|
p_passed_min_max_seam = True |
|
elif pose_config == Stack_Orbit_Camera_Poses.Pose_Config.STOP_LARGER_STEP_NEG and p < current_pose_type.min: |
|
p = current_pose_type.max + p % current_pose_type.min |
|
p_passed_min_max_seam = True |
|
|
|
new_camposes = copy.deepcopy(last_camposes) |
|
|
|
for campose in new_camposes: |
|
campose.insert(0, p) |
|
|
|
all_camposes.extend(new_camposes) |
|
|
|
p += current_pose_type.step |
|
|
|
return self.stack_camposes(pose_type_index-1, all_camposes) |
|
|
|
def get_camposes(self, |
|
orbit_radius_start, |
|
orbit_radius_stop, |
|
orbit_radius_step, |
|
elevation_start, |
|
elevation_stop, |
|
elevation_step, |
|
azimuth_start, |
|
azimuth_stop, |
|
azimuth_step, |
|
orbit_center_X_start, |
|
orbit_center_X_stop, |
|
orbit_center_X_step, |
|
orbit_center_Y_start, |
|
orbit_center_Y_stop, |
|
orbit_center_Y_step, |
|
orbit_center_Z_start, |
|
orbit_center_Z_stop, |
|
orbit_center_Z_step): |
|
|
|
""" |
|
Return the combination of all the pose types interpolation values |
|
Return values in two ways: |
|
orbit_camposes: CAMPOSES type list can directly input to other 3D process node (e.g. GaussianSplatting) |
|
all the camera pose types seperated in different list, becasue some 3D model's conditioner only takes a sub set of all camera pose types (e.g. StableZero123) |
|
""" |
|
|
|
orbit_radius_list = [] |
|
elevation_list = [] |
|
azimuth_list = [] |
|
orbit_center_X_list = [] |
|
orbit_center_Y_list = [] |
|
orbit_center_Z_list = [] |
|
|
|
self.all_pose_types = [] |
|
self.all_pose_types.append( Stack_Orbit_Camera_Poses.Pose_Type(orbit_radius_start, orbit_radius_stop, orbit_radius_step) ) |
|
self.all_pose_types.append( Stack_Orbit_Camera_Poses.Pose_Type(elevation_start, elevation_stop, elevation_step, ELEVATION_MIN, ELEVATION_MAX) ) |
|
self.all_pose_types.append( Stack_Orbit_Camera_Poses.Pose_Type(azimuth_start, azimuth_stop, azimuth_step, AZIMUTH_MIN, AZIMUTH_MAX, False) ) |
|
self.all_pose_types.append( Stack_Orbit_Camera_Poses.Pose_Type(orbit_center_X_start, orbit_center_X_stop, orbit_center_X_step) ) |
|
self.all_pose_types.append( Stack_Orbit_Camera_Poses.Pose_Type(orbit_center_Y_start, orbit_center_Y_stop, orbit_center_Y_step) ) |
|
self.all_pose_types.append( Stack_Orbit_Camera_Poses.Pose_Type(orbit_center_Z_start, orbit_center_Z_stop, orbit_center_Z_step) ) |
|
|
|
orbit_camposes = self.stack_camposes() |
|
|
|
for campose in orbit_camposes: |
|
orbit_radius_list.append(campose[0]) |
|
elevation_list.append(campose[1]) |
|
azimuth_list.append(campose[2]) |
|
orbit_center_X_list.append(campose[3]) |
|
orbit_center_Y_list.append(campose[4]) |
|
orbit_center_Z_list.append(campose[5]) |
|
|
|
return (orbit_camposes, orbit_radius_list, elevation_list, azimuth_list, orbit_center_X_list, orbit_center_Y_list, orbit_center_Z_list, ) |
|
|
|
class Get_Camposes_From_List_Indexed: |
|
|
|
RETURN_TYPES = ("ORBIT_CAMPOSES",) |
|
FUNCTION = "get_indexed_camposes" |
|
CATEGORY = "Comfy3D/Preprocessor" |
|
DESCRIPTION = """ |
|
Selects and returns the camera poses at the specified indices as an list. |
|
""" |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"original_orbit_camera_poses": ("ORBIT_CAMPOSES",), |
|
"indexes": ("STRING", {"default": "0, 1, 2", "multiline": True}), |
|
}, |
|
} |
|
|
|
def get_indexed_camposes(self, original_orbit_camera_poses, indexes): |
|
|
|
|
|
index_list = [int(index.strip()) for index in indexes.split(',')] |
|
|
|
|
|
orbit_camera_poses = [] |
|
for pose_list in original_orbit_camera_poses: |
|
new_pose_list = [pose_list[i] for i in index_list] |
|
orbit_camera_poses.append(new_pose_list) |
|
|
|
return (orbit_camera_poses,) |
|
|
|
class Mesh_Orbit_Renderer: |
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"mesh": ("MESH",), |
|
"render_image_width": ("INT", {"default": 1024, "min": 128, "max": 8192}), |
|
"render_image_height": ("INT", {"default": 1024, "min": 128, "max": 8192}), |
|
"render_orbit_camera_poses": ("ORBIT_CAMPOSES",), |
|
"render_orbit_camera_fovy": ("FLOAT", {"default": 49.1, "min": 0.0, "max": 180.0, "step": 0.1}), |
|
"render_background_color_r": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), |
|
"render_background_color_g": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), |
|
"render_background_color_b": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), |
|
"force_cuda_rasterize": ("BOOLEAN", {"default": False},), |
|
}, |
|
|
|
"optional": { |
|
"render_depth": ("BOOLEAN", {"default": False},), |
|
"render_normal": ("BOOLEAN", {"default": False},), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"IMAGE", |
|
"MASK", |
|
"IMAGE", |
|
"IMAGE", |
|
"IMAGE", |
|
) |
|
RETURN_NAMES = ( |
|
"rendered_mesh_images", |
|
"rendered_mesh_masks", |
|
"all_rendered_depths", |
|
"all_rendered_normals", |
|
"all_rendered_viewcos", |
|
) |
|
|
|
FUNCTION = "render_mesh" |
|
CATEGORY = "Comfy3D/Preprocessor" |
|
|
|
def render_mesh( |
|
self, |
|
mesh, |
|
render_image_width, |
|
render_image_height, |
|
render_orbit_camera_poses, |
|
render_orbit_camera_fovy, |
|
render_background_color_r, |
|
render_background_color_g, |
|
render_background_color_b, |
|
force_cuda_rasterize, |
|
render_depth=False, |
|
render_normal=False, |
|
): |
|
|
|
renderer = DiffRastRenderer(mesh, force_cuda_rasterize) |
|
|
|
optional_render_types = [] |
|
if render_depth: |
|
optional_render_types.append('depth') |
|
if render_normal: |
|
optional_render_types.append('normal') |
|
|
|
cam_controller = DiffMeshCameraController( |
|
renderer, |
|
render_image_width, |
|
render_image_height, |
|
render_orbit_camera_fovy, |
|
static_bg=[render_background_color_r, render_background_color_g, render_background_color_b] |
|
) |
|
|
|
extra_kwargs = {"optional_render_types": optional_render_types} |
|
all_rendered_images, all_rendered_masks, extra_outputs = cam_controller.render_all_pose(render_orbit_camera_poses, **extra_kwargs) |
|
all_rendered_masks = all_rendered_masks.squeeze(-1) |
|
if 'depth' in extra_outputs: |
|
all_rendered_depths = extra_outputs['depth'].repeat(1, 1, 1, 3) |
|
else: |
|
all_rendered_depths = None |
|
|
|
if 'normal' in extra_outputs: |
|
all_rendered_normals = extra_outputs['normal'] |
|
all_rendered_viewcos = extra_outputs['viewcos'] |
|
else: |
|
all_rendered_normals = None |
|
all_rendered_viewcos = None |
|
|
|
return (all_rendered_images, all_rendered_masks, all_rendered_depths, all_rendered_normals, all_rendered_viewcos) |
|
|
|
|
|
class Gaussian_Splatting_Orbit_Renderer: |
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"gs_ply": ("GS_PLY",), |
|
"render_image_width": ("INT", {"default": 1024, "min": 128, "max": 8192}), |
|
"render_image_height": ("INT", {"default": 1024, "min": 128, "max": 8192}), |
|
"render_orbit_camera_poses": ("ORBIT_CAMPOSES",), |
|
"render_orbit_camera_fovy": ("FLOAT", {"default": 49.1, "min": 0.0, "max": 180.0, "step": 0.1}), |
|
"render_background_color_r": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), |
|
"render_background_color_g": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), |
|
"render_background_color_b": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"IMAGE", |
|
"MASK", |
|
"IMAGE", |
|
) |
|
RETURN_NAMES = ( |
|
"rendered_gs_images", |
|
"rendered_gs_masks", |
|
"rendered_gs_depths", |
|
) |
|
|
|
FUNCTION = "render_gs" |
|
CATEGORY = "Comfy3D/Preprocessor" |
|
|
|
def render_gs( |
|
self, |
|
gs_ply, |
|
render_image_width, |
|
render_image_height, |
|
render_orbit_camera_poses, |
|
render_orbit_camera_fovy, |
|
render_background_color_r, |
|
render_background_color_g, |
|
render_background_color_b, |
|
): |
|
|
|
sh_degree, _ = calculate_max_sh_degree_from_gs_ply(gs_ply) |
|
renderer = GaussianSplattingRenderer(sh_degree=sh_degree) |
|
renderer.initialize(gs_ply) |
|
|
|
cam_controller = GaussianSplattingCameraController( |
|
renderer, |
|
render_image_width, |
|
render_image_height, |
|
render_orbit_camera_fovy, |
|
static_bg=[render_background_color_r, render_background_color_g, render_background_color_b] |
|
) |
|
|
|
all_rendered_images, all_rendered_masks, extra_outputs = cam_controller.render_all_pose(render_orbit_camera_poses) |
|
all_rendered_images = all_rendered_images.permute(0, 2, 3, 1) |
|
all_rendered_masks = all_rendered_masks.squeeze(1) |
|
|
|
if 'depth' in extra_outputs: |
|
all_rendered_depths = extra_outputs['depth'].permute(0, 2, 3, 1).repeat(1, 1, 1, 3) |
|
else: |
|
all_rendered_depths = None |
|
|
|
return (all_rendered_images, all_rendered_masks, all_rendered_depths) |
|
|
|
class Gaussian_Splatting_3D: |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"reference_images": ("IMAGE",), |
|
"reference_masks": ("MASK",), |
|
"reference_orbit_camera_poses": ("ORBIT_CAMPOSES",), |
|
"reference_orbit_camera_fovy": ("FLOAT", {"default": 49.1, "min": 0.0, "max": 180.0, "step": 0.1}), |
|
"training_iterations": ("INT", {"default": 30_000, "min": 1, "max": 0xffffffffffffffff}), |
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 0xffffffffffffffff}), |
|
"ms_ssim_loss_weight": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, }), |
|
"alpha_loss_weight": ("FLOAT", {"default": 3, "min": 0.0, }), |
|
"offset_loss_weight": ("FLOAT", {"default": 0.0, "min": 0.0, }), |
|
"offset_opacity_loss_weight": ("FLOAT", {"default": 0.0, "min": 0.0, }), |
|
"invert_background_probability": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.1}), |
|
"feature_learning_rate": ("FLOAT", {"default": 0.0025, "min": 0.000001, "step": 0.000001}), |
|
"opacity_learning_rate": ("FLOAT", {"default": 0.05, "min": 0.000001, "step": 0.000001}), |
|
"scaling_learning_rate": ("FLOAT", {"default": 0.005, "min": 0.000001, "step": 0.000001}), |
|
"rotation_learning_rate": ("FLOAT", {"default": 0.001, "min": 0.000001, "step": 0.000001}), |
|
"position_learning_rate_init": ("FLOAT", {"default": 0.00016, "min": 0.000001, "step": 0.000001}), |
|
"position_learning_rate_final": ("FLOAT", {"default": 0.0000016, "min": 0.0000001, "step": 0.0000001}), |
|
"position_learning_rate_delay_mult": ("FLOAT", {"default": 0.01, "min": 0.000001, "step": 0.000001}), |
|
"position_learning_rate_max_steps": ("INT", {"default": 30_000, "min": 1, "max": 0xffffffffffffffff}), |
|
"initial_gaussians_num": ("INT", {"default": 10_000, "min": 1, "max": 0xffffffffffffffff}), |
|
"K_nearest_neighbors": ("INT", {"default": 3, "min": 1, "max": 0xffffffffffffffff}), |
|
"percent_dense": ("FLOAT", {"default": 0.01, "min": 0.00001, "step": 0.00001}), |
|
"density_start_iterations": ("INT", {"default": 500, "min": 0, "max": 0xffffffffffffffff}), |
|
"density_end_iterations": ("INT", {"default": 15_000, "min": 0, "max": 0xffffffffffffffff}), |
|
"densification_interval": ("INT", {"default": 100, "min": 1, "max": 0xffffffffffffffff}), |
|
"opacity_reset_interval": ("INT", {"default": 3000, "min": 1, "max": 0xffffffffffffffff}), |
|
"densify_grad_threshold": ("FLOAT", {"default": 0.0002, "min": 0.00001, "step": 0.00001}), |
|
"gaussian_sh_degree": ("INT", {"default": 3, "min": 0}), |
|
}, |
|
|
|
"optional": { |
|
"points_cloud_to_initialize_gaussian": ("POINTCLOUD",), |
|
"ply_to_initialize_gaussian": ("GS_PLY",), |
|
"mesh_to_initialize_gaussian": ("MESH",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"GS_PLY", |
|
) |
|
RETURN_NAMES = ( |
|
"gs_ply", |
|
) |
|
FUNCTION = "run_gs" |
|
CATEGORY = "Comfy3D/Algorithm" |
|
|
|
def run_gs( |
|
self, |
|
reference_images, |
|
reference_masks, |
|
reference_orbit_camera_poses, |
|
reference_orbit_camera_fovy, |
|
training_iterations, |
|
batch_size, |
|
ms_ssim_loss_weight, |
|
alpha_loss_weight, |
|
offset_loss_weight, |
|
offset_opacity_loss_weight, |
|
invert_background_probability, |
|
feature_learning_rate, |
|
opacity_learning_rate, |
|
scaling_learning_rate, |
|
rotation_learning_rate, |
|
position_learning_rate_init, |
|
position_learning_rate_final, |
|
position_learning_rate_delay_mult, |
|
position_learning_rate_max_steps, |
|
initial_gaussians_num, |
|
K_nearest_neighbors, |
|
percent_dense, |
|
density_start_iterations, |
|
density_end_iterations, |
|
densification_interval, |
|
opacity_reset_interval, |
|
densify_grad_threshold, |
|
gaussian_sh_degree, |
|
points_cloud_to_initialize_gaussian=None, |
|
ply_to_initialize_gaussian=None, |
|
mesh_to_initialize_gaussian=None, |
|
): |
|
|
|
gs_ply = None |
|
|
|
ref_imgs_num = len(reference_images) |
|
ref_masks_num = len(reference_masks) |
|
if ref_imgs_num == ref_masks_num: |
|
|
|
ref_cam_poses_num = len(reference_orbit_camera_poses) |
|
if ref_imgs_num == ref_cam_poses_num: |
|
|
|
if batch_size > ref_imgs_num: |
|
cstr(f"[{self.__class__.__name__}] Batch size {batch_size} is bigger than number of reference images {ref_imgs_num}! Set batch size to {ref_imgs_num} instead").warning.print() |
|
batch_size = ref_imgs_num |
|
|
|
with torch.inference_mode(False): |
|
|
|
gs_params = GSParams( |
|
training_iterations, |
|
batch_size, |
|
ms_ssim_loss_weight, |
|
alpha_loss_weight, |
|
offset_loss_weight, |
|
offset_opacity_loss_weight, |
|
invert_background_probability, |
|
feature_learning_rate, |
|
opacity_learning_rate, |
|
scaling_learning_rate, |
