|
from typing import Callable, Union |
|
from torch import Tensor |
|
import torch |
|
import os |
|
|
|
import comfy.ops |
|
import comfy.utils |
|
import comfy.model_management |
|
import comfy.model_detection |
|
import comfy.controlnet as comfy_cn |
|
from comfy.controlnet import ControlBase, ControlNet, ControlNetSD35, ControlLora, T2IAdapter, StrengthType |
|
from comfy.model_patcher import ModelPatcher |
|
|
|
from .control_sparsectrl import SparseControlNet, SparseSettings, SparseConst, InterfaceAnimateDiffModel, create_sparse_modelpatcher, load_sparsectrl_motionmodel |
|
from .control_lllite import LLLiteModule, LLLitePatch, load_controllllite |
|
from .control_svd import svd_unet_config_from_diffusers_unet, SVDControlNet, svd_unet_to_diffusers |
|
from .utils import (AdvancedControlBase, TimestepKeyframeGroup, LatentKeyframeGroup, AbstractPreprocWrapper, ControlWeightType, ControlWeights, WeightTypeException, Extras, |
|
manual_cast_clean_groupnorm, disable_weight_init_clean_groupnorm, WrapperConsts, prepare_mask_batch, get_properly_arranged_t2i_weights, load_torch_file_with_dict_factory, |
|
broadcast_image_to_extend, extend_to_batch_size, ORIG_PREVIOUS_CONTROLNET, CONTROL_INIT_BY_ACN) |
|
from .logger import logger |
|
|
|
|
|
class ControlNetAdvanced(ControlNet, AdvancedControlBase): |
|
def __init__(self, control_model, timestep_keyframes: TimestepKeyframeGroup, global_average_pooling=False, compression_ratio=8, latent_format=None, load_device=None, manual_cast_dtype=None, |
|
extra_conds=["y"], strength_type=StrengthType.CONSTANT, concat_mask=False, preprocess_image=lambda a: a): |
|
super().__init__(control_model=control_model, global_average_pooling=global_average_pooling, compression_ratio=compression_ratio, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype, |
|
extra_conds=extra_conds, strength_type=strength_type, concat_mask=concat_mask, preprocess_image=preprocess_image) |
|
AdvancedControlBase.__init__(self, super(type(self), self), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.controlnet()) |
|
self.is_flux = False |
|
self.x_noisy_shape = None |
|
|
|
def get_universal_weights(self) -> ControlWeights: |
|
def cn_weights_func(idx: int, control: dict[str, list[Tensor]], key: str): |
|
if key == "middle": |
|
return 1.0 * self.weights.extras.get(Extras.MIDDLE_MULT, 1.0) |
|
c_len = len(control[key]) |
|
raw_weights = [(self.weights.base_multiplier ** float((c_len) - i)) for i in range(c_len+1)] |
|
raw_weights = raw_weights[:-1] |
|
if key == "input": |
|
raw_weights.reverse() |
|
return raw_weights[idx] |
|
return self.weights.copy_with_new_weights(new_weight_func=cn_weights_func) |
|
|
|
def get_control_advanced(self, x_noisy, t, cond, batched_number, transformer_options): |
|
|
|
return self.sliding_get_control(x_noisy, t, cond, batched_number, transformer_options) |
|
|
|
def sliding_get_control(self, x_noisy: Tensor, t, cond, batched_number, transformer_options): |
|
control_prev = None |
|
if self.previous_controlnet is not None: |
|
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number, transformer_options) |
|
|
|
if self.timestep_range is not None: |
|
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]: |
|
if control_prev is not None: |
|
return control_prev |
|
else: |
|
return None |
|
|
|
dtype = self.control_model.dtype |
|
if self.manual_cast_dtype is not None: |
|
dtype = self.manual_cast_dtype |
|
|
|
|
|
|
|