|
rotation_learning_rate, |
|
position_learning_rate_init, |
|
position_learning_rate_final, |
|
position_learning_rate_delay_mult, |
|
position_learning_rate_max_steps, |
|
initial_gaussians_num, |
|
K_nearest_neighbors, |
|
percent_dense, |
|
density_start_iterations, |
|
density_end_iterations, |
|
densification_interval, |
|
opacity_reset_interval, |
|
densify_grad_threshold, |
|
gaussian_sh_degree |
|
) |
|
|
|
|
|
if points_cloud_to_initialize_gaussian is not None: |
|
gs_init_input = points_cloud_to_initialize_gaussian |
|
elif ply_to_initialize_gaussian is not None: |
|
gs_init_input = ply_to_initialize_gaussian |
|
else: |
|
gs_init_input = mesh_to_initialize_gaussian |
|
|
|
gs = GaussianSplatting3D(gs_params, gs_init_input) |
|
gs.prepare_training(reference_images, reference_masks, reference_orbit_camera_poses, reference_orbit_camera_fovy) |
|
gs.training() |
|
|
|
gs_ply = gs.renderer.gaussians.to_ply() |
|
|
|
else: |
|
cstr(f"[{self.__class__.__name__}] Number of reference images {ref_imgs_num} does not equal to number of reference camera poses {ref_cam_poses_num}").error.print() |
|
else: |
|
cstr(f"[{self.__class__.__name__}] Number of reference images {ref_imgs_num} does not equal to number of masks {ref_masks_num}").error.print() |
|
|
|
return (gs_ply, ) |
|
|
|
class Fitting_Mesh_With_Multiview_Images: |
|
|
|
def __init__(self): |
|
self.need_update = False |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"reference_images": ("IMAGE",), |
|
"reference_masks": ("MASK",), |
|
"reference_orbit_camera_poses": ("ORBIT_CAMPOSES",), |
|
"reference_orbit_camera_fovy": ("FLOAT", {"default": 49.1, "min": 0.0, "max": 180.0, "step": 0.1}), |
|
"mesh": ("MESH",), |
|
"mesh_albedo_width": ("INT", {"default": 1024, "min": 128, "max": 8192}), |
|
"mesh_albedo_height": ("INT", {"default": 1024, "min": 128, "max": 8192}), |
|
"training_iterations": ("INT", {"default": 1024, "min": 1, "max": 100000}), |
|
"batch_size": ("INT", {"default": 3, "min": 1, "max": 0xffffffffffffffff}), |
|
"texture_learning_rate": ("FLOAT", {"default": 0.001, "min": 0.00001, "step": 0.00001}), |
|
"train_mesh_geometry": ("BOOLEAN", {"default": False},), |
|
"geometry_learning_rate": ("FLOAT", {"default": 0.0001, "min": 0.00001, "step": 0.00001}), |
|
"ms_ssim_loss_weight": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}), |
|
"remesh_after_n_iteration": ("INT", {"default": 512, "min": 128, "max": 100000}), |
|
"invert_background_probability": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.1}), |
|
"force_cuda_rasterize": ("BOOLEAN", {"default": False},), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"MESH", |
|
"IMAGE", |
|
) |
|
RETURN_NAMES = ( |
|
"trained_mesh", |
|
"baked_texture", |
|
) |
|
FUNCTION = "fitting_mesh" |
|
CATEGORY = "Comfy3D/Algorithm" |
|
|
|
def fitting_mesh( |
|
self, |
|
reference_images, |
|
reference_masks, |
|
reference_orbit_camera_poses, |
|
reference_orbit_camera_fovy, |
|
mesh, |
|
mesh_albedo_width, |
|
mesh_albedo_height, |
|
training_iterations, |
|
batch_size, |
|
texture_learning_rate, |
|
train_mesh_geometry, |
|
geometry_learning_rate, |
|
ms_ssim_loss_weight, |
|
remesh_after_n_iteration, |
|
invert_background_probability, |
|
force_cuda_rasterize, |
|
): |
|
|
|
if mesh.vt is None: |
|
mesh.auto_uv() |
|
|
|
mesh.set_new_albedo(mesh_albedo_width, mesh_albedo_height) |
|
|
|
trained_mesh = None |
|
baked_texture = None |
|
|
|
ref_imgs_num = len(reference_images) |
|
ref_masks_num = len(reference_masks) |
|
if ref_imgs_num == ref_masks_num: |
|
|
|
ref_cam_poses_num = len(reference_orbit_camera_poses) |
|
if ref_imgs_num == ref_cam_poses_num: |
|
|
|
if batch_size > ref_imgs_num: |
|
cstr(f"[{self.__class__.__name__}] Batch size {batch_size} is bigger than number of reference images {ref_imgs_num}! Set batch size to {ref_imgs_num} instead").warning.print() |
|
batch_size = ref_imgs_num |
|
|
|
with torch.inference_mode(False): |
|
|
|
mesh_fitter = DiffMesh( |
|
mesh, |
|
training_iterations, |
|
batch_size, |
|
texture_learning_rate, |
|
train_mesh_geometry, |
|
geometry_learning_rate, |
|
ms_ssim_loss_weight, |
|
remesh_after_n_iteration, |
|
invert_background_probability, |
|
force_cuda_rasterize |
|
) |
|
|
|
mesh_fitter.prepare_training(reference_images, reference_masks, reference_orbit_camera_poses, reference_orbit_camera_fovy) |
|
mesh_fitter.training() |
|
|
|
trained_mesh, baked_texture = mesh_fitter.get_mesh_and_texture() |
|
|
|
else: |
|
cstr(f"[{self.__class__.__name__}] Number of reference images {ref_imgs_num} does not equal to number of reference camera poses {ref_cam_poses_num}").error.print() |
|
else: |
|
cstr(f"[{self.__class__.__name__}] Number of reference images {ref_imgs_num} does not equal to number of masks {ref_masks_num}").error.print() |
|
|
|
return (trained_mesh, baked_texture, ) |
|
|
|
class Load_Triplane_Gaussian_Transformers: |
|
|
|
checkpoints_dir = "TriplaneGaussian" |
|
default_ckpt_name = "model_lvis_rel.ckpt" |
|
default_repo_id = "VAST-AI/TriplaneGaussian" |
|
config_path = "TriplaneGaussian_config.yaml" |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
cls.checkpoints_dir_abs = os.path.join(CKPT_ROOT_PATH, cls.checkpoints_dir) |
|
cls.config_path_abs = os.path.join(CONFIG_ROOT_PATH, cls.config_path) |
|
all_models_names = get_list_filenames(cls.checkpoints_dir_abs, SUPPORTED_CHECKPOINTS_EXTENSIONS) |
|
if cls.default_ckpt_name not in all_models_names: |
|
all_models_names += [cls.default_ckpt_name] |
|
|
|
return { |
|
"required": { |
|
"model_name": (all_models_names, ), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"TGS_MODEL", |
|
) |
|
RETURN_NAMES = ( |
|
"tgs_model", |
|
) |
|
FUNCTION = "load_TGS" |
|
CATEGORY = "Comfy3D/Import|Export" |
|
|
|
def load_TGS(self, model_name): |
|
|
|
device = get_device() |
|
|
|
cfg: ExperimentConfigTGS = load_config_tgs(self.config_path_abs) |
|
|
|
ckpt_path = resume_or_download_model_from_hf(self.checkpoints_dir_abs, self.default_repo_id, model_name, self.__class__.__name__) |
|
|
|
cfg.system.weights=ckpt_path |
|
tgs_model = TGS(cfg=cfg.system).to(device) |
|
|
|
cstr(f"[{self.__class__.__name__}] loaded model ckpt from {ckpt_path}").msg.print() |
|
|
|
return (tgs_model, ) |
|
|
|
class Triplane_Gaussian_Transformers: |
|
|
|
config_path = "TriplaneGaussian_config.yaml" |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
cls.config_path_abs = os.path.join(CONFIG_ROOT_PATH, cls.config_path) |
|
return { |
|
"required": { |
|
"reference_image": ("IMAGE", ), |
|
"reference_mask": ("MASK",), |
|
"tgs_model": ("TGS_MODEL", ), |
|
"cam_dist": ("FLOAT", {"default": 1.9, "min": 0.01, "step": 0.01}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"GS_PLY", |
|
) |
|
RETURN_NAMES = ( |
|
"gs_ply", |
|
) |
|
FUNCTION = "run_TGS" |
|
CATEGORY = "Comfy3D/Algorithm" |
|
|
|
def run_TGS(self, reference_image, reference_mask, tgs_model, cam_dist): |
|
cfg: ExperimentConfigTGS = load_config_tgs(self.config_path_abs) |
|
|
|
cfg.data.cond_camera_distance = cam_dist |
|
cfg.data.eval_camera_distance = cam_dist |
|
dataset = CustomImageOrbitDataset(reference_image, reference_mask, cfg.data) |
|
dataloader = DataLoader( |
|
dataset, |
|
batch_size=cfg.data.eval_batch_size, |
|
shuffle=False, |
|
collate_fn=dataset.collate |
|
) |
|
|
|
gs_ply = [] |
|
for batch in dataloader: |
|
batch = todevice(batch) |
|
gs_ply.extend(tgs_model(batch)) |
|
|
|
return (gs_ply[0], ) |
|
|
|
class Load_Diffusers_Pipeline: |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"diffusers_pipeline_name": (list(DIFFUSERS_PIPE_DICT.keys()),), |
|
"repo_id": ("STRING", {"default": "ashawkey/imagedream-ipmv-diffusers", "multiline": False}), |
|
"custom_pipeline": ("STRING", {"default": "", "multiline": False}), |
|
"force_download": ("BOOLEAN", {"default": False}), |
|
}, |
|
"optional": { |
|
"checkpoint_sub_dir": ("STRING", {"default": "", "multiline": False}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"DIFFUSERS_PIPE", |
|
) |
|
RETURN_NAMES = ( |
|
"pipe", |
|
) |
|
FUNCTION = "load_diffusers_pipe" |
|
CATEGORY = "Comfy3D/Import|Export" |
|
|
|
def load_diffusers_pipe(self, diffusers_pipeline_name, repo_id, custom_pipeline, force_download, checkpoint_sub_dir=""): |
|
|
|
|
|
ckpt_download_dir = os.path.join(CKPT_DIFFUSERS_PATH, repo_id) |
|
snapshot_download(repo_id=repo_id, local_dir=ckpt_download_dir, force_download=force_download, repo_type="model", ignore_patterns=HF_DOWNLOAD_IGNORE) |
|
|
|
diffusers_pipeline_class = DIFFUSERS_PIPE_DICT[diffusers_pipeline_name] |
|
|
|
|
|
if not custom_pipeline: |
|
custom_pipeline = None |
|
|
|
ckpt_path = ckpt_download_dir if not checkpoint_sub_dir else os.path.join(ckpt_download_dir, checkpoint_sub_dir) |
|
pipe = diffusers_pipeline_class.from_pretrained( |
|
ckpt_path, |
|
torch_dtype=WEIGHT_DTYPE, |
|
custom_pipeline=custom_pipeline, |
|
).to(DEVICE) |
|
|
|
if hasattr(pipe, 'enable_xformers_memory_efficient_attention'): |
|
pipe.enable_xformers_memory_efficient_attention() |
|
|
|
return (pipe, ) |
|
|
|
class Set_Diffusers_Pipeline_Scheduler: |
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"pipe": ("DIFFUSERS_PIPE",), |
|
"diffusers_scheduler_name": (list(DIFFUSERS_SCHEDULER_DICT.keys()),), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"DIFFUSERS_PIPE", |
|
) |
|
RETURN_NAMES = ( |
|
"pipe", |
|
) |
|
FUNCTION = "set_pipe_scheduler" |
|
CATEGORY = "Comfy3D/Import|Export" |
|
|
|
def set_pipe_scheduler(self, pipe, diffusers_scheduler_name): |
|
|
|
diffusers_scheduler_class = DIFFUSERS_SCHEDULER_DICT[diffusers_scheduler_name] |
|
|
|
pipe.scheduler = diffusers_scheduler_class.from_config( |
|
pipe.scheduler.config, timestep_spacing='trailing' |
|
) |
|
return (pipe, ) |
|
|
|
class Set_Diffusers_Pipeline_State_Dict: |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"pipe": ("DIFFUSERS_PIPE",), |
|
"repo_id": ("STRING", {"default": "TencentARC/InstantMesh", "multiline": False}), |
|
"model_name": ("STRING", {"default": "diffusion_pytorch_model.bin", "multiline": False}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"DIFFUSERS_PIPE", |
|
) |
|
RETURN_NAMES = ( |
|
"pipe", |
|
) |
|
FUNCTION = "set_pipe_state_dict" |
|
CATEGORY = "Comfy3D/Import|Export" |
|
|
|
def set_pipe_state_dict(self, pipe, repo_id, model_name): |
|
|
|
checkpoints_dir_abs = os.path.join(CKPT_DIFFUSERS_PATH, repo_id) |
|
ckpt_path = resume_or_download_model_from_hf(checkpoints_dir_abs, repo_id, model_name, self.__class__.__name__) |
|
|
|
state_dict = torch.load(ckpt_path, map_location='cpu') |
|
pipe.unet.load_state_dict(state_dict, strict=True) |
|
pipe.enable_xformers_memory_efficient_attention() |
|
pipe = pipe.to(DEVICE) |
|
|
|
return (pipe, ) |
|
|
|
class Wonder3D_MVDiffusion_Model: |
|
|
|
config_path = "Wonder3D_config.yaml" |
|
fix_cam_pose_dir = "Wonder3D/data/fixed_poses/nine_views" |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
cls.config_path_abs = os.path.join(CONFIG_ROOT_PATH, cls.config_path) |
|
cls.fix_cam_pose_dir_abs = os.path.join(MODULE_ROOT_PATH, cls.fix_cam_pose_dir) |
|
return { |
|
"required": { |
|
"mvdiffusion_pipe": ("DIFFUSERS_PIPE",), |
|
"reference_image": ("IMAGE",), |
|
"reference_mask": ("MASK",), |
|
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), |
|
"mv_guidance_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "step": 0.01}), |
|
"num_inference_steps": ("INT", {"default": 50, "min": 1}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"IMAGE", |
|
"IMAGE", |
|
"ORBIT_CAMPOSES", |
|
) |
|
RETURN_NAMES = ( |
|
"multiview_images", |
|
"multiview_normals", |
|
"orbit_camposes", |
|
) |
|
FUNCTION = "run_mvdiffusion" |
|
CATEGORY = "Comfy3D/Algorithm" |
|
|
|
@torch.no_grad() |
|
def run_mvdiffusion( |
|
self, |
|
mvdiffusion_pipe, |
|
reference_image, |
|
reference_mask, |
|
seed, |
|
mv_guidance_scale, |
|
num_inference_steps, |
|
): |
|
|
|
cfg = load_config_wonder3d(self.config_path_abs) |
|
|
|
batch = self.prepare_data(reference_image, reference_mask) |
|
|
|
mvdiffusion_pipe.set_progress_bar_config(disable=True) |
|
seed = int(seed) |
|
generator = torch.Generator(device=mvdiffusion_pipe.unet.device).manual_seed(seed) |
|
|
|
|
|
imgs_in = torch.cat([batch['imgs_in']] * 2, dim=0).to(WEIGHT_DTYPE) |
|
|
|
|
|
camera_embeddings = torch.cat([batch['camera_embeddings']] * 2, dim=0).to(WEIGHT_DTYPE) |
|
|
|
task_embeddings = torch.cat([batch['normal_task_embeddings'], batch['color_task_embeddings']], dim=0).to(WEIGHT_DTYPE) |
|
|
|
camera_embeddings = torch.cat([camera_embeddings, task_embeddings], dim=-1).to(WEIGHT_DTYPE) |
|
|
|
|
|
imgs_in = rearrange(imgs_in, "Nv C H W -> (Nv) C H W") |
|
|
|
|
|
|
|
out = mvdiffusion_pipe( |
|
imgs_in, |
|
|
|
generator=generator, |
|
guidance_scale=mv_guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
output_type='pt', |
|
num_images_per_prompt=1, |
|
**cfg.pipe_validation_kwargs, |
|
).images |
|
|
|
num_views = out.shape[0] // 2 |
|
|
|
mv_images = out[num_views:].permute(0, 2, 3, 1) |
|
mv_normals = out[:num_views].permute(0, 2, 3, 1) |
|
|
|
orbit_radius = [4.0] * 6 |
|
orbit_center = [0.0] * 6 |
|
orbit_elevations, orbit_azimuths = ORBITPOSE_PRESET_DICT["Wonder3D(6)"] |
|
orbit_camposes = compose_orbit_camposes(orbit_radius, orbit_elevations, orbit_azimuths, orbit_center, orbit_center, orbit_center) |
|
|
|
return (mv_images, mv_normals, orbit_camposes) |
|
|
|
def prepare_data(self, ref_image, ref_mask): |
|
single_image = torch_imgs_to_pils(ref_image, ref_mask)[0] |
|
dataset = MVSingleImageDataset(fix_cam_pose_dir=self.fix_cam_pose_dir_abs, num_views=6, img_wh=[256, 256], bg_color='white', single_image=single_image) |
|
return dataset[0] |
|
|
|
class MVDream_Model: |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"mvdream_pipe": ("DIFFUSERS_PIPE",), |
|
"reference_image": ("IMAGE",), |
|
"reference_mask": ("MASK",), |
|
"prompt": ("STRING", { |
|
"default": "", |
|
"multiline": True |
|
}), |
|
"prompt_neg": ("STRING", { |
|
"default": "ugly, blurry, pixelated obscure, unnatural colors, poor lighting, dull, unclear, cropped, lowres, low quality, artifacts, duplicate", |
|
"multiline": True |
|
}), |
|
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), |
|
"mv_guidance_scale": ("FLOAT", {"default": 5.0, "min": 0.0, "step": 0.01}), |
|
"num_inference_steps": ("INT", {"default": 30, "min": 1}), |
|
"elevation": ("FLOAT", {"default": 0.0, "min": ELEVATION_MIN, "max": ELEVATION_MAX, "step": 0.0001}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"IMAGE", |
|
"ORBIT_CAMPOSES", |
|
) |
|
RETURN_NAMES = ( |
|
"multiview_images", |
|
"orbit_camposes", |
|
) |
|
FUNCTION = "run_mvdream" |
|
CATEGORY = "Comfy3D/Algorithm" |
|
|
|
def run_mvdream( |
|
self, |
|
mvdream_pipe, |
|
reference_image, |
|
reference_mask, |
|
prompt, |
|
prompt_neg, |
|
seed, |
|
mv_guidance_scale, |
|
num_inference_steps, |
|
elevation, |
|
): |
|
if len(reference_image.shape) == 4: |
|
reference_image = reference_image.squeeze(0) |
|
if len(reference_mask.shape) == 3: |
|
reference_mask = reference_mask.squeeze(0) |
|
|
|
generator = torch.manual_seed(seed) |
|
|
|
reference_mask = reference_mask.unsqueeze(2) |
|
|
|
reference_image = (reference_image * reference_mask + (1 - reference_mask)).detach().cpu().numpy() |
|
|
|
|
|
mv_images = mvdream_pipe(prompt, reference_image, generator=generator, negative_prompt=prompt_neg, guidance_scale=mv_guidance_scale, num_inference_steps=num_inference_steps, elevation=elevation) |
|
mv_images = torch.from_numpy(np.stack([mv_images[1], mv_images[2], mv_images[3], mv_images[0]], axis=0)).float() |
|
|
|
orbit_radius = [4.0] * 4 |
|
orbit_center = [0.0] * 4 |
|
orbit_elevations, orbit_azimuths = ORBITPOSE_PRESET_DICT["MVDream(4)"] |
|
orbit_camposes = compose_orbit_camposes(orbit_radius, orbit_elevations, orbit_azimuths, orbit_center, orbit_center, orbit_center) |
|
|
|
return (mv_images, orbit_camposes) |
|
|
|
class Load_Large_Multiview_Gaussian_Model: |
|
|
|
checkpoints_dir = "LGM" |
|
default_ckpt_name = "model_fp16.safetensors" |
|
default_repo_id = "ashawkey/LGM" |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
cls.checkpoints_dir_abs = os.path.join(CKPT_ROOT_PATH, cls.checkpoints_dir) |
|
all_models_names = get_list_filenames(cls.checkpoints_dir_abs, SUPPORTED_CHECKPOINTS_EXTENSIONS) |
|
if cls.default_ckpt_name not in all_models_names: |
|
all_models_names += [cls.default_ckpt_name] |
|
|
|
return { |
|
"required": { |
|
"model_name": (all_models_names, ), |
|
"lgb_config": (['big', 'default', 'small', 'tiny'], ) |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"LGM_MODEL", |
|
) |
|
RETURN_NAMES = ( |
|
"lgm_model", |
|
) |
|
FUNCTION = "load_LGM" |
|
CATEGORY = "Comfy3D/Import|Export" |
|
|
|
def load_LGM(self, model_name, lgb_config): |
|
|
|
lgm_model = LargeMultiviewGaussianModel(config_defaults[lgb_config]) |
|
|
|
ckpt_path = resume_or_download_model_from_hf(self.checkpoints_dir_abs, self.default_repo_id, model_name, self.__class__.__name__) |
|
|
|
if ckpt_path.endswith('safetensors'): |
|
ckpt = load_file(ckpt_path, device='cpu') |
|
else: |
|
ckpt = torch.load(ckpt_path, map_location='cpu') |
|
|
|
lgm_model.load_state_dict(ckpt, strict=False) |
|
|
|
lgm_model = lgm_model.half().to(DEVICE) |
|
lgm_model.eval() |
|
|
|
cstr(f"[{self.__class__.__name__}] loaded model ckpt from {ckpt_path}").msg.print() |
|
|
|
return (lgm_model, ) |
|
|
|
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406) |
|
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225) |
|
|
|
class Large_Multiview_Gaussian_Model: |
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"multiview_images": ("IMAGE", ), |
|
"lgm_model": ("LGM_MODEL", ), |
|
}, |
|
} |
|
|
|
OUTPUT_NODE = True |
|
RETURN_TYPES = ( |
|
"GS_PLY", |
|
) |
|
RETURN_NAMES = ( |
|
"gs_ply", |
|
) |
|
FUNCTION = "run_LGM" |
|
CATEGORY = "Comfy3D/Algorithm" |
|
|
|
@torch.no_grad() |
|
def run_LGM(self, multiview_images, lgm_model): |
|
ref_image_torch = prepare_torch_img(multiview_images, lgm_model.opt.input_size, lgm_model.opt.input_size, DEVICE_STR) |
|
ref_image_torch = TF.normalize(ref_image_torch, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD) |
|
rays_embeddings = lgm_model.prepare_default_rays(DEVICE_STR) |
|
ref_image_torch = torch.cat([ref_image_torch, rays_embeddings], dim=1).unsqueeze(0) |
|
|
|
with torch.autocast(device_type=DEVICE_STR, dtype=WEIGHT_DTYPE): |
|
|
|
gaussians = lgm_model.forward_gaussians(ref_image_torch) |
|
|
|
|
|
gs_ply = lgm_model.gs.to_ply(gaussians) |
|
|
|
return (gs_ply, ) |
|
|
|
class Convert_3DGS_to_Mesh_with_NeRF_and_Marching_Cubes: |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"gs_ply": ("GS_PLY",), |
|
"gs_config": (['big', 'default', 'small', 'tiny'], ), |
|
"training_nerf_iterations": ("INT", {"default": 512, "min": 1, "max": 0xffffffffffffffff}), |
|
"training_nerf_resolution": ("INT", {"default": 128, "min": 1, "max": 0xffffffffffffffff}), |
|
"marching_cude_grids_resolution": ("INT", {"default": 256, "min": 1, "max": 0xffffffffffffffff}), |
|
"marching_cude_grids_batch_size": ("INT", {"default": 128, "min": 1, "max": 0xffffffffffffffff}), |
|
"marching_cude_threshold": ("FLOAT", {"default": 10.0, "min": 0.0, "step": 0.01}), |
|
"training_mesh_iterations": ("INT", {"default": 2048, "min": 1, "max": 0xffffffffffffffff}), |
|
"training_mesh_resolution": ("INT", {"default": 512, "min": 1, "max": 0xffffffffffffffff}), |
|
"remesh_after_n_iteration": ("INT", {"default": 512, "min": 128, "max": 100000}), |
|
"training_albedo_iterations": ("INT", {"default": 512, "min": 1, "max": 0xffffffffffffffff}), |
|
"training_albedo_resolution": ("INT", {"default": 512, "min": 1, "max": 0xffffffffffffffff}), |
|
"texture_resolution": ("INT", {"default": 1024, "min": 128, "max": 8192}), |
|
"force_cuda_rast": ("BOOLEAN", {"default": False}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"MESH", |
|
"IMAGE", |
|
"MASK", |
|
) |
|
RETURN_NAMES = ( |
|
"mesh", |
|
"imgs", |
|
"alphas", |
|
) |
|
FUNCTION = "convert_gs_ply" |
|
CATEGORY = "Comfy3D/Algorithm" |
|
|
|
def convert_gs_ply( |
|
self, |
|
gs_ply, |
|
gs_config, |
|
training_nerf_iterations, |
|
training_nerf_resolution, |
|
marching_cude_grids_resolution, |
|
marching_cude_grids_batch_size, |
|
marching_cude_threshold, |
|
training_mesh_iterations, |
|
training_mesh_resolution, |
|
remesh_after_n_iteration, |
|
training_albedo_iterations, |
|
training_albedo_resolution, |
|
texture_resolution, |
|
force_cuda_rast, |
|
): |
|
with torch.inference_mode(False): |
|
chosen_config = config_defaults[gs_config] |
|
chosen_config.force_cuda_rast = force_cuda_rast |
|
converter = GSConverterNeRFMarchingCubes(config_defaults[gs_config], gs_ply).cuda() |
|
imgs, alphas = converter.fit_nerf(training_nerf_iterations, training_nerf_resolution) |
|
converter.fit_mesh( |
|
training_mesh_iterations, remesh_after_n_iteration, training_mesh_resolution, |
|
marching_cude_grids_resolution, marching_cude_grids_batch_size, marching_cude_threshold |
|
) |
|
converter.fit_mesh_uv(training_albedo_iterations, training_albedo_resolution, texture_resolution) |
|
|
|
return(converter.get_mesh(), imgs, alphas) |
|
|
|
class Load_TripoSR_Model: |
|
checkpoints_dir = "TripoSR" |
|
default_ckpt_name = "model.ckpt" |
|
default_repo_id = "stabilityai/TripoSR" |
|
config_path = "TripoSR_config.yaml" |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
cls.checkpoints_dir_abs = os.path.join(CKPT_ROOT_PATH, cls.checkpoints_dir) |
|
all_models_names = get_list_filenames(cls.checkpoints_dir_abs, SUPPORTED_CHECKPOINTS_EXTENSIONS) |
|
if cls.default_ckpt_name not in all_models_names: |
|
all_models_names += [cls.default_ckpt_name] |
|
|
|
cls.config_path_abs = os.path.join(CONFIG_ROOT_PATH, cls.config_path) |
|
return { |
|
"required": { |
|
"model_name": (all_models_names, ), |
|
"chunk_size": ("INT", {"default": 8192, "min": 1, "max": 10000}) |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"TSR_MODEL", |
|
) |
|
RETURN_NAMES = ( |
|
"tsr_model", |
|
) |
|
FUNCTION = "load_TSR" |
|
CATEGORY = "Comfy3D/Import|Export" |
|
|
|
def load_TSR(self, model_name, chunk_size): |
|
|
|
ckpt_path = resume_or_download_model_from_hf(self.checkpoints_dir_abs, self.default_repo_id, model_name, self.__class__.__name__) |
|
|
|
tsr_model = TSR.from_pretrained( |
|
weight_path=ckpt_path, |
|
config_path=self.config_path_abs |
|
) |
|
|
|
tsr_model.renderer.set_chunk_size(chunk_size) |
|
tsr_model.to(DEVICE) |
|
|
|
cstr(f"[{self.__class__.__name__}] loaded model ckpt from {ckpt_path}").msg.print() |
|
|
|
return (tsr_model, ) |
|
|
|
class TripoSR: |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"tsr_model": ("TSR_MODEL", ), |
|
"reference_image": ("IMAGE",), |
|
"reference_mask": ("MASK",), |
|
"geometry_extract_resolution": ("INT", {"default": 256, "min": 1, "max": 0xffffffffffffffff}), |
|
"marching_cude_threshold": ("FLOAT", {"default": 25.0, "min": 0.0, "step": 0.01}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"MESH", |
|
) |
|
RETURN_NAMES = ( |
|
"mesh", |
|
) |
|
|
|
FUNCTION = "run_TSR" |
|
CATEGORY = "Comfy3D/Algorithm" |
|
|
|
@torch.no_grad() |
|
def run_TSR(self, tsr_model, reference_image, reference_mask, geometry_extract_resolution, marching_cude_threshold): |
|
mesh = None |
|
|
|
image = reference_image[0] |
|
mask = reference_mask[0].unsqueeze(2) |
|
image = torch.cat((image, mask), dim=2).detach().cpu().numpy() |
|
|
|
image = Image.fromarray(np.clip(255. * image, 0, 255).astype(np.uint8)) |
|
image = self.fill_background(image) |
|
image = image.convert('RGB') |
|
|
|
scene_codes = tsr_model([image], DEVICE) |
|
meshes = tsr_model.extract_mesh(scene_codes, resolution=geometry_extract_resolution, threshold=marching_cude_threshold) |
|
mesh = Mesh.load_trimesh(given_mesh=meshes[0]) |
|
|
|
return (mesh,) |
|
|
|
|
|
def fill_background(self, image): |
|
image = np.array(image).astype(np.float32) / 255.0 |
|
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5 |
|
image = Image.fromarray((image * 255.0).astype(np.uint8)) |
|
return image |
|
|
|
class Load_SF3D_Model: |
|
checkpoints_dir = "StableFast3D" |
|
default_ckpt_name = "model.safetensors" |
|
default_repo_id = "stabilityai/stable-fast-3d" |
|
config_path = "StableFast3D_config.yaml" |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
cls.checkpoints_dir_abs = os.path.join(CKPT_ROOT_PATH, cls.checkpoints_dir) |
|
all_models_names = get_list_filenames(cls.checkpoints_dir_abs, SUPPORTED_CHECKPOINTS_EXTENSIONS) |
|
if cls.default_ckpt_name not in all_models_names: |
|
all_models_names += [cls.default_ckpt_name] |
|
|
|
cls.config_path_abs = os.path.join(CONFIG_ROOT_PATH, cls.config_path) |
|
return { |
|
"required": { |
|
"model_name": (all_models_names, ), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"SF3D_MODEL", |
|
) |
|
RETURN_NAMES = ( |
|
"sf3d_model", |
|
) |
|
FUNCTION = "load_SF3D" |
|
CATEGORY = "Comfy3D/Import|Export" |
|
|
|
def load_SF3D(self, model_name): |
|
|
|
ckpt_path = resume_or_download_model_from_hf(self.checkpoints_dir_abs, self.default_repo_id, model_name, self.__class__.__name__) |
|
|
|
sf3d_model = SF3D.from_pretrained( |
|
config_path=self.config_path_abs, |
|
weight_path=ckpt_path |
|
) |
|
|
|
sf3d_model.eval() |
|
sf3d_model.to(DEVICE) |
|
|
|
cstr(f"[{self.__class__.__name__}] loaded model ckpt from {ckpt_path}").msg.print() |
|
|
|
return (sf3d_model, ) |
|
|
|
class StableFast3D: |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"sf3d_model": ("SF3D_MODEL", ), |
|
"reference_image": ("IMAGE",), |
|
"reference_mask": ("MASK",), |
|
"texture_resolution": ("INT", {"default": 1024, "min": 128, "max": 8192}), |
|
"remesh_option": (["None", "Triangle"], ), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"MESH", |
|
) |
|
RETURN_NAMES = ( |
|
"mesh", |
|
) |
|
|
|
FUNCTION = "run_SF3D" |
|
CATEGORY = "Comfy3D/Algorithm" |
|
|
|
@torch.no_grad() |
|
def run_SF3D(self, sf3d_model, reference_image, reference_mask, texture_resolution, remesh_option): |
|
single_image = torch_imgs_to_pils(reference_image, reference_mask)[0] |
|
|
|
with torch.autocast(device_type=DEVICE_STR, dtype=WEIGHT_DTYPE): |
|
model_batch = self.create_batch(single_image) |
|
model_batch = {k: v.cuda() for k, v in model_batch.items()} |
|