if self.sub_idxs is not None or self.cond_hint is None or x_noisy.shape[2] * self.real_compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.real_compression_ratio != self.cond_hint.shape[3]: |
|
if self.cond_hint is not None: |
|
del self.cond_hint |
|
self.cond_hint = None |
|
self.real_compression_ratio = self.compression_ratio |
|
compression_ratio = self.compression_ratio |
|
if self.vae is not None and self.mult_by_ratio_when_vae: |
|
compression_ratio *= self.vae.downscale_ratio |
|
|
|
if self.sub_idxs is not None: |
|
actual_cond_hint_orig = self.cond_hint_original |
|
if self.cond_hint_original.size(0) < self.full_latent_length: |
|
actual_cond_hint_orig = extend_to_batch_size(tensor=actual_cond_hint_orig, batch_size=self.full_latent_length) |
|
self.cond_hint = comfy.utils.common_upscale(actual_cond_hint_orig[self.sub_idxs], x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, self.upscale_algorithm, "center") |
|
else: |
|
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, self.upscale_algorithm, "center") |
|
self.cond_hint = self.preprocess_image(self.cond_hint) |
|
if self.vae is not None: |
|
loaded_models = comfy.model_management.loaded_models(only_currently_used=True) |
|
self.cond_hint = self.vae.encode(self.cond_hint.movedim(1, -1)) |
|
comfy.model_management.load_models_gpu(loaded_models) |
|
if not self.mult_by_ratio_when_vae: |
|
self.real_compression_ratio = 1 |
|
if self.latent_format is not None: |
|
self.cond_hint = self.latent_format.process_in(self.cond_hint) |
|
if len(self.extra_concat_orig) > 0: |
|
to_concat = [] |
|
for c in self.extra_concat_orig: |
|
c = c.to(self.cond_hint.device) |
|
c = comfy.utils.common_upscale(c, self.cond_hint.shape[3], self.cond_hint.shape[2], self.upscale_algorithm, "center") |
|
to_concat.append(comfy.utils.repeat_to_batch_size(c, self.cond_hint.shape[0])) |
|
self.cond_hint = torch.cat([self.cond_hint] + to_concat, dim=1) |
|
|
|
self.cond_hint = self.cond_hint.to(device=x_noisy.device, dtype=dtype) |
|
if x_noisy.shape[0] != self.cond_hint.shape[0]: |
|
self.cond_hint = broadcast_image_to_extend(self.cond_hint, x_noisy.shape[0], batched_number) |
|
|
|
|
|
self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number, dtype=dtype) |
|
|
|
context = cond.get('crossattn_controlnet', cond['c_crossattn']) |
|
extra = self.extra_args.copy() |
|
for c in self.extra_conds: |
|
temp = cond.get(c, None) |
|
if temp is not None: |
|
extra[c] = temp.to(dtype) |
|
|
|
timestep = self.model_sampling_current.timestep(t) |
|
x_noisy = self.model_sampling_current.calculate_input(t, x_noisy) |
|
self.x_noisy_shape = x_noisy.shape |
|
|
|
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.to(dtype), context=context.to(dtype), **extra) |
|
return self.control_merge(control, control_prev, output_dtype=None) |
|
|
|
def pre_run_advanced(self, *args, **kwargs): |
|
self.is_flux = "Flux" in str(type(self.control_model).__name__) |
|
return super().pre_run_advanced(*args, **kwargs) |
|
|
|
def apply_advanced_strengths_and_masks(self, x: Tensor, batched_number: int, flux_shape=None): |
|
if self.is_flux: |
|
flux_shape = self.x_noisy_shape |
|
return super().apply_advanced_strengths_and_masks(x, batched_number, flux_shape) |
|
|
|
def copy(self, subtype=None): |
|
if subtype is None: |
|
subtype = ControlNetAdvanced |
|
c = subtype(self.control_model, self.timestep_keyframes, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype) |
|
c.control_model = self.control_model |
|