trimesh_mesh, _ = sf3d_model.generate_mesh( |
|
model_batch, texture_resolution, remesh_option |
|
) |
|
mesh = Mesh.load_trimesh(given_mesh=trimesh_mesh[0]) |
|
|
|
return (mesh,) |
|
|
|
|
|
def create_batch(self, input_image: Image): |
|
COND_WIDTH = 512 |
|
COND_HEIGHT = 512 |
|
COND_DISTANCE = 1.6 |
|
COND_FOVY_DEG = 40 |
|
BACKGROUND_COLOR = [0.5, 0.5, 0.5] |
|
|
|
|
|
c2w_cond = sf3d_utils.default_cond_c2w(COND_DISTANCE) |
|
intrinsic, intrinsic_normed_cond = sf3d_utils.create_intrinsic_from_fov_deg( |
|
COND_FOVY_DEG, COND_HEIGHT, COND_WIDTH |
|
) |
|
|
|
img_cond = ( |
|
torch.from_numpy( |
|
np.asarray(input_image.resize((COND_WIDTH, COND_HEIGHT))).astype(np.float32) |
|
/ 255.0 |
|
) |
|
.float() |
|
.clip(0, 1) |
|
) |
|
mask_cond = img_cond[:, :, -1:] |
|
rgb_cond = torch.lerp( |
|
torch.tensor(BACKGROUND_COLOR)[None, None, :], img_cond[:, :, :3], mask_cond |
|
) |
|
|
|
batch_elem = { |
|
"rgb_cond": rgb_cond, |
|
"mask_cond": mask_cond, |
|
"c2w_cond": c2w_cond.unsqueeze(0), |
|
"intrinsic_cond": intrinsic.unsqueeze(0), |
|
"intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0), |
|
} |
|
|
|
batched = {k: v.unsqueeze(0) for k, v in batch_elem.items()} |
|
return batched |
|
|
|
class Load_CRM_MVDiffusion_Model: |
|
checkpoints_dir = "CRM" |
|
default_ckpt_name = ["pixel-diffusion.pth", "ccm-diffusion.pth"] |
|
default_conf_name = ["sd_v2_base_ipmv_zero_SNR.yaml", "sd_v2_base_ipmv_chin8_zero_snr.yaml"] |
|
default_repo_id = "Zhengyi/CRM" |
|
config_path = "CRM_configs" |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
cls.checkpoints_dir_abs = os.path.join(CKPT_ROOT_PATH, cls.checkpoints_dir) |
|
all_models_names = get_list_filenames(cls.checkpoints_dir_abs, SUPPORTED_CHECKPOINTS_EXTENSIONS) |
|
for ckpt_name in cls.default_ckpt_name: |
|
if ckpt_name not in all_models_names: |
|
all_models_names += [ckpt_name] |
|
|
|
cls.config_root_path_abs = os.path.join(CONFIG_ROOT_PATH, cls.config_path) |
|
return { |
|
"required": { |
|
"model_name": (all_models_names, ), |
|
"crm_config_path": (cls.default_conf_name, ), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"CRM_MVDIFFUSION_SAMPLER", |
|
) |
|
RETURN_NAMES = ( |
|
"crm_mvdiffusion_sampler", |
|
) |
|
FUNCTION = "load_CRM" |
|
CATEGORY = "Comfy3D/Import|Export" |
|
|
|
def load_CRM(self, model_name, crm_config_path): |
|
|
|
from CRM.imagedream.ldm.util import ( |
|
instantiate_from_config, |
|
get_obj_from_str, |
|
) |
|
|
|
crm_config_path = os.path.join(self.config_root_path_abs, crm_config_path) |
|
|
|
ckpt_path = resume_or_download_model_from_hf(self.checkpoints_dir_abs, self.default_repo_id, model_name, self.__class__.__name__) |
|
|
|
crm_config = OmegaConf.load(crm_config_path) |
|
|
|
crm_mvdiffusion_model = instantiate_from_config(crm_config.model) |
|
crm_mvdiffusion_model.load_state_dict(torch.load(ckpt_path, map_location="cpu"), strict=False) |
|
crm_mvdiffusion_model = crm_mvdiffusion_model.to(DEVICE).to(WEIGHT_DTYPE) |
|
crm_mvdiffusion_model.device = DEVICE |
|
|
|
crm_mvdiffusion_sampler = get_obj_from_str(crm_config.sampler.target)( |
|
crm_mvdiffusion_model, device=DEVICE, dtype=WEIGHT_DTYPE, **crm_config.sampler.params |
|
) |
|
|
|
cstr(f"[{self.__class__.__name__}] loaded model ckpt from {ckpt_path}").msg.print() |
|
|
|
return (crm_mvdiffusion_sampler, ) |
|
|
|
class CRM_Images_MVDiffusion_Model: |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"crm_mvdiffusion_sampler": ("CRM_MVDIFFUSION_SAMPLER",), |
|
"reference_image": ("IMAGE",), |
|
"reference_mask": ("MASK",), |
|
"prompt": ("STRING", { |
|
"default": "3D assets", |
|
"multiline": True |
|
}), |
|
"prompt_neg": ("STRING", { |
|
"default": "uniform low no texture ugly, boring, bad anatomy, blurry, pixelated, obscure, unnatural colors, poor lighting, dull, and unclear.", |
|
"multiline": True |
|
}), |
|
"seed": ("INT", {"default": 1234, "min": 0, "max": 0xffffffffffffffff}), |
|
"mv_guidance_scale": ("FLOAT", {"default": 5.5, "min": 0.0, "step": 0.01}), |
|
"num_inference_steps": ("INT", {"default": 50, "min": 1}), |
|
|
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"IMAGE", |
|
"ORBIT_CAMPOSES", |
|
) |
|
RETURN_NAMES = ( |
|
"multiview_images", |
|
"orbit_camposes", |
|
) |
|
FUNCTION = "run_model" |
|
CATEGORY = "Comfy3D/Algorithm" |
|
|
|
def run_model( |
|
self, |
|
crm_mvdiffusion_sampler, |
|
reference_image, |
|
reference_mask, |
|
prompt, |
|
prompt_neg, |
|
seed, |
|
mv_guidance_scale, |
|
num_inference_steps, |
|
): |
|
pixel_img = torch_imgs_to_pils(reference_image, reference_mask)[0] |
|
pixel_img = CRMSampler.process_pixel_img(pixel_img) |
|
|
|
multiview_images = CRMSampler.stage1_sample( |
|
crm_mvdiffusion_sampler, |
|
pixel_img, |
|
prompt, |
|
prompt_neg, |
|
seed, |
|
mv_guidance_scale, |
|
num_inference_steps |
|
).to(dtype=reference_image.dtype, device=reference_image.device) |
|
|
|
orbit_radius = [4.0] * 6 |
|
orbit_center = [0.0] * 6 |
|
orbit_elevations, orbit_azimuths = ORBITPOSE_PRESET_DICT["CRM(6)"] |
|
orbit_camposes = compose_orbit_camposes(orbit_radius, orbit_elevations, orbit_azimuths, orbit_center, orbit_center, orbit_center) |
|
|
|
return (multiview_images, orbit_camposes) |
|
|
|
class CRM_CCMs_MVDiffusion_Model: |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"crm_mvdiffusion_sampler": ("CRM_MVDIFFUSION_SAMPLER",), |
|
"reference_image": ("IMAGE",), |
|
"reference_mask": ("MASK",), |
|
"multiview_images": ("IMAGE",), |
|
"prompt": ("STRING", { |
|
"default": "3D assets", |
|
"multiline": True |
|
}), |
|
"prompt_neg": ("STRING", { |
|
"default": "uniform low no texture ugly, boring, bad anatomy, blurry, pixelated, obscure, unnatural colors, poor lighting, dull, and unclear.", |
|
"multiline": True |
|
}), |
|
"seed": ("INT", {"default": 1234, "min": 0, "max": 0xffffffffffffffff}), |
|
"mv_guidance_scale": ("FLOAT", {"default": 5.5, "min": 0.0, "step": 0.01}), |
|
"num_inference_steps": ("INT", {"default": 50, "min": 1}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"IMAGE", |
|
) |
|
RETURN_NAMES = ( |
|
"multiview_CCMs", |
|
) |
|
FUNCTION = "run_model" |
|
CATEGORY = "Comfy3D/Algorithm" |
|
|
|
@torch.no_grad() |
|
def run_model( |
|
self, |
|
crm_mvdiffusion_sampler, |
|
reference_image, |
|
reference_mask, |
|
multiview_images, |
|
prompt, |
|
prompt_neg, |
|
seed, |
|
mv_guidance_scale, |
|
num_inference_steps, |
|
): |
|
pixel_img = torch_imgs_to_pils(reference_image, reference_mask)[0] |
|
pixel_img = CRMSampler.process_pixel_img(pixel_img) |
|
|
|
multiview_CCMs = CRMSampler.stage2_sample( |
|
crm_mvdiffusion_sampler, |
|
pixel_img, |
|
multiview_images, |
|
prompt, |
|
prompt_neg, |
|
seed, |
|
mv_guidance_scale, |
|
num_inference_steps |
|
) |
|
|
|
return(multiview_CCMs, ) |
|
|
|
class Load_Convolutional_Reconstruction_Model: |
|
checkpoints_dir = "CRM" |
|
default_ckpt_name = "CRM.pth" |
|
default_repo_id = "Zhengyi/CRM" |
|
config_path = "CRM_configs/specs_objaverse_total.json" |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
cls.checkpoints_dir_abs = os.path.join(CKPT_ROOT_PATH, cls.checkpoints_dir) |
|
all_models_names = get_list_filenames(cls.checkpoints_dir_abs, SUPPORTED_CHECKPOINTS_EXTENSIONS) |
|
if cls.default_ckpt_name not in all_models_names: |
|
all_models_names += [cls.default_ckpt_name] |
|
|
|
cls.config_path_abs = os.path.join(CONFIG_ROOT_PATH, cls.config_path) |
|
return { |
|
"required": { |
|
"model_name": (all_models_names, ), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"CRM_MODEL", |
|
) |
|
RETURN_NAMES = ( |
|
"crm_model", |
|
) |
|
FUNCTION = "load_CRM" |
|
CATEGORY = "Comfy3D/Import|Export" |
|
|
|
def load_CRM(self, model_name): |
|
|
|
ckpt_path = resume_or_download_model_from_hf(self.checkpoints_dir_abs, self.default_repo_id, model_name, self.__class__.__name__) |
|
|
|
crm_conf = json.load(open(self.config_path_abs)) |
|
crm_model = ConvolutionalReconstructionModel(crm_conf).to(DEVICE) |
|
crm_model.load_state_dict(torch.load(ckpt_path, map_location="cpu"), strict=False) |
|
|
|
cstr(f"[{self.__class__.__name__}] loaded model ckpt from {ckpt_path}").msg.print() |
|
|
|
return (crm_model, ) |
|
|
|
class Convolutional_Reconstruction_Model: |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"crm_model": ("CRM_MODEL", ), |
|
"multiview_images": ("IMAGE",), |
|
"multiview_CCMs": ("IMAGE",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"MESH", |
|
) |
|
RETURN_NAMES = ( |
|
"mesh", |
|
) |
|
|
|
FUNCTION = "run_CRM" |
|
CATEGORY = "Comfy3D/Algorithm" |
|
|
|
@torch.no_grad() |
|
def run_CRM(self, crm_model, multiview_images, multiview_CCMs): |
|
|
|
np_imgs = np.concatenate(multiview_images.cpu().numpy(), 1) |
|
np_xyzs = np.concatenate(multiview_CCMs.cpu().numpy(), 1) |
|
|
|
mesh = CRMSampler.generate3d(crm_model, np_imgs, np_xyzs, DEVICE) |
|
|
|
return (mesh,) |
|
|
|
class Zero123Plus_Diffusion_Model: |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"zero123plus_pipe": ("DIFFUSERS_PIPE",), |
|
"reference_image": ("IMAGE",), |
|
"reference_mask": ("MASK",), |
|
"seed": ("INT", {"default": 1234, "min": 0, "max": 0xffffffffffffffff}), |
|
"guidance_scale": ("FLOAT", {"default": 4.0, "min": 0.0, "step": 0.01}), |
|
"num_inference_steps": ("INT", {"default": 28, "min": 1}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"IMAGE", |
|
"ORBIT_CAMPOSES", |
|
) |
|
RETURN_NAMES = ( |
|
"multiviews", |
|
"orbit_camposes", |
|
) |
|
FUNCTION = "run_model" |
|
CATEGORY = "Comfy3D/Algorithm" |
|
|
|
@torch.no_grad() |
|
def run_model( |
|
self, |
|
zero123plus_pipe, |
|
reference_image, |
|
reference_mask, |
|
seed, |
|
guidance_scale, |
|
num_inference_steps, |
|
): |
|
|
|
single_image = torch_imgs_to_pils(reference_image, reference_mask)[0] |
|
|
|
seed = int(seed) |
|
generator = torch.Generator(device=zero123plus_pipe.unet.device).manual_seed(seed) |
|
|
|
|
|
output_image = zero123plus_pipe( |
|
single_image, |
|
generator=generator, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
).images[0] |
|
|
|
multiview_images = np.asarray(output_image, dtype=np.float32) / 255.0 |
|
multiview_images = torch.from_numpy(multiview_images).permute(2, 0, 1).contiguous() |
|
multiview_images = rearrange(multiview_images, 'c (n h) (m w) -> (n m) h w c', n=3, m=2) |
|
multiview_images = multiview_images.to(dtype=reference_image.dtype, device=reference_image.device) |
|
|
|
orbit_radius = [4.0] * 6 |
|
orbit_center = [0.0] * 6 |
|
orbit_elevations, orbit_azimuths = ORBITPOSE_PRESET_DICT["Zero123Plus(6)"] |
|
orbit_camposes = compose_orbit_camposes(orbit_radius, orbit_elevations, orbit_azimuths, orbit_center, orbit_center, orbit_center) |
|
|
|
return (multiview_images, orbit_camposes) |
|
|
|
class Load_InstantMesh_Reconstruction_Model: |
|
checkpoints_dir = "InstantMesh" |
|
default_ckpt_names = ["instant_mesh_large.ckpt", "instant_mesh_base.ckpt", "instant_nerf_large.ckpt", "instant_nerf_base.ckpt"] |
|
default_repo_id = "TencentARC/InstantMesh" |
|
config_root_dir = "InstantMesh_configs" |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
cls.checkpoints_dir_abs = os.path.join(CKPT_ROOT_PATH, cls.checkpoints_dir) |
|
all_models_names = get_list_filenames(cls.checkpoints_dir_abs, SUPPORTED_CHECKPOINTS_EXTENSIONS) |
|
for ckpt_name in cls.default_ckpt_names: |
|
if ckpt_name not in all_models_names: |
|
all_models_names += [ckpt_name] |
|
|
|
cls.config_root_path_abs = os.path.join(CONFIG_ROOT_PATH, cls.config_root_dir) |
|
return { |
|
"required": { |
|
"model_name": (all_models_names, ), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"LRM_MODEL", |
|
) |
|
RETURN_NAMES = ( |
|
"lrm_model", |
|
) |
|
FUNCTION = "load_LRM" |
|
CATEGORY = "Comfy3D/Import|Export" |
|
|
|
def load_LRM(self, model_name): |
|
|
|
from InstantMesh.utils.train_util import instantiate_from_config |
|
|
|
is_flexicubes = True if model_name.startswith('instant_mesh') else False |
|
|
|
config_name = model_name.split(".")[0] + ".yaml" |
|
config_path = os.path.join(self.config_root_path_abs, config_name) |
|
config = OmegaConf.load(config_path) |
|
|
|
lrm_model = instantiate_from_config(config.model_config) |
|
ckpt_path = resume_or_download_model_from_hf(self.checkpoints_dir_abs, self.default_repo_id, model_name, self.__class__.__name__) |
|
|
|
state_dict = torch.load(ckpt_path, map_location='cpu')['state_dict'] |
|
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.')} |
|
lrm_model.load_state_dict(state_dict, strict=True) |
|
|
|
lrm_model = lrm_model.to(DEVICE) |
|
if is_flexicubes: |
|
lrm_model.init_flexicubes_geometry(DEVICE, fovy=30.0) |
|
lrm_model = lrm_model.eval() |
|
|
|
cstr(f"[{self.__class__.__name__}] loaded model ckpt from {ckpt_path}").msg.print() |
|
|
|
return (lrm_model, ) |
|
|
|
class InstantMesh_Reconstruction_Model: |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"lrm_model": ("LRM_MODEL", ), |
|
"multiview_images": ("IMAGE",), |
|
"orbit_camera_poses": ("ORBIT_CAMPOSES",), |
|
"orbit_camera_fovy": ("FLOAT", {"default": 30.0, "min": 0.0, "max": 180.0, "step": 0.1}), |
|
"texture_resolution": ("INT", {"default": 1024, "min": 128, "max": 8192}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"MESH", |
|
) |
|