c.control_model_wrapped = self.control_model_wrapped |
|
self.copy_to(c) |
|
self.copy_to_advanced(c) |
|
return c |
|
|
|
def cleanup_advanced(self): |
|
self.x_noisy_shape = None |
|
return super().cleanup_advanced() |
|
|
|
@staticmethod |
|
def from_vanilla(v: ControlNet, timestep_keyframe: TimestepKeyframeGroup=None, subtype=None) -> 'ControlNetAdvanced': |
|
if subtype is None: |
|
subtype = ControlNetAdvanced |
|
to_return = subtype(control_model=v.control_model, timestep_keyframes=timestep_keyframe, |
|
global_average_pooling=v.global_average_pooling, compression_ratio=v.compression_ratio, latent_format=v.latent_format, load_device=v.load_device, |
|
manual_cast_dtype=v.manual_cast_dtype, extra_conds=v.extra_conds, strength_type=v.strength_type, concat_mask=v.concat_mask, preprocess_image=v.preprocess_image) |
|
v.copy_to(to_return) |
|
to_return.control_model_wrapped = v.control_model_wrapped.clone() |
|
return to_return |
|
|
|
|
|
class ControlNetSD35Advanced(ControlNetSD35, ControlNetAdvanced): |
|
def __init__(self, *args, **kwargs): |
|
ControlNetAdvanced.__init__(self, *args, **kwargs) |
|
|
|
def copy(self): |
|
return ControlNetAdvanced.copy(self, subtype=ControlNetSD35Advanced) |
|
|
|
@staticmethod |
|
def from_vanilla(v: ControlNetSD35, timestep_keyframe=None): |
|
return ControlNetAdvanced.from_vanilla(v, timestep_keyframe, subtype=ControlNetSD35Advanced) |
|
|
|
|
|
class T2IAdapterAdvanced(T2IAdapter, AdvancedControlBase): |
|
def __init__(self, t2i_model, timestep_keyframes: TimestepKeyframeGroup, channels_in, compression_ratio=8, upscale_algorithm="nearest_exact", device=None): |
|
super().__init__(t2i_model=t2i_model, channels_in=channels_in, compression_ratio=compression_ratio, upscale_algorithm=upscale_algorithm, device=device) |
|
AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.t2iadapter()) |
|
|
|
def control_merge_inject(self, control: dict[str, list[Tensor]], control_prev, output_dtype): |
|
|
|
|
|
for key in control: |
|
control_current = control[key] |
|
for i in range(len(control_current)): |
|
x = control_current[i] |
|
if x is not None and x.size(0) == 1 and x.size(0) != self.batch_size: |
|
control_current[i] = x.repeat(self.batch_size, 1, 1, 1)[:self.batch_size] |
|
return AdvancedControlBase.control_merge_inject(self, control, control_prev, output_dtype) |
|
|
|
def get_universal_weights(self) -> ControlWeights: |
|
def t2i_weights_func(idx: int, control: dict[str, list[Tensor]], key: str): |
|
if key == "middle": |
|
return 1.0 * self.weights.extras.get(Extras.MIDDLE_MULT, 1.0) |
|
c_len = 8 |
|
raw_weights = [(self.weights.base_multiplier ** float((c_len-1) - i)) for i in range(c_len)] |
|
raw_weights = [raw_weights[-c_len], raw_weights[-3], raw_weights[-2], raw_weights[-1]] |
|
raw_weights = get_properly_arranged_t2i_weights(raw_weights) |
|
if key == "input": |
|
raw_weights.reverse() |
|
return raw_weights[idx] |
|
return self.weights.copy_with_new_weights(new_weight_func=t2i_weights_func) |
|
|
|
def get_calc_pow(self, idx: int, control: dict[str, list[Tensor]], key: str) -> int: |
|
if key == "middle": |
|
return 0 |
|
|
|
c_len = 8 |
|
indeces = [(c_len-1) - i for i in range(c_len)] |
|
indeces = [indeces[-c_len], indeces[-3], indeces[-2], indeces[-1]] |
|
indeces = get_properly_arranged_t2i_weights(indeces) |
|
if key == "input": |
|
indeces.reverse() |
|
return indeces[idx] |
|
|
|
def get_control_advanced(self, x_noisy, t, cond, batched_number, transformer_options): |
|
try: |
|
|
|
if self.sub_idxs is not None: |
|
|
|
full_cond_hint_original = self.cond_hint_original |
|
actual_cond_hint_orig = full_cond_hint_original |
|
del self.cond_hint |
|
self.cond_hint = None |
|
if full_cond_hint_original.size(0) < self.full_latent_length: |
|
actual_cond_hint_orig = extend_to_batch_size(tensor=full_cond_hint_original, batch_size=full_cond_hint_original.size(0)) |
|
self.cond_hint_original = actual_cond_hint_orig[self.sub_idxs] |
|
|
|
self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number) |
|
return super().get_control(x_noisy, t, cond, batched_number, transformer_options) |
|
finally: |
|
if self.sub_idxs is not None: |
|
|
|
self.cond_hint_original = full_cond_hint_original |
|
del full_cond_hint_original |
|
|
|
def copy(self): |
|
c = T2IAdapterAdvanced(self.t2i_model, self.timestep_keyframes, self.channels_in, self.compression_ratio, self.upscale_algorithm) |
|
self.copy_to(c) |
|
self.copy_to_advanced(c) |
|
return c |
|
|
|
def cleanup(self): |
|
super().cleanup() |
|
self.cleanup_advanced() |
|
|
|
@staticmethod |
|
def from_vanilla(v: T2IAdapter, timestep_keyframe: TimestepKeyframeGroup=None) -> 'T2IAdapterAdvanced': |
|
to_return = T2IAdapterAdvanced(t2i_model=v.t2i_model, timestep_keyframes=timestep_keyframe, channels_in=v.channels_in, |
|
compression_ratio=v.compression_ratio, upscale_algorithm=v.upscale_algorithm, device=v.device) |
|
v.copy_to(to_return) |
|
return to_return |
|
|
|
|
|
class ControlLoraAdvanced(ControlLora, AdvancedControlBase): |
|
def __init__(self, control_weights, timestep_keyframes: TimestepKeyframeGroup, global_average_pooling=False): |
|
super().__init__(control_weights=control_weights, global_average_pooling=global_average_pooling) |
|
AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.controllora()) |
|
|
|
self.get_control_advanced = ControlNetAdvanced.get_control_advanced.__get__(self, type(self)) |
|
self.sliding_get_control = ControlNetAdvanced.sliding_get_control.__get__(self, type(self)) |
|
|
|
def get_universal_weights(self) -> ControlWeights: |
|
raw_weights = [(self.weights.base_multiplier ** float(9 - i)) for i in range(10)] |
|
return self.weights.copy_with_new_weights(raw_weights) |
|
|
|
def copy(self): |
|
c = ControlLoraAdvanced(self.control_weights, self.timestep_keyframes, global_average_pooling=self.global_average_pooling) |
|
self.copy_to(c) |
|
self.copy_to_advanced(c) |
|
return c |
|
|
|
def cleanup(self): |
|
super().cleanup() |
|
self.cleanup_advanced() |
|
|
|
@staticmethod |
|
def from_vanilla(v: ControlLora, timestep_keyframe: TimestepKeyframeGroup=None) -> 'ControlLoraAdvanced': |
|
to_return = ControlLoraAdvanced(control_weights=v.control_weights, timestep_keyframes=timestep_keyframe, |
|
global_average_pooling=v.global_average_pooling) |
|
v.copy_to(to_return) |
|
return to_return |
|
|
|
|
|
class SVDControlNetAdvanced(ControlNetAdvanced): |
|
def __init__(self, control_model: SVDControlNet, timestep_keyframes: TimestepKeyframeGroup, global_average_pooling=False, load_device=None, manual_cast_dtype=None): |
|
super().__init__(control_model=control_model, timestep_keyframes=timestep_keyframes, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype) |
|
|
|
def set_cond_hint_inject(self, *args, **kwargs): |
|
to_return = super().set_cond_hint_inject(*args, **kwargs) |
|
|
|
self.cond_hint_original = self.cond_hint_original * 2.0 - 1.0 |
|
return to_return |
|
|
|