RETURN_NAMES = ( |
|
"mesh", |
|
) |
|
|
|
FUNCTION = "run_LRM" |
|
CATEGORY = "Comfy3D/Algorithm" |
|
|
|
@torch.no_grad() |
|
def run_LRM(self, lrm_model, multiview_images, orbit_camera_poses, orbit_camera_fovy, texture_resolution): |
|
|
|
images = multiview_images.permute(0, 3, 1, 2).unsqueeze(0).to(DEVICE) |
|
images = v2.functional.resize(images, 320, interpolation=3, antialias=True).clamp(0, 1) |
|
|
|
|
|
azimuths, elevations, radius = [], [], [] |
|
for i in range(len(orbit_camera_poses)): |
|
azimuths.append(orbit_camera_poses[i][2]) |
|
elevations.append(orbit_camera_poses[i][1]) |
|
radius.append(orbit_camera_poses[i][0]) |
|
input_cameras = oribt_camera_poses_to_input_cameras(azimuths, elevations, radius=radius, fov=orbit_camera_fovy).to(DEVICE) |
|
|
|
|
|
planes = lrm_model.forward_planes(images, input_cameras) |
|
|
|
|
|
mesh_out = lrm_model.extract_mesh( |
|
planes, |
|
use_texture_map=True, |
|
texture_resolution=texture_resolution, |
|
) |
|
|
|
vertices, faces, uvs, mesh_tex_idx, tex_map = mesh_out |
|
tex_map = troch_image_dilate(tex_map.permute(1, 2, 0)) |
|
|
|
mesh = Mesh(v=vertices, f=faces, vt=uvs, ft=mesh_tex_idx, albedo=tex_map, device=DEVICE) |
|
mesh.auto_normal() |
|
return (mesh,) |
|
|
|
class Era3D_MVDiffusion_Model: |
|
|
|
config_path = "Era3D_config.yaml" |
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
cls.config_path_abs = os.path.join(CONFIG_ROOT_PATH, cls.config_path) |
|
return { |
|
"required": { |
|
"era3d_pipe": ("DIFFUSERS_PIPE",), |
|
"reference_image": ("IMAGE",), |
|
"reference_mask": ("MASK",), |
|
"image_crop_size": ("INT", {"default": 420, "min": 400, "max": 8192}), |
|
"seed": ("INT", {"default": 600, "min": 0, "max": 0xffffffffffffffff}), |
|
"guidance_scale": ("FLOAT", {"default": 3.0, "min": 0.0, "step": 0.01}), |
|
"num_inference_steps": ("INT", {"default": 40, "min": 1}), |
|
"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "step": 0.01}), |
|
"radius": ("FLOAT", {"default": 4.0, "min": 0.1, "step": 0.01}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"IMAGE", |
|
"IMAGE", |
|
"ORBIT_CAMPOSES", |
|
) |
|
RETURN_NAMES = ( |
|
"multiviews", |
|
"multiview_normals", |
|
"orbit_camposes", |
|
) |
|
FUNCTION = "run_model" |
|
CATEGORY = "Comfy3D/Algorithm" |
|
|
|
@torch.no_grad() |
|
def run_model( |
|
self, |
|
era3d_pipe, |
|
reference_image, |
|
reference_mask, |
|
image_crop_size, |
|
seed, |
|
guidance_scale, |
|
num_inference_steps, |
|
eta, |
|
radius, |
|
): |
|
cfg = load_config_era3d(self.config_path_abs) |
|
|
|
single_image = torch_imgs_to_pils(reference_image, reference_mask)[0] |
|
|
|
|
|
cfg.dataset.prompt_embeds_path = os.path.join(ROOT_PATH, cfg.dataset.prompt_embeds_path) |
|
dataset = Era3DSingleImageDataset( |
|
single_image=single_image, |
|
crop_size=image_crop_size, |
|
dtype=WEIGHT_DTYPE, |
|
**cfg.dataset |
|
) |
|
|
|
|
|
img_batch = dataset.__getitem__(0) |
|
|
|
imgs_in = torch.cat([img_batch['imgs_in']]*2, dim=0).to(DEVICE, dtype=WEIGHT_DTYPE) |
|
|
|
|
|
normal_prompt_embeddings, clr_prompt_embeddings = img_batch['normal_prompt_embeddings'], img_batch['color_prompt_embeddings'] |
|
prompt_embeddings = torch.cat([normal_prompt_embeddings, clr_prompt_embeddings], dim=0).to(DEVICE, dtype=WEIGHT_DTYPE) |
|
|
|
generator = torch.Generator(device=era3d_pipe.unet.device).manual_seed(seed) |
|
|
|
|
|
with torch.autocast(DEVICE_STR): |
|
unet_out = era3d_pipe( |
|
imgs_in, None, prompt_embeds=prompt_embeddings, |
|
generator=generator, guidance_scale=guidance_scale, output_type='pt', num_images_per_prompt=1, |
|
num_inference_steps=num_inference_steps, eta=eta |
|
) |
|
|
|
out = unet_out.images |
|
bsz = out.shape[0] // 2 |
|
|
|
|
|
normals_pred = out[:bsz] |
|
images_pred = out[bsz:] |
|
|
|
|
|
multiview_images = images_pred.permute(0, 2, 3, 1).to(reference_image.device, dtype=reference_image.dtype) |
|
multiview_normals = normals_pred.permute(0, 2, 3, 1).to(reference_image.device, dtype=reference_image.dtype) |
|
|
|
azimuths = [0, 45, 90, 180, -90, -45] |
|
elevations = [0.0] * 6 |
|
radius = [radius] * 6 |
|
center = [0.0] * 6 |
|
|
|
orbit_camposes = [azimuths, elevations, radius, center, center, center] |
|
|
|
return (multiview_images, multiview_normals, orbit_camposes) |
|
|
|
class Instant_NGP: |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"reference_image": ("IMAGE",), |
|
"reference_mask": ("MASK",), |
|
"reference_orbit_camera_poses": ("ORBIT_CAMPOSES",), |
|
"reference_orbit_camera_fovy": ("FLOAT", {"default": 49.1, "min": 0.0, "max": 180.0, "step": 0.1}), |
|
"training_iterations": ("INT", {"default": 512, "min": 1, "max": 0xffffffffffffffff}), |
|
"training_resolution": ("INT", {"default": 128, "min": 128, "max": 8192}), |
|
"marching_cude_grids_resolution": ("INT", {"default": 256, "min": 1, "max": 0xffffffffffffffff}), |
|
"marching_cude_grids_batch_size": ("INT", {"default": 128, "min": 1, "max": 0xffffffffffffffff}), |
|
"marching_cude_threshold": ("FLOAT", {"default": 10.0, "min": 0.0, "step": 0.01}), |
|
"texture_resolution": ("INT", {"default": 1024, "min": 128, "max": 8192}), |
|
"background_color": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}), |
|
"force_cuda_rast": ("BOOLEAN", {"default": False}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"MESH", |
|
) |
|
RETURN_NAMES = ( |
|
"mesh", |
|
) |
|
FUNCTION = "run_instant_ngp" |
|
CATEGORY = "Comfy3D/Algorithm" |
|
|
|
def run_instant_ngp( |
|
self, |
|
reference_image, |
|
reference_mask, |
|
reference_orbit_camera_poses, |
|
reference_orbit_camera_fovy, |
|
training_iterations, |
|
training_resolution, |
|
marching_cude_grids_resolution, |
|
marching_cude_grids_batch_size, |
|
marching_cude_threshold, |
|
texture_resolution, |
|
background_color, |
|
force_cuda_rast |
|
): |
|
with torch.inference_mode(False): |
|
|
|
ngp = InstantNGP(training_resolution).to(DEVICE) |
|
ngp.prepare_training(reference_image, reference_mask, reference_orbit_camera_poses, reference_orbit_camera_fovy) |
|
ngp.fit_nerf(training_iterations, background_color) |
|
|
|
vertices, triangles = marching_cubes_density_to_mesh(ngp.get_density, marching_cude_grids_resolution, marching_cude_grids_batch_size, marching_cude_threshold) |
|
|
|
v = torch.from_numpy(vertices).contiguous().float().to(DEVICE) |
|
f = torch.from_numpy(triangles).contiguous().int().to(DEVICE) |
|
|
|
mesh = Mesh(v=v, f=f, device=DEVICE) |
|
mesh.auto_normal() |
|
mesh.auto_uv() |
|
|
|
mesh.albedo = color_func_to_albedo(mesh, ngp.get_color, texture_resolution, device=DEVICE, force_cuda_rast=force_cuda_rast) |
|
|
|
return (mesh, ) |
|
|
|
class FlexiCubes_MVS: |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"reference_depth_maps": ("IMAGE",), |
|
"reference_masks": ("MASK",), |
|
"reference_orbit_camera_poses": ("ORBIT_CAMPOSES",), |
|
"reference_orbit_camera_fovy": ("FLOAT", {"default": 49.1, "min": 0.0, "max": 180.0, "step": 0.1}), |
|
"training_iterations": ("INT", {"default": 512, "min": 1, "max": 0xffffffffffffffff}), |
|
"batch_size": ("INT", {"default": 4, "min": 1, "max": 0xffffffffffffffff}), |
|
"learning_rate": ("FLOAT", {"default": 0.01, "min": 0.001, "step": 0.001}), |
|
"voxel_grids_resolution": ("INT", {"default": 128, "min": 1, "max": 0xffffffffffffffff}), |
|
"depth_min_distance": ("FLOAT", {"default": 0.5, "min": 0.0, "step": 0.01}), |
|
"depth_max_distance": ("FLOAT", {"default": 5.5, "min": 0.0, "step": 0.01}), |
|
"mask_loss_weight": ("FLOAT", {"default": 1.0, "min": 0.01, "step": 0.01}), |
|
"depth_loss_weight": ("FLOAT", {"default": 100.0, "min": 0.01, "step": 0.01}), |
|
"normal_loss_weight": ("FLOAT", {"default": 1.0, "min": 0.01, "step": 0.01}), |
|
"sdf_regularizer_weight": ("FLOAT", {"default": 0.2, "min": 0.01, "step": 0.01}), |
|
"remove_floaters_weight": ("FLOAT", {"default": 0.5, "min": 0.01, "step": 0.01}), |
|
"cube_stabilizer_weight": ("FLOAT", {"default": 0.1, "min": 0.01, "step": 0.01}), |
|
"force_cuda_rast": ("BOOLEAN", {"default": False}), |
|
}, |
|
"optional": { |
|
"reference_normal_maps": ("IMAGE",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"MESH", |
|
) |
|
RETURN_NAMES = ( |
|
"mesh", |
|
) |
|
FUNCTION = "run_flexicubes" |
|
CATEGORY = "Comfy3D/Algorithm" |
|
|
|
def run_flexicubes( |
|
self, |
|
reference_depth_maps, |
|
reference_masks, |
|
reference_orbit_camera_poses, |
|
reference_orbit_camera_fovy, |
|
training_iterations, |
|
batch_size, |
|
learning_rate, |
|
voxel_grids_resolution, |
|
depth_min_distance, |
|
depth_max_distance, |
|
mask_loss_weight, |
|
depth_loss_weight, |
|
normal_loss_weight, |
|
sdf_regularizer_weight, |
|
remove_floaters_weight, |
|
cube_stabilizer_weight, |
|
force_cuda_rast, |
|
reference_normal_maps=None |
|
): |
|
|
|
with torch.inference_mode(False): |
|
|
|
fc_trainer = FlexiCubesTrainer( |
|
training_iterations, |
|
batch_size, |
|
learning_rate, |
|
voxel_grids_resolution, |
|
depth_min_distance, |
|
depth_max_distance, |
|
mask_loss_weight, |
|
depth_loss_weight, |
|
normal_loss_weight, |
|
sdf_regularizer_weight, |
|
remove_floaters_weight, |
|
cube_stabilizer_weight, |
|
force_cuda_rast, |
|
device=DEVICE |
|
) |
|
|
|
fc_trainer.prepare_training(reference_depth_maps, reference_masks, reference_orbit_camera_poses, reference_orbit_camera_fovy, reference_normal_maps) |
|
|
|
fc_trainer.training() |
|
|
|
mesh = fc_trainer.get_mesh() |
|
|
|
return (mesh, ) |
|
|
|
class Load_Unique3D_Custom_UNet: |
|
default_repo_id = "MrForExample/Unique3D" |
|
config_root_dir = "Unique3D_configs" |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
cls.checkpoints_dir_abs = os.path.join(CKPT_DIFFUSERS_PATH, cls.default_repo_id) |
|
cls.config_path_abs = os.path.join(CONFIG_ROOT_PATH, cls.config_root_dir) |
|
return { |
|
"required": { |
|
"pipe": ("DIFFUSERS_PIPE",), |
|
"config_name": (["image2mvimage", "image2normal"],), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"DIFFUSERS_PIPE", |
|
) |
|
RETURN_NAMES = ( |
|
"pipe", |
|
) |
|
FUNCTION = "load_diffusers_unet" |
|
CATEGORY = "Comfy3D/Import|Export" |
|
|
|
def load_diffusers_unet(self, pipe, config_name): |
|
|
|
from Unique3D.custum_3d_diffusion.trainings.config_classes import ExprimentConfig |
|
from Unique3D.custum_3d_diffusion.custum_modules.unifield_processor import AttnConfig, ConfigurableUNet2DConditionModel |
|
from Unique3D.custum_3d_diffusion.trainings.utils import load_config |
|
|
|
cfg_path = os.path.join(self.config_path_abs, config_name + ".yaml") |
|
checkpoint_dir_path = os.path.join(self.checkpoints_dir_abs, config_name) |
|
checkpoint_path = os.path.join(checkpoint_dir_path, "unet_state_dict.pth") |
|
|
|
cfg: ExprimentConfig = load_config(ExprimentConfig, cfg_path) |
|
if cfg.init_config.init_unet_path == "": |
|
cfg.init_config.init_unet_path = checkpoint_dir_path |
|
init_config: AttnConfig = load_config(AttnConfig, cfg.init_config) |
|
configurable_unet = ConfigurableUNet2DConditionModel(init_config, WEIGHT_DTYPE) |
|
configurable_unet.enable_xformers_memory_efficient_attention() |
|
|
|
state_dict = torch.load(checkpoint_path) |
|
configurable_unet.unet.load_state_dict(state_dict, strict=False) |
|
|
|
configurable_unet.unet.to(DEVICE, dtype=WEIGHT_DTYPE) |
|
|
|
pipe.unet = configurable_unet.unet |
|
|
|
cstr(f"[{self.__class__.__name__}] loaded unet ckpt from {checkpoint_path}").msg.print() |
|
return (pipe, ) |
|
|
|
class Unique3D_MVDiffusion_Model: |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"unique3d_pipe": ("DIFFUSERS_PIPE",), |
|
"reference_image": ("IMAGE",), |
|
"seed": ("INT", {"default": 1145, "min": 0, "max": 0xffffffffffffffff}), |
|
"guidance_scale": ("FLOAT", {"default": 1.5, "min": 0.0, "step": 0.01}), |
|
"num_inference_steps": ("INT", {"default": 30, "min": 1}), |
|
"image_resolution": ([256, 512],), |
|
"radius": ("FLOAT", {"default": 4.0, "min": 0.1, "step": 0.01}), |
|
"preprocess_images": ("BOOLEAN", {"default": True},), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"IMAGE", |
|
"ORBIT_CAMPOSES", |
|
) |
|
RETURN_NAMES = ( |
|
"multiviews", |
|
"orbit_camposes", |
|
) |
|
FUNCTION = "run_model" |
|
CATEGORY = "Comfy3D/Algorithm" |
|
|
|
@torch.no_grad() |
|
def run_model( |
|
self, |
|
unique3d_pipe, |
|
reference_image, |
|
seed, |
|
guidance_scale, |
|
num_inference_steps, |
|
image_resolution, |
|
radius, |
|
preprocess_images, |
|
): |
|
from Unique3D.scripts.utils import simple_image_preprocess |
|
|
|
pil_image_list = torch_imgs_to_pils(reference_image) |
|
for i in range(len(pil_image_list)): |
|
if preprocess_images: |
|
pil_image_list[i] = simple_image_preprocess(pil_image_list[i]) |
|
|
|
pil_image_list = pils_rgba_to_rgb(pil_image_list, bkgd="WHITE") |
|
|
|
generator = torch.Generator(device=unique3d_pipe.unet.device).manual_seed(seed) |
|
|
|
image_pils = unique3d_pipe( |
|
image=pil_image_list, |
|
generator=generator, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
width=image_resolution, |
|
height=image_resolution, |
|
height_cond=image_resolution, |
|
width_cond=image_resolution, |
|
).images |
|
|
|
|
|
multiview_images = pils_to_torch_imgs(image_pils, reference_image.dtype, reference_image.device) |
|
|
|