def get_control_advanced(self, x_noisy, t, cond, batched_number, transformer_options): |
|
control_prev = None |
|
if self.previous_controlnet is not None: |
|
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number, transformer_options) |
|
|
|
if self.timestep_range is not None: |
|
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]: |
|
if control_prev is not None: |
|
return control_prev |
|
else: |
|
return None |
|
|
|
dtype = self.control_model.dtype |
|
if self.manual_cast_dtype is not None: |
|
dtype = self.manual_cast_dtype |
|
|
|
output_dtype = x_noisy.dtype |
|
|
|
|
|
if self.sub_idxs is not None or self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]: |
|
if self.cond_hint is not None: |
|
del self.cond_hint |
|
self.cond_hint = None |
|
|
|
if self.sub_idxs is not None: |
|
actual_cond_hint_orig = self.cond_hint_original |
|
if self.cond_hint_original.size(0) < self.full_latent_length: |
|
actual_cond_hint_orig = extend_to_batch_size(tensor=actual_cond_hint_orig, batch_size=self.full_latent_length) |
|
self.cond_hint = comfy.utils.common_upscale(actual_cond_hint_orig[self.sub_idxs], x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(dtype).to(x_noisy.device) |
|
else: |
|
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(dtype).to(x_noisy.device) |
|
if x_noisy.shape[0] != self.cond_hint.shape[0]: |
|
self.cond_hint = broadcast_image_to_extend(self.cond_hint, x_noisy.shape[0], batched_number) |
|
|
|
|
|
self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number, dtype=dtype) |
|
|
|
context = cond.get('crossattn_controlnet', cond['c_crossattn']) |
|
|
|
y = cond.get('y', None) |
|
if y is not None: |
|
y = y.to(dtype) |
|
timestep = self.model_sampling_current.timestep(t) |
|
x_noisy = self.model_sampling_current.calculate_input(t, x_noisy) |
|
|
|
if cond.get('c_concat', None) is not None: |
|
x_noisy = torch.cat([x_noisy] + [cond['c_concat']], dim=1) |
|
|
|
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(dtype), y=y, cond=cond) |
|
return self.control_merge(control, control_prev, output_dtype) |
|
|
|
def copy(self): |
|
c = SVDControlNetAdvanced(self.control_model, self.timestep_keyframes, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype) |
|
self.copy_to(c) |
|
self.copy_to_advanced(c) |
|
return c |
|
|
|
|
|
class SparseCtrlAdvanced(ControlNetAdvanced): |
|
def __init__(self, control_model: SparseControlNet, motion_model: InterfaceAnimateDiffModel, |
|
timestep_keyframes: TimestepKeyframeGroup, sparse_settings: SparseSettings=None, global_average_pooling=False, load_device=None, manual_cast_dtype=None): |
|
super().__init__(control_model=None, timestep_keyframes=timestep_keyframes, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype) |
|
self.control_model = control_model |
|
if control_model is not None: |
|
self.control_model_wrapped: ModelPatcher = create_sparse_modelpatcher(self.control_model, motion_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device()) |
|
self.prepare_conditioning_info() |
|
self.add_compatible_weight(ControlWeightType.SPARSECTRL) |
|
self.postpone_condhint_latents_check = True |
|
self.sparse_settings = sparse_settings if sparse_settings is not None else SparseSettings.default() |
|
self.model_latent_format = None |
|
self.preprocessed = False |
|
|
|
def prepare_conditioning_info(self): |
|
if self.control_model.use_simplified_conditioning_embedding: |
|
|
|
|
|
self.allow_condhint_latents = True |
|
|
|
@property |
|