orbit_radius = [radius] * 4 |
|
orbit_center = [0.0] * 4 |
|
orbit_elevations, orbit_azimuths = ORBITPOSE_PRESET_DICT["Unique3D(4)"] |
|
orbit_camposes = compose_orbit_camposes(orbit_radius, orbit_elevations, orbit_azimuths, orbit_center, orbit_center, orbit_center) |
|
|
|
return (multiview_images, orbit_camposes) |
|
|
|
class Fast_Normal_Maps_To_Mesh: |
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"front_side_back_normal_maps": ("IMAGE",), |
|
"front_side_back_normal_masks": ("MASK",), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"MESH", |
|
) |
|
RETURN_NAMES = ( |
|
"mesh", |
|
) |
|
FUNCTION = "run_fast_recon" |
|
CATEGORY = "Comfy3D/Algorithm" |
|
|
|
def run_fast_recon(self, front_side_back_normal_maps, front_side_back_normal_masks): |
|
pil_normal_list = torch_imgs_to_pils(front_side_back_normal_maps, front_side_back_normal_masks) |
|
meshes = fast_geo(pil_normal_list[0], pil_normal_list[2], pil_normal_list[1]) |
|
vertices, faces, _ = from_py3d_mesh(meshes) |
|
|
|
mesh = Mesh(v=vertices, f=faces, device=DEVICE) |
|
return (mesh,) |
|
|
|
class ExplicitTarget_Mesh_Optimization: |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"mesh": ("MESH",), |
|
"normal_maps": ("IMAGE",), |
|
"normal_masks": ("MASK",), |
|
"reconstruction_steps": ("INT", {"default": 200, "min": 0, "max": 0xffffffffffffffff}), |
|
"coarse_reconstruct_resolution": ("INT", {"default": 512, "min": 128, "max": 8192}), |
|
"loss_expansion_weight": ("FLOAT", {"default": 0.1, "min": 0.01, "step": 0.01}), |
|
"refinement_steps": ("INT", {"default": 100, "min": 0, "max": 0xffffffffffffffff}), |
|
"target_warmup_update_num": ("INT", {"default": 5, "min": 1, "max": 0xffffffffffffffff}), |
|
"target_update_interval": ("INT", {"default": 20, "min": 1, "max": 0xffffffffffffffff}), |
|
}, |
|
"optional": { |
|
"normal_orbit_camera_poses": ("ORBIT_CAMPOSES",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"MESH", |
|
) |
|
RETURN_NAMES = ( |
|
"mesh", |
|
) |
|
FUNCTION = "run_ET_mesh_optimization" |
|
CATEGORY = "Comfy3D/Algorithm" |
|
|
|
def run_ET_mesh_optimization( |
|
self, |
|
mesh, |
|
normal_maps, |
|
normal_masks, |
|
reconstruction_steps, |
|
coarse_reconstruct_resolution, |
|
loss_expansion_weight, |
|
refinement_steps, |
|
target_warmup_update_num, |
|
target_update_interval, |
|
normal_orbit_camera_poses=None, |
|
): |
|
|
|
|
|
pil_normal_list = torch_imgs_to_pils(normal_maps, normal_masks) |
|
normal_stg1 = [img.resize((coarse_reconstruct_resolution, coarse_reconstruct_resolution)) for img in pil_normal_list] |
|
with torch.inference_mode(False): |
|
vertices, faces = mesh.v.detach().clone().to(DEVICE), mesh.f.detach().clone().to(DEVICE).type(torch.int64) |
|
if reconstruction_steps > 0: |
|
vertices, faces = reconstruct_stage1(normal_stg1, steps=reconstruction_steps, vertices=vertices, faces=faces, loss_expansion_weight=loss_expansion_weight) |
|
|
|
if refinement_steps > 0: |
|
vertices, faces = run_mesh_refine(vertices, faces, pil_normal_list, steps=refinement_steps, update_normal_interval=target_update_interval, update_warmup=target_warmup_update_num, ) |
|
|
|
mesh = Mesh(v=vertices, f=faces, device=DEVICE) |
|
|
|
return (mesh,) |
|
|
|
class ExplicitTarget_Color_Projection: |
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"mesh": ("MESH",), |
|
"reference_images": ("IMAGE",), |
|
"reference_masks": ("MASK",), |
|
"projection_resolution": ("INT", {"default": 1024, "min": 128, "max": 8192}), |
|
"complete_unseen_rgb": ("BOOLEAN", {"default": True},), |
|
"render_orbit_camera_fovy": ("FLOAT", {"default": 47.5, "min": 0.0, "max": 180.0, "step": 0.1}), |
|
"projection_weights": ("STRING", {"default": "2.0, 0.2, 1.0, 0.2"}), |
|
"confidence_threshold": ("FLOAT", {"default": 0.02, "min": 0.001, "max": 1.0, "step": 0.001}), |
|
"texture_projecton": ("BOOLEAN", {"default": False},), |
|
"texture_type": (["Albedo", "Metallic_and_Roughness"],), |
|
}, |
|
"optional": { |
|
"reference_orbit_camera_poses": ("ORBIT_CAMPOSES",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"MESH", |
|
) |
|
RETURN_NAMES = ( |
|
"mesh", |
|
) |
|
FUNCTION = "run_color_projection" |
|
CATEGORY = "Comfy3D/Algorithm" |
|
|
|
def run_color_projection( |
|
self, |
|
mesh, |
|
reference_images, |
|
reference_masks, |
|
projection_resolution, |
|
complete_unseen_rgb, |
|
render_orbit_camera_fovy, |
|
projection_weights, |
|
confidence_threshold, |
|
texture_projecton, |
|
texture_type, |
|
reference_orbit_camera_poses=None, |
|
): |
|
pil_image_list = torch_imgs_to_pils(reference_images, reference_masks) |
|
|
|
meshes = to_py3d_mesh(mesh.v, mesh.f) |
|
|
|
|
|
if reference_orbit_camera_poses is None: |
|
img_num = len(reference_images) |
|
interval = 360 / img_num |
|
angle = 0 |
|
azimuths = [] |
|
for i in range(0, img_num): |
|
azimuths.append(angle) |
|
angle += interval |
|
|
|
cam_list = get_cameras_list(azimuths, DEVICE, focal=1) |
|
else: |
|
|
|
cam_list = get_orbit_cameras_list(reference_orbit_camera_poses, DEVICE, render_orbit_camera_fovy) |
|
|
|
weights = projection_weights.split(",") |
|
if len(weights) == len(cam_list): |
|
weights = [float(item) for item in weights] |
|
else: |
|
weights = None |
|
|
|
if texture_projecton: |
|
target_img = multiview_color_projection_texture(meshes, mesh, pil_image_list, weights=weights, resolution=projection_resolution, device=DEVICE, complete_unseen=complete_unseen_rgb, confidence_threshold=confidence_threshold, cameras_list=cam_list) |
|
target_img = troch_image_dilate(target_img) |
|
|
|
if texture_type == "Albedo": |
|
mesh.albedo = target_img |
|
elif texture_type == "Metallic_and_Roughness": |
|
mesh.metallicRoughness = target_img |
|
else: |
|
cstr(f"[{self.__class__.__name__}] Unknow texture type: {texture_type}").error.print() |
|
else: |
|
new_meshes = multiview_color_projection(meshes, pil_image_list, weights=weights, resolution=projection_resolution, device=DEVICE, complete_unseen=complete_unseen_rgb, confidence_threshold=confidence_threshold, cameras_list=cam_list) |
|
vertices, faces, vertex_colors = from_py3d_mesh(new_meshes) |
|
|
|
mesh = Mesh(v=vertices, f=faces, |
|
vn=None if mesh.vn is None else mesh.vn.clone(), fn=None if mesh.fn is None else mesh.fn.clone(), |
|
vt=None if mesh.vt is None else mesh.vt.clone(), ft=None if mesh.ft is None else mesh.ft.clone(), |
|
vc=vertex_colors, device=DEVICE) |
|
if mesh.vn is None: |
|
mesh.auto_normal() |
|
|
|
return (mesh,) |
|
|
|
class Convert_Vertex_Color_To_Texture: |
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"mesh": ("MESH",), |
|
"texture_resolution": ("INT", {"default": 1024, "min": 128, "max": 8192}), |
|
"batch_size": ("INT", {"default": 128, "min": 1, "max": 0xffffffffffffffff}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"MESH", |
|
) |
|
RETURN_NAMES = ( |
|
"mesh", |
|
) |
|
FUNCTION = "run_convert_func" |
|
CATEGORY = "Comfy3D/Algorithm" |
|
|
|
def run_convert_func(self, mesh, texture_resolution, batch_size): |
|
|
|
if mesh.vc is not None: |
|
albedo_img, _ = interpolate_texture_map_attr(mesh, texture_resolution, batch_size, interpolate_color=True) |
|
mesh.albedo = troch_image_dilate(albedo_img) |
|
else: |
|
cstr(f"[{self.__class__.__name__}] skip this node since there is no vertex color found in mesh").msg.print() |
|
|
|
return (mesh,) |
|
|
|
class Load_CharacterGen_MVDiffusion_Model: |
|
checkpoints_dir = "CharacterGen" |
|
default_repo_id = "zjpshadow/CharacterGen" |
|
config_path = "CharacterGen_configs/Stage_2D_infer.yaml" |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
cls.checkpoints_dir_abs = os.path.join(CKPT_ROOT_PATH, cls.checkpoints_dir) |
|
cls.config_root_path_abs = os.path.join(CONFIG_ROOT_PATH, cls.config_path) |
|
return { |
|
"required": { |
|
"force_download": ("BOOLEAN", {"default": False}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"CHARACTER_MV_GEN_PIPE", |
|
) |
|
RETURN_NAMES = ( |
|
"character_mv_gen_pipe", |
|
) |
|
FUNCTION = "load_model" |
|
CATEGORY = "Comfy3D/Import|Export" |
|
|
|
def load_model(self, force_download): |
|
|
|
snapshot_download(repo_id=self.default_repo_id, local_dir=self.checkpoints_dir_abs, force_download=force_download, repo_type="model", ignore_patterns=HF_DOWNLOAD_IGNORE) |
|
|
|
character_mv_gen_pipe = Inference2D_API(checkpoint_root_path=self.checkpoints_dir_abs, **OmegaConf.load(self.config_root_path_abs)) |
|
|
|
cstr(f"[{self.__class__.__name__}] loaded model ckpt from {self.checkpoints_dir_abs}").msg.print() |
|
return (character_mv_gen_pipe,) |
|
|
|
class CharacterGen_MVDiffusion_Model: |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"character_mv_gen_pipe": ("CHARACTER_MV_GEN_PIPE",), |
|
"reference_image": ("IMAGE", ), |
|
"reference_mask": ("MASK",), |
|
"target_image_width": ("INT", {"default": 512, "min": 128, "max": 8192}), |
|
"target_image_height": ("INT", {"default": 768, "min": 128, "max": 8192}), |
|
"seed": ("INT", {"default": 2333, "min": 0, "max": 0xffffffffffffffff}), |
|
"guidance_scale": ("FLOAT", {"default": 5.0, "min": 0.0, "step": 0.01}), |
|
"num_inference_steps": ("INT", {"default": 40, "min": 1}), |
|
"prompt": ("STRING", { |
|
"default": "high quality, best quality", |
|
"multiline": True |
|
}), |
|
"prompt_neg": ("STRING", { |
|
"default": "", |
|
"multiline": True |
|
}), |
|
"radius": ("FLOAT", {"default": 1.5, "min": 0.1, "step": 0.01}) |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"IMAGE", |
|
"ORBIT_CAMPOSES", |
|
) |
|
RETURN_NAMES = ( |
|
"multiviews", |
|
"orbit_camposes", |
|
) |
|
FUNCTION = "run_model" |
|
CATEGORY = "Comfy3D/Algorithm" |
|
|
|
@torch.no_grad() |
|
def run_model( |
|
self, |
|
character_mv_gen_pipe, |
|
reference_image, |
|
reference_mask, |
|
target_image_width, |
|
target_image_height, |
|
seed, |
|
guidance_scale, |
|
num_inference_steps, |
|
prompt, |
|
prompt_neg, |
|
radius |
|
): |
|
single_image = torch_imgs_to_pils(reference_image, reference_mask)[0] |
|
|
|
multiview_images = character_mv_gen_pipe.inference( |
|
single_image, target_image_width, target_image_height, prompt=prompt, prompt_neg=prompt_neg, |
|
guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, seed=seed |
|
).to(dtype=reference_image.dtype, device=reference_image.device) |
|
|
|
orbit_radius = [radius] * 4 |
|
orbit_center = [0.0] * 4 |
|
orbit_elevations, orbit_azimuths = ORBITPOSE_PRESET_DICT["CharacterGen(4)"] |
|
orbit_camposes = compose_orbit_camposes(orbit_radius, orbit_elevations, orbit_azimuths, orbit_center, orbit_center, orbit_center) |
|
|
|
return (multiview_images, orbit_camposes) |
|
|
|
class Load_CharacterGen_Reconstruction_Model: |
|
checkpoints_dir = "CharacterGen" |
|
default_repo_id = "zjpshadow/CharacterGen" |
|
config_path = "CharacterGen_configs/Stage_3D_infer.yaml" |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
cls.checkpoints_dir_abs = os.path.join(CKPT_ROOT_PATH, cls.checkpoints_dir) |
|
cls.config_root_path_abs = os.path.join(CONFIG_ROOT_PATH, cls.config_path) |
|
return { |
|
"required": { |
|
"force_download": ("BOOLEAN", {"default": False}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"CHARACTER_LRM_PIPE", |
|
) |
|
RETURN_NAMES = ( |
|
"character_lrm_pipe", |
|
) |
|
FUNCTION = "load_model" |
|
CATEGORY = "Comfy3D/Import|Export" |
|
|
|
def load_model(self, force_download): |
|
|
|
snapshot_download(repo_id=self.default_repo_id, local_dir=self.checkpoints_dir_abs, force_download=force_download, repo_type="model", ignore_patterns=HF_DOWNLOAD_IGNORE) |
|
|
|
character_lrm_pipe = Inference3D_API(checkpoint_root_path=self.checkpoints_dir_abs, cfg=load_config_cg3d(self.config_root_path_abs)) |
|
|
|
cstr(f"[{self.__class__.__name__}] loaded model ckpt from {self.checkpoints_dir_abs}").msg.print() |
|
return (character_lrm_pipe,) |
|
|
|
class CharacterGen_Reconstruction_Model: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"character_lrm_pipe": ("CHARACTER_LRM_PIPE", ), |
|
"multiview_images": ("IMAGE",), |
|
"multiview_masks": ("MASK",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"MESH", |
|
) |
|
RETURN_NAMES = ( |
|
"mesh", |
|
) |
|
|
|
FUNCTION = "run_LRM" |
|
CATEGORY = "Comfy3D/Algorithm" |
|
|
|
@torch.no_grad() |
|
def run_LRM(self, character_lrm_pipe, multiview_images, multiview_masks): |
|
pil_mv_image_list = torch_imgs_to_pils(multiview_images, multiview_masks, alpha_min=0.2) |
|
|
|
vertices, faces = character_lrm_pipe.inference(pil_mv_image_list) |
|
|
|
mesh = Mesh(v=vertices, f=faces.to(torch.int64), device=DEVICE) |
|
mesh.auto_normal() |
|
mesh.auto_uv() |
|
|
|
return (mesh,) |
|
|
|
class Load_Craftsman_Shape_Diffusion_Model: |
|
checkpoints_dir = "Craftsman" |
|
default_repo_id = "wyysf/CraftsMan" |
|
default_ckpt_name = "image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6-aligned-vae/model.ckpt" |
|
config_path = "Craftsman_config.yaml" |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
cls.checkpoints_dir_abs = os.path.join(CKPT_ROOT_PATH, cls.checkpoints_dir) |
|
cls.config_root_path_abs = os.path.join(CONFIG_ROOT_PATH, cls.config_path) |
|
all_models_names = get_list_filenames(cls.checkpoints_dir_abs, SUPPORTED_CHECKPOINTS_EXTENSIONS, recursive=True) |
|