def motion_model(self) -> InterfaceAnimateDiffModel: |
|
motion_models = self.control_model_wrapped.get_additional_models_with_key(WrapperConsts.ACN) |
|
if len(motion_models) == 0: |
|
return None |
|
return motion_models[0].model |
|
|
|
def get_control_advanced(self, x_noisy: Tensor, t, cond, batched_number: int, transformer_options): |
|
|
|
control_prev = None |
|
if self.previous_controlnet is not None: |
|
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number, transformer_options) |
|
|
|
if self.timestep_range is not None: |
|
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]: |
|
if control_prev is not None: |
|
return control_prev |
|
else: |
|
return None |
|
|
|
dtype = self.control_model.dtype |
|
if self.manual_cast_dtype is not None: |
|
dtype = self.manual_cast_dtype |
|
output_dtype = x_noisy.dtype |
|
|
|
actual_length = x_noisy.size(0)//batched_number |
|
full_length = actual_length if self.sub_idxs is None else self.full_latent_length |
|
if self.motion_model is not None: |
|
self.motion_model.set_video_length(video_length=actual_length, full_length=full_length) |
|
|
|
dim_mult = 1 if self.control_model.use_simplified_conditioning_embedding else 8 |
|
if self.sub_idxs is not None or self.cond_hint is None or x_noisy.shape[2]*dim_mult != self.cond_hint.shape[2] or x_noisy.shape[3]*dim_mult != self.cond_hint.shape[3]: |
|
|
|
if self.cond_hint is not None: |
|
del self.cond_hint |
|
self.cond_hint = None |
|
|
|
cond_idxs, hint_order = self.sparse_settings.sparse_method.get_indexes(hint_length=self.cond_hint_original.size(0), full_length=full_length, |
|
sub_idxs=self.sub_idxs if self.sparse_settings.is_context_aware() else None) |
|
range_idxs = list(range(full_length)) if self.sub_idxs is None else self.sub_idxs |
|
hint_idxs = [] |
|
local_idxs = [] |
|
for i,cond_idx in enumerate(cond_idxs): |
|
if cond_idx in range_idxs: |
|
hint_idxs.append(i) |
|
local_idxs.append(range_idxs.index(cond_idx)) |
|
|
|
|
|
|
|
|
|
|
|
self.local_sparse_idxs = [] |
|
self.local_sparse_idxs_inverse = list(range(x_noisy.size(0))) |
|
for batch_idx in range(batched_number): |
|
for i in local_idxs: |
|
actual_i = i+(batch_idx*actual_length) |
|
self.local_sparse_idxs.append(actual_i) |
|
if actual_i in self.local_sparse_idxs_inverse: |
|
self.local_sparse_idxs_inverse.remove(actual_i) |
|
|
|
if hint_order is None: |
|
sub_cond_hint = self.cond_hint_original[hint_idxs].to(dtype).to(x_noisy.device) |
|
else: |
|
sub_cond_hint = self.cond_hint_original[hint_order][hint_idxs].to(dtype).to(x_noisy.device) |
|
|
|
if self.control_model.use_simplified_conditioning_embedding: |
|
|
|
sub_cond_hint = self.model_latent_format.process_in(sub_cond_hint) |
|
sub_cond_hint = comfy.utils.common_upscale(sub_cond_hint, x_noisy.shape[3], x_noisy.shape[2], "nearest-exact", "center").to(dtype).to(x_noisy.device) |
|
else: |
|
|
|
sub_cond_hint = comfy.utils.common_upscale(sub_cond_hint, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(dtype).to(x_noisy.device) |
|
|
|
cond_shape = list(sub_cond_hint.shape) |
|
cond_shape[0] = len(range_idxs) |
|
self.cond_hint = torch.zeros(cond_shape).to(dtype).to(x_noisy.device) |
|
self.cond_hint[local_idxs] = sub_cond_hint[:] |
|
|
|
cond_shape[1] = 1 |
|
cond_mask = torch.zeros(cond_shape).to(dtype).to(x_noisy.device) |
|
cond_mask[local_idxs] = self.sparse_settings.sparse_mask_mult * self.weights.extras.get(SparseConst.MASK_MULT, 1.0) |
|
|
|
if not self.sparse_settings.merged: |
|