if cls.default_ckpt_name not in all_models_names: |
|
all_models_names += [cls.default_ckpt_name] |
|
|
|
return { |
|
"required": { |
|
"model_name": (all_models_names, ), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"CRAFTSMAN_MODEL", |
|
) |
|
RETURN_NAMES = ( |
|
"craftsman_model", |
|
) |
|
FUNCTION = "load_model" |
|
CATEGORY = "Comfy3D/Import|Export" |
|
|
|
def load_model(self, model_name): |
|
ckpt_path = resume_or_download_model_from_hf(self.checkpoints_dir_abs, self.default_repo_id, model_name, self.__class__.__name__) |
|
|
|
cfg: ExperimentConfigCraftsman |
|
cfg = load_config_craftsman(self.config_root_path_abs) |
|
|
|
craftsman_model: BaseSystem = craftsman.find(cfg.system_type)( |
|
cfg.system, |
|
) |
|
|
|
craftsman_model.load_state_dict(torch.load(ckpt_path, map_location=torch.device('cpu'))['state_dict']) |
|
craftsman_model = craftsman_model.to(DEVICE).eval() |
|
|
|
cstr(f"[{self.__class__.__name__}] loaded model ckpt from {self.checkpoints_dir_abs}").msg.print() |
|
return (craftsman_model,) |
|
|
|
class Craftsman_Shape_Diffusion_Model: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"craftsman_model": ("CRAFTSMAN_MODEL", ), |
|
"multiview_images": ("IMAGE",), |
|
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), |
|
"guidance_scale": ("FLOAT", {"default": 5.0, "min": 0.0, "step": 0.01}), |
|
"num_inference_steps": ("INT", {"default": 50, "min": 1}), |
|
"marching_cude_grids_resolution": ("INT", {"default": 256, "min": 1, "max": 0xffffffffffffffff}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"MESH", |
|
) |
|
RETURN_NAMES = ( |
|
"mesh", |
|
) |
|
|
|
FUNCTION = "run_model" |
|
CATEGORY = "Comfy3D/Algorithm" |
|
|
|
@torch.no_grad() |
|
def run_model(self, craftsman_model, multiview_images, seed, guidance_scale, num_inference_steps, marching_cude_grids_resolution): |
|
pil_mv_image_list = torch_imgs_to_pils(multiview_images) |
|
|
|
sample_inputs = {"mvimages": [pil_mv_image_list]} |
|
|
|
latents = craftsman_model.sample( |
|
sample_inputs, |
|
sample_times=1, |
|
steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
return_intermediates=False, |
|
seed=seed |
|
)[0] |
|
|
|
cstr(f"[{self.__class__.__name__}] Starting to extract mesh...").msg.print() |
|
|
|
box_v = 1.1 |
|
mesh_outputs, _ = craftsman_model.shape_model.extract_geometry( |
|
latents, |
|
bounds=[-box_v, -box_v, -box_v, box_v, box_v, box_v], |
|
grids_resolution=marching_cude_grids_resolution |
|
) |
|
vertices, faces = torch.from_numpy(mesh_outputs[0][0]).to(DEVICE), torch.from_numpy(mesh_outputs[0][1]).to(torch.int64).to(DEVICE) |
|
|
|
mesh = Mesh(v=vertices, f=faces, device=DEVICE) |
|
mesh.auto_normal() |
|
mesh.auto_uv() |
|
|
|
return (mesh,) |
|
|
|
class OrbitPoses_JK: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"orbitpose_preset": (list(ORBITPOSE_PRESET_DICT.keys()),), |
|
"radius": ("STRING", {"default": "4.0, 4.0, 4.0, 4.0, 4.0, 4.0"}), |
|
"elevations": ("STRING", {"default": "0.0, 90.0, 0.0, 0.0, -90.0, 0.0"}), |
|
"azimuths": ("STRING", {"default": "-90.0, 0.0, 180.0, 90.0, 0.0, 0.0"}), |
|
"centerX": ("STRING", {"default": "0.0, 0.0, 0.0, 0.0, 0.0, 0.0"}), |
|
"centerY": ("STRING", {"default": "0.0, 0.0, 0.0, 0.0, 0.0, 0.0"}), |
|
"centerZ": ("STRING", {"default": "0.0, 0.0, 0.0, 0.0, 0.0, 0.0"}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("ORBIT_CAMPOSES",) |
|
RETURN_NAMES = ("orbit_camposes",) |
|
|
|
FUNCTION = "get_orbit_poses" |
|
CATEGORY = "Comfy3D/Preprocessor" |
|
|
|
def get_orbit_poses(self, orbitpose_preset, azimuths, elevations, radius, centerX, centerY, centerZ): |
|
radius = radius.split(",") |
|
orbit_radius = [float(item) for item in radius] |
|
|
|
centerX = centerX.split(",") |
|
centerY = centerY.split(",") |
|
centerZ = centerZ.split(",") |
|
orbit_center_x = [float(item) for item in centerX] |
|
orbit_center_y = [float(item) for item in centerY] |
|
orbit_center_z = [float(item) for item in centerZ] |
|
|
|
if orbitpose_preset == "Custom": |
|
elevations = elevations.split(",") |
|
azimuths = azimuths.split(",") |
|
orbit_elevations = [float(item) for item in elevations] |
|
orbit_azimuths = [float(item) for item in azimuths] |
|
else: |
|
orbit_elevations, orbit_azimuths = ORBITPOSE_PRESET_DICT[orbitpose_preset] |
|
|
|
orbit_camposes = compose_orbit_camposes(orbit_radius, orbit_elevations, orbit_azimuths, orbit_center_x, orbit_center_y, orbit_center_z) |
|
|
|
return (orbit_camposes,) |
|
|
|
class Load_CRM_T2I_V2_Models: |
|
crm_checkpoints_dir = "CRM" |
|
t2i_v2_checkpoints_dir = "T2I_V2" |
|
default_crm_ckpt_name = ["pixel-diffusion.pth"] |
|
default_crm_conf_name = ["sd_v2_base_ipmv_zero_SNR.yaml"] |
|
default_crm_repo_id = "Zhengyi/CRM" |
|
config_path = "CRM_T2I_V2_configs" |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
cls.crm_checkpoints_dir_abs = os.path.join(CKPT_ROOT_PATH, cls.crm_checkpoints_dir) |
|
all_crm_models_names = get_list_filenames(cls.crm_checkpoints_dir_abs, SUPPORTED_CHECKPOINTS_EXTENSIONS) |
|
for ckpt_name in cls.default_crm_ckpt_name: |
|
if ckpt_name not in all_crm_models_names: |
|
all_crm_models_names += [ckpt_name] |
|
|
|
cls.t2i_v2_checkpoints_dir_abs = os.path.join(CKPT_ROOT_PATH, cls.t2i_v2_checkpoints_dir) |
|
|
|
cls.config_root_path_abs = os.path.join(CONFIG_ROOT_PATH, cls.config_path) |
|
return { |
|
"required": { |
|
"crm_model_name": (all_crm_models_names, ), |
|
"crm_config_path": (cls.default_crm_conf_name, ), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"T2IADAPTER_V2", |
|
"CRM_MVDIFFUSION_SAMPLER_V2", |
|
) |
|
RETURN_NAMES = ( |
|
"t2iadapter_v2", |
|
"crm_mvdiffusion_sampler_v2", |
|
) |
|
FUNCTION = "load_CRM" |
|
CATEGORY = "Comfy3D/Import|Export" |
|
|
|
def load_CRM(self, crm_model_name, crm_config_path): |
|
|
|
from CRM_T2I_V2.imagedream.ldm.util import ( |
|
instantiate_from_config, |
|
get_obj_from_str, |
|
) |
|
|
|
t2iadapter_v2 = T2IAdapterV2.from_pretrained(self.t2i_v2_checkpoints_dir_abs).to(DEVICE, dtype=WEIGHT_DTYPE) |
|
|
|
crm_config_path = os.path.join(self.config_root_path_abs, crm_config_path) |
|
|
|
ckpt_path = resume_or_download_model_from_hf(self.crm_checkpoints_dir_abs, self.default_crm_repo_id, crm_model_name, self.__class__.__name__) |
|
|
|
crm_config = OmegaConf.load(crm_config_path) |
|
|
|
crm_mvdiffusion_model = instantiate_from_config(crm_config.model) |
|
crm_mvdiffusion_model.load_state_dict(torch.load(ckpt_path, map_location="cpu"), strict=False) |
|
crm_mvdiffusion_model.device = DEVICE |
|
|
|
crm_mvdiffusion_model.clip_model = crm_mvdiffusion_model.clip_model.to(DEVICE, dtype=WEIGHT_DTYPE) |
|
crm_mvdiffusion_model.vae_model = crm_mvdiffusion_model.vae_model.to(DEVICE, dtype=WEIGHT_DTYPE) |
|
crm_mvdiffusion_model = crm_mvdiffusion_model.to(DEVICE, dtype=WEIGHT_DTYPE) |
|
|
|
crm_mvdiffusion_sampler_v2 = get_obj_from_str(crm_config.sampler.target)( |
|
crm_mvdiffusion_model, device=DEVICE, dtype=WEIGHT_DTYPE, **crm_config.sampler.params |
|
) |
|
|
|
cstr(f"[{self.__class__.__name__}] loaded model ckpt from {ckpt_path}").msg.print() |
|
|
|
return (t2iadapter_v2, crm_mvdiffusion_sampler_v2, ) |
|
|
|
class CRM_T2I_V2_Models: |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"t2iadapter_v2": ("T2IADAPTER_V2",), |
|
"crm_mvdiffusion_sampler_v2": ("CRM_MVDIFFUSION_SAMPLER_V2",), |
|
"reference_image": ("IMAGE",), |
|
"reference_mask": ("MASK",), |
|
"normal_maps": ("IMAGE",), |
|
"prompt": ("STRING", { |
|
"default": "3D assets", |
|
"multiline": True |
|
}), |
|
"prompt_neg": ("STRING", { |
|
"default": "uniform low no texture ugly, boring, bad anatomy, blurry, pixelated, obscure, unnatural colors, poor lighting, dull, and unclear.", |
|
"multiline": True |
|
}), |
|
"seed": ("INT", {"default": 1234, "min": 0, "max": 0xffffffffffffffff}), |
|
"mv_guidance_scale": ("FLOAT", {"default": 5.5, "min": 0.0, "step": 0.01}), |
|
"num_inference_steps": ("INT", {"default": 50, "min": 1}), |
|
|
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"IMAGE", |
|
"ORBIT_CAMPOSES", |
|
) |
|
RETURN_NAMES = ( |
|
"multiview_images", |
|
"orbit_camposes", |
|
) |
|
FUNCTION = "run_model" |
|
CATEGORY = "Comfy3D/Algorithm" |
|
|
|
def run_model( |
|
self, |
|
t2iadapter_v2, |
|
crm_mvdiffusion_sampler_v2, |
|
reference_image, |
|
reference_mask, |
|
normal_maps, |
|
prompt, |
|
prompt_neg, |
|
seed, |
|
mv_guidance_scale, |
|
num_inference_steps, |
|
): |
|
|
|
batch_reference_images = [CRMSamplerV2.process_pixel_img(img) for img in torch_imgs_to_pils(reference_image, reference_mask)] |
|
|
|
|
|
normal_maps = normal_maps.permute(0, 3, 1, 2).to(DEVICE, dtype=WEIGHT_DTYPE) |
|
down_intrablock_additional_residuals = t2iadapter_v2(normal_maps) |
|
down_intrablock_additional_residuals = [ |
|
sample.to(dtype=WEIGHT_DTYPE).chunk(reference_image.shape[0]) for sample in down_intrablock_additional_residuals |
|
] |
|
|
|
|
|
multiview_images = CRMSamplerV2.stage1_sample( |
|
crm_mvdiffusion_sampler_v2, |
|
batch_reference_images, |
|
prompt, |
|
prompt_neg, |
|
seed, |
|
mv_guidance_scale, |
|
num_inference_steps, |
|
additional_residuals=down_intrablock_additional_residuals |
|
).to(dtype=reference_image.dtype, device=reference_image.device) |
|
|
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
orbit_radius = [1.63634] * 6 |
|
orbit_center = [0.0] * 6 |
|
orbit_elevations, orbit_azimuths = ORBITPOSE_PRESET_DICT["CRM(6)"] |
|
orbit_camposes = compose_orbit_camposes(orbit_radius, orbit_elevations, orbit_azimuths, orbit_center, orbit_center, orbit_center) |
|
|
|
return (multiview_images, orbit_camposes) |
|
|
|
class Load_CRM_T2I_V3_Models: |
|
crm_checkpoints_dir = "CRM" |
|
crm_t2i_v3_checkpoints_dir = "CRM_T2I_V3" |
|
t2i_v2_checkpoints_dir = "T2I_V2" |
|
default_crm_t2i_v3_ckpt_name = ["pixel-diffusion_lora_80k_rank_60_Hyper.pth", "pixel-diffusion_dora_90k_rank_128_Hyper.pth"] |
|
default_crm_ckpt_name = ["pixel-diffusion_Hyper.pth"] |
|
default_crm_conf_name = ["sd_v2_base_ipmv_zero_SNR_Hyper.yaml"] |
|
default_crm_repo_id = "Zhengyi/CRM" |
|
config_path = "CRM_T2I_V3_configs" |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
cls.crm_checkpoints_dir_abs = os.path.join(CKPT_ROOT_PATH, cls.crm_checkpoints_dir) |
|
all_crm_models_names = get_list_filenames(cls.crm_checkpoints_dir_abs, SUPPORTED_CHECKPOINTS_EXTENSIONS) |
|
for ckpt_name in cls.default_crm_ckpt_name: |
|
if ckpt_name not in all_crm_models_names: |
|
all_crm_models_names += [ckpt_name] |
|
|
|
cls.crm_t2i_v3_checkpoints_dir_abs = os.path.join(CKPT_ROOT_PATH, cls.crm_t2i_v3_checkpoints_dir) |
|
all_crm_t2i_v3_models_names = get_list_filenames(cls.crm_t2i_v3_checkpoints_dir_abs, SUPPORTED_CHECKPOINTS_EXTENSIONS) |
|
for ckpt_name in cls.default_crm_t2i_v3_ckpt_name: |
|
if ckpt_name not in all_crm_t2i_v3_models_names: |
|
all_crm_t2i_v3_models_names += [ckpt_name] |
|
|
|
cls.t2i_v2_checkpoints_dir_abs = os.path.join(CKPT_ROOT_PATH, cls.t2i_v2_checkpoints_dir) |
|
|
|
cls.config_root_path_abs = os.path.join(CONFIG_ROOT_PATH, cls.config_path) |
|
return { |
|
"required": { |
|
"crm_model_name": (all_crm_models_names, ), |
|
"crm_t2i_v3_model_name": (all_crm_t2i_v3_models_names, ), |
|
"crm_config_path": (cls.default_crm_conf_name, ), |
|
"rank": ("INT", {"default": 64, "min": 1}), |
|
"use_dora": ("BOOLEAN", {"default": False}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"T2IADAPTER_V2", |
|
"CRM_MVDIFFUSION_SAMPLER_V3", |
|
) |
|
RETURN_NAMES = ( |
|
"t2iadapter_v2", |
|
"crm_mvdiffusion_sampler_v3", |
|
) |
|
FUNCTION = "load_CRM" |
|
CATEGORY = "Comfy3D/Import|Export" |
|
|
|
def load_CRM(self, crm_model_name, crm_t2i_v3_model_name, crm_config_path, rank, use_dora): |
|
|
|
from CRM_T2I_V3.imagedream.ldm.util import ( |
|
instantiate_from_config, |
|
get_obj_from_str, |
|
) |
|
|
|
t2iadapter_v2 = T2IAdapterV2.from_pretrained(self.t2i_v2_checkpoints_dir_abs).to(DEVICE, dtype=WEIGHT_DTYPE) |
|
|
|
crm_config_path = os.path.join(self.config_root_path_abs, crm_config_path) |
|
|
|
ckpt_path = resume_or_download_model_from_hf(self.crm_checkpoints_dir_abs, self.default_crm_repo_id, crm_model_name, self.__class__.__name__) |
|
|
|
crm_config = OmegaConf.load(crm_config_path) |
|
|
|
crm_mvdiffusion_model = instantiate_from_config(crm_config.model) |
|
crm_mvdiffusion_model.load_state_dict(torch.load(ckpt_path, map_location="cpu"), strict=False) |
|
crm_mvdiffusion_model.device = DEVICE |
|
|
|
crm_mvdiffusion_model.clip_model = crm_mvdiffusion_model.clip_model.to(DEVICE, dtype=WEIGHT_DTYPE) |
|
crm_mvdiffusion_model.vae_model = crm_mvdiffusion_model.vae_model.to(DEVICE, dtype=WEIGHT_DTYPE) |
|
crm_mvdiffusion_model = crm_mvdiffusion_model.to(DEVICE, dtype=WEIGHT_DTYPE) |
|
|
|
crm_mvdiffusion_sampler_v3 = get_obj_from_str(crm_config.sampler.target)( |
|
crm_mvdiffusion_model, device=DEVICE, dtype=WEIGHT_DTYPE, **crm_config.sampler.params |
|
) |
|
|
|
unet = crm_mvdiffusion_model.model |
|
mvdiffusion_model = unet.diffusion_model |
|
self.inject_lora(mvdiffusion_model, rank, use_dora) |
|
|
|
pretrained_lora_model_path = os.path.join(self.crm_t2i_v3_checkpoints_dir_abs, crm_t2i_v3_model_name) |
|
unet.load_state_dict(torch.load(pretrained_lora_model_path, map_location="cpu"), strict=False) |
|
|
|
cstr(f"[{self.__class__.__name__}] loaded model ckpt from {ckpt_path} and {pretrained_lora_model_path}").msg.print() |
|
|
|
return (t2iadapter_v2, crm_mvdiffusion_sampler_v3, ) |
|
|
|
def inject_lora(self, mvdiffusion_model, rank=64, use_dora=False): |
|
from peft import LoraConfig, inject_adapter_in_model |
|
|
|
unet_lora_config = LoraConfig( |
|
r=rank, |
|
use_dora=use_dora, |
|
lora_alpha=rank, |
|
init_lora_weights="gaussian", |
|
target_modules=["to_k", "to_k_ip", "to_q", "to_v", "to_v_ip", "to_out.0"], |
|
) |
|
|
|
inject_adapter_in_model(unet_lora_config, mvdiffusion_model.input_blocks, "DoRA" if use_dora else "LoRA") |
|
inject_adapter_in_model(unet_lora_config, mvdiffusion_model.middle_block, "DoRA" if use_dora else "LoRA") |
|
inject_adapter_in_model(unet_lora_config, mvdiffusion_model.output_blocks, "DoRA" if use_dora else "LoRA") |
|
|
|
class CRM_T2I_V3_Models: |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"t2iadapter_v2": ("T2IADAPTER_V2",), |
|
"crm_mvdiffusion_sampler_v3": ("CRM_MVDIFFUSION_SAMPLER_V3",), |
|
"reference_image": ("IMAGE",), |
|
"reference_mask": ("MASK",), |
|
"normal_maps": ("IMAGE",), |
|
"prompt": ("STRING", { |
|
"default": "3D assets", |
|
"multiline": True |
|
}), |
|
"prompt_neg": ("STRING", { |
|
"default": "uniform low no texture ugly, boring, bad anatomy, blurry, pixelated, obscure, unnatural colors, poor lighting, dull, and unclear.", |
|
"multiline": True |
|
}), |
|
"seed": ("INT", {"default": 1234, "min": 0, "max": 0xffffffffffffffff}), |
|
"mv_guidance_scale": ("FLOAT", {"default": 5.5, "min": 0.0, "step": 0.01}), |
|
"num_inference_steps": ("INT", {"default": 50, "min": 1}), |
|
|
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"IMAGE", |
|
"IMAGE", |
|
"IMAGE", |
|
"ORBIT_CAMPOSES", |
|
) |
|
RETURN_NAMES = ( |
|
"multiview_albedos", |
|
"multiview_metalness", |
|
"multiview_roughness", |
|
"orbit_camposes", |
|
) |
|
FUNCTION = "run_model" |
|
CATEGORY = "Comfy3D/Algorithm" |
|
|
|
def run_model( |
|
self, |
|
t2iadapter_v2, |
|
crm_mvdiffusion_sampler_v3, |
|
reference_image, |
|
reference_mask, |
|
normal_maps, |
|
prompt, |
|
prompt_neg, |
|
seed, |
|
mv_guidance_scale, |
|
num_inference_steps, |
|
): |
|
|
|
batch_reference_images = [CRMSamplerV3.process_pixel_img(img) for img in torch_imgs_to_pils(reference_image, reference_mask)] |
|
|
|
|
|
normal_maps = normal_maps.permute(0, 3, 1, 2).to(DEVICE, dtype=WEIGHT_DTYPE) |
|
down_intrablock_additional_residuals = t2iadapter_v2(normal_maps) |
|
down_intrablock_additional_residuals = [ |
|
sample.to(dtype=WEIGHT_DTYPE).chunk(reference_image.shape[0]) for sample in down_intrablock_additional_residuals |
|
] |
|
|
|
all_multiview_images = [[], [], []] |
|
|
|
|
|
multiview_images = CRMSamplerV3.stage1_sample( |
|
crm_mvdiffusion_sampler_v3, |
|
batch_reference_images, |
|
prompt, |
|
prompt_neg, |
|
seed, |
|
mv_guidance_scale, |
|
num_inference_steps, |
|
additional_residuals=down_intrablock_additional_residuals |
|
) |
|
|
|
num_mvs = crm_mvdiffusion_sampler_v3.num_frames - 1 |
|
num_branches = crm_mvdiffusion_sampler_v3.model.model.diffusion_model.num_branches |
|
ip_batch_size = reference_image.shape[0] |
|
i_mvs = 0 |
|
for i_branch in range(num_branches): |
|
for _ in range(ip_batch_size): |
|
batch_of_mv_imgs = torch.stack(multiview_images[i_mvs:i_mvs+num_mvs], axis=0) |
|
i_mvs += num_mvs |
|
|
|
all_multiview_images[i_branch].append(batch_of_mv_imgs) |
|
|
|
output_images = [None] * num_branches |
|
for i_branch in range(num_branches): |
|
output_images[i_branch] = torch.cat(all_multiview_images[i_branch], dim=0).to(reference_image.device, dtype=reference_image.dtype) |
|
|
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
orbit_radius = [1.63634] * 6 |
|
orbit_center = [0.0] * 6 |
|
orbit_elevations, orbit_azimuths = ORBITPOSE_PRESET_DICT["CRM(6)"] |
|
orbit_camposes = compose_orbit_camposes(orbit_radius, orbit_elevations, orbit_azimuths, orbit_center, orbit_center, orbit_center) |
|
|
|
return (output_images[0], output_images[1], output_images[2], orbit_camposes) |
|
|
|
class Hunyuan3D_V1_MVDiffusion_Model: |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"mvdiffusion_pipe": ("DIFFUSERS_PIPE",), |
|
"reference_image": ("IMAGE",), |
|
"reference_mask": ("MASK",), |
|
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), |
|
"mv_guidance_scale": ("FLOAT", {"default": 2.0, "min": 0.0, "step": 0.01}), |
|
"num_inference_steps": ("INT", {"default": 50, "min": 1}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"IMAGE", |
|
"IMAGE", |
|
) |
|
RETURN_NAMES = ( |
|
"multiview_image_grid", |
|
"condition_image", |
|
) |
|
FUNCTION = "run_mvdiffusion" |
|
CATEGORY = "Comfy3D/Algorithm" |
|
|
|
@torch.no_grad() |
|
def run_mvdiffusion( |
|
self, |
|
mvdiffusion_pipe, |
|
reference_image, |
|
reference_mask, |
|
seed, |
|
mv_guidance_scale, |
|
num_inference_steps, |
|
): |
|
single_image = torch_imgs_to_pils(reference_image, reference_mask)[0] |
|
|
|
generator = torch.Generator(device=mvdiffusion_pipe.device).manual_seed(seed) |
|
views_grid_pil, cond_pil = mvdiffusion_pipe(single_image, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=mv_guidance_scale, |
|
generat=generator |
|
).images |
|
|
|
multiview_image_grid = pils_to_torch_imgs(views_grid_pil, reference_image.dtype, reference_image.device) |
|
condition_image = pils_to_torch_imgs(cond_pil, reference_image.dtype, reference_image.device) |
|
|
|
return (multiview_image_grid, condition_image) |
|
|
|
class Load_Hunyuan3D_V1_Reconstruction_Model: |
|
checkpoints_dir = "svrm/svrm.safetensors" |
|
default_repo_id = "tencent/Hunyuan3D-1" |
|
config_path = "Hunyuan3D_V1_svrm_config.yaml" |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
cls.config_root_path_abs = os.path.join(CONFIG_ROOT_PATH, cls.config_path) |
|
return { |
|
"required": { |
|
"force_download": ("BOOLEAN", {"default": False}), |
|
"use_lite": ("BOOLEAN", {"default": True}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"HUNYUAN3D_V1_RECONSTRUCTION_MODEL", |
|
) |
|
RETURN_NAMES = ( |
|
"hunyuan3d_v1_reconstruction_model", |
|
) |
|
FUNCTION = "load_model" |
|
CATEGORY = "Comfy3D/Import|Export" |
|
|
|
def load_model(self, force_download, use_lite): |
|
|
|
ckpt_download_dir = os.path.join(CKPT_DIFFUSERS_PATH, self.default_repo_id) |
|
snapshot_download(repo_id=self.default_repo_id, local_dir=ckpt_download_dir, force_download=force_download, repo_type="model", ignore_patterns=HF_DOWNLOAD_IGNORE) |
|
|
|
mv23d_ckt_path = os.path.join(ckpt_download_dir, self.checkpoints_dir) |
|
hunyuan3d_v1_reconstruction_model = Views2Mesh(self.config_root_path_abs, mv23d_ckt_path, DEVICE, use_lite=use_lite) |
|
|
|
cstr(f"[{self.__class__.__name__}] loaded model ckpt from {mv23d_ckt_path}").msg.print() |
|
return (hunyuan3d_v1_reconstruction_model,) |
|
|
|
class Hunyuan3D_V1_Reconstruction_Model: |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"hunyuan3d_v1_reconstruction_model": ("HUNYUAN3D_V1_RECONSTRUCTION_MODEL",), |
|
"multiview_image_grid": ("IMAGE",), |
|
"condition_image": ("IMAGE",), |
|
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), |
|
"target_face_count": ("INT", {"default": 90000, "min": 1}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"MESH", |
|
) |
|
RETURN_NAMES = ( |
|
"mesh", |
|
) |
|
|
|
FUNCTION = "run_model" |
|
CATEGORY = "Comfy3D/Algorithm" |
|
|
|
@torch.no_grad() |
|
def run_model(self, hunyuan3d_v1_reconstruction_model, multiview_image_grid, condition_image, seed, target_face_count): |
|
mv_grid_pil = torch_imgs_to_pils(multiview_image_grid)[0] |
|
condition_pil = torch_imgs_to_pils(condition_image)[0] |
|
|
|
vertices, faces, vtx_colors = hunyuan3d_v1_reconstruction_model( |
|
mv_grid_pil, |
|
condition_pil, |
|
seed=seed, |
|
target_face_count=target_face_count |
|
) |
|
vertices, faces, vtx_colors = torch.from_numpy(vertices).to(DEVICE), torch.from_numpy(faces).to(torch.int64).to(DEVICE), torch.from_numpy(vtx_colors).to(DEVICE) |
|
mesh = Mesh(v=vertices, f=faces.to(torch.int64), vc=vtx_colors, device=DEVICE) |
|
mesh.auto_normal() |
|
|
|
return (mesh,) |
|
|
|
class Hunyuan3D_V2_DiT_Flow_Matching_Model: |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"hunyuan3d_v2_i23d_pipe": ("DIFFUSERS_PIPE",), |
|
"reference_image": ("IMAGE",), |
|
"reference_mask": ("MASK",), |
|
"seed": ("INT", {"default": 1234, "min": 0, "max": 0xffffffffffffffff}), |
|
"guidance_scale": ("FLOAT", {"default": 5.5, "min": 0.0, "step": 0.01}), |
|
"num_inference_steps": ("INT", {"default": 30, "min": 1}), |
|
"octree_resolution": ("INT", {"default": 256, "min": 1}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"MESH", |
|
) |
|
RETURN_NAMES = ( |
|
"mesh", |
|
) |
|
FUNCTION = "run_model" |
|
CATEGORY = "Comfy3D/Algorithm" |
|
|
|
@torch.no_grad() |
|
def run_model( |
|
self, |
|
hunyuan3d_v2_i23d_pipe, |
|
reference_image, |
|
reference_mask, |
|
seed, |
|
guidance_scale, |
|
num_inference_steps, |
|
octree_resolution, |
|
): |
|
single_image = torch_imgs_to_pils(reference_image, reference_mask)[0] |
|
|
|
generator = torch.Generator(device=hunyuan3d_v2_i23d_pipe.device).manual_seed(seed) |
|
mesh = hunyuan3d_v2_i23d_pipe( |
|
image=single_image, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
generator=generator, |
|
octree_resolution=octree_resolution |
|
)[0] |
|
|
|
mesh = FloaterRemover()(mesh) |
|
mesh = DegenerateFaceRemover()(mesh) |
|
mesh = FaceReducer()(mesh) |
|
|
|
mesh = Mesh.load_trimesh(given_mesh=mesh) |
|
|
|
return (mesh,) |
|
|
|
class Hunyuan3D_V2_Paint_Model: |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"hunyuan3d_v2_texgen_pipe": ("DIFFUSERS_PIPE",), |
|
"reference_image": ("IMAGE",), |
|
"reference_mask": ("MASK",), |
|
"mesh": ("MESH",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"MESH", |
|
) |
|
RETURN_NAMES = ( |
|
"mesh", |
|
) |
|
FUNCTION = "run_model" |
|
CATEGORY = "Comfy3D/Algorithm" |
|
|
|
@torch.no_grad() |
|
def run_model( |
|
self, |
|
hunyuan3d_v2_texgen_pipe, |
|
reference_image, |
|
reference_mask, |
|
mesh, |
|
): |
|
single_image = torch_imgs_to_pils(reference_image, reference_mask)[0] |
|
|
|
v_np = mesh.v.detach().cpu().numpy() |
|
f_np = mesh.f.detach().cpu().numpy() |
|
|
|
mesh = trimesh.Trimesh(vertices=v_np, faces=f_np) |
|
mesh = hunyuan3d_v2_texgen_pipe(mesh, single_image) |
|
|
|
mesh = Mesh.load_trimesh(given_mesh=mesh) |
|
mesh.auto_normal() |
|
|
|
return (mesh,) |
|
|
|
class Load_Trellis_Structured_3D_Latents_Models: |
|
default_repo_id = "JeffreyXiang/TRELLIS-image-large" |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"repo_id": ("STRING", {"default": cls.default_repo_id, "multiline": False}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"TRELLIS_PIPE", |
|
) |
|
RETURN_NAMES = ( |
|
"trellis_pipe", |
|
) |
|
FUNCTION = "load_pipe" |
|
CATEGORY = "Comfy3D/Import|Export" |
|
|
|
def load_pipe(self, repo_id): |
|
|
|
pipe = TrellisImageTo3DPipeline.from_pretrained(repo_id) |
|
pipe.to(DEVICE) |
|
|
|
return (pipe,) |
|
|
|
|
|
class Trellis_Structured_3D_Latents_Models: |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"trellis_pipe": ("TRELLIS_PIPE",), |
|
"reference_image": ("IMAGE",), |
|
"reference_mask": ("MASK",), |
|
"seed": ("INT", {"default": 1, "min": 0, "max": 0xffffffffffffffff}), |
|
"sparse_structure_guidance_scale": ("FLOAT", {"default": 7.5, "min": 0.0, "step": 0.01}), |
|
"sparse_structure_sample_steps": ("INT", {"default": 12, "min": 1}), |
|
"structured_latent_guidance_scale": ("FLOAT", {"default": 3.0, "min": 0.0, "step": 0.01}), |
|
"structured_latent_sample_steps": ("INT", {"default": 12, "min": 1}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ( |
|
"MESH", |
|
) |
|
RETURN_NAMES = ( |
|
"mesh", |
|
) |
|
FUNCTION = "run_model" |
|
CATEGORY = "Comfy3D/Algorithm" |
|
|
|
@torch.no_grad() |
|
def run_model( |
|
self, |
|
trellis_pipe, |
|
reference_image, |
|
reference_mask, |
|
seed, |
|
sparse_structure_guidance_scale, |
|
sparse_structure_sample_steps, |
|
structured_latent_guidance_scale, |
|
structured_latent_sample_steps, |
|
): |
|
single_image = torch_imgs_to_pils(reference_image, reference_mask)[0] |
|
|
|
with torch.inference_mode(False): |
|
outputs = trellis_pipe.run( |
|
single_image, |
|
|
|
seed=seed, |
|
formats=["gaussian", "mesh"], |
|
sparse_structure_sampler_params={ |
|
"cfg_strength": sparse_structure_guidance_scale, |
|
"steps": sparse_structure_sample_steps, |
|
}, |
|
slat_sampler_params={ |
|
"cfg_strength": structured_latent_guidance_scale, |
|
"steps": structured_latent_sample_steps, |
|
}, |
|
) |
|
|
|
|
|
vertices, faces, uvs, texture = postprocessing_utils.finalize_mesh( |
|
outputs['gaussian'][0], |
|
outputs['mesh'][0], |
|
|
|
simplify=0.95, |
|
texture_size=1024, |
|
) |
|
|
|
vertices, faces, uvs, texture = torch.from_numpy(vertices).to(DEVICE), torch.from_numpy(faces).to(torch.int64).to(DEVICE), torch.from_numpy(uvs).to(DEVICE), torch.from_numpy(texture).to(DEVICE) |
|
mesh = Mesh(v=vertices, f=faces, vt=uvs, ft=faces, albedo=texture, device=DEVICE) |
|
mesh.auto_normal() |
|
|
|
return (mesh,) |
|
|
|
|
|
|
|
|