self.cond_hint = torch.cat([self.cond_hint, cond_mask], dim=1) |
|
del sub_cond_hint |
|
del cond_mask |
|
|
|
if x_noisy.shape[0] != self.cond_hint.shape[0]: |
|
self.cond_hint = broadcast_image_to_extend(self.cond_hint, x_noisy.shape[0], batched_number) |
|
|
|
|
|
self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number, dtype=dtype) |
|
|
|
context = cond['c_crossattn'] |
|
y = cond.get('y', None) |
|
if y is not None: |
|
y = y.to(dtype) |
|
timestep = self.model_sampling_current.timestep(t) |
|
x_noisy = self.model_sampling_current.calculate_input(t, x_noisy) |
|
|
|
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(dtype), y=y) |
|
return self.control_merge(control, control_prev, output_dtype) |
|
|
|
def apply_advanced_strengths_and_masks(self, x: Tensor, batched_number: int, *args, **kwargs): |
|
|
|
x[self.local_sparse_idxs] *= self.sparse_settings.sparse_hint_mult * self.weights.extras.get(SparseConst.HINT_MULT, 1.0) |
|
x[self.local_sparse_idxs_inverse] *= self.sparse_settings.sparse_nonhint_mult * self.weights.extras.get(SparseConst.NONHINT_MULT, 1.0) |
|
return super().apply_advanced_strengths_and_masks(x, batched_number, *args, **kwargs) |
|
|
|
def pre_run_advanced(self, model, percent_to_timestep_function): |
|
super().pre_run_advanced(model, percent_to_timestep_function) |
|
if isinstance(self.cond_hint_original, AbstractPreprocWrapper): |
|
if not self.control_model.use_simplified_conditioning_embedding: |
|
raise ValueError("Any model besides RGB SparseCtrl should NOT have its images go through the RGB SparseCtrl preprocessor.") |
|
self.cond_hint_original = self.cond_hint_original.condhint |
|
self.model_latent_format = model.latent_format |
|
if self.motion_model is not None: |
|
self.motion_model.cleanup() |
|
self.motion_model.set_effect(self.sparse_settings.motion_strength) |
|
self.motion_model.set_scale(self.sparse_settings.motion_scale) |
|
|
|
def cleanup_advanced(self): |
|
super().cleanup_advanced() |
|
if self.model_latent_format is not None: |
|
del self.model_latent_format |
|
self.model_latent_format = None |
|
self.local_sparse_idxs = None |
|
self.local_sparse_idxs_inverse = None |
|
if self.motion_model is not None: |
|
self.motion_model.cleanup() |
|
|
|
def copy(self): |
|
c = SparseCtrlAdvanced(None, None, self.timestep_keyframes, self.sparse_settings, self.global_average_pooling, self.load_device, self.manual_cast_dtype) |
|
c.control_model = self.control_model |
|
c.control_model_wrapped = self.control_model_wrapped |
|
self.prepare_conditioning_info() |
|
self.copy_to(c) |
|
self.copy_to_advanced(c) |
|
return c |
|
|
|
def get_models(self): |
|
to_return = super().get_models() |
|
to_return.extend(self.control_model_wrapped.get_additional_models()) |
|
return to_return |
|
|
|
|
|
def load_controlnet(ckpt_path, timestep_keyframe: TimestepKeyframeGroup=None, model=None): |
|
controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True) |
|
|
|
|
|
|
|
|
|
|
|
control = None |
|
|
|
controlnet_type = ControlWeightType.DEFAULT |
|
has_controlnet_key = False |
|
has_motion_modules_key = False |
|
has_temporal_res_block_key = False |
|
for key in controlnet_data: |
|
|
|
if "lllite" in key: |
|
controlnet_type = ControlWeightType.CONTROLLLLITE |
|
break |
|
|
|
elif "motion_modules" in key: |
|
has_motion_modules_key = True |
|
elif "controlnet" in key: |
|
has_controlnet_key = True |
|
|
|
elif "temporal_res_block" in key: |
|
has_temporal_res_block_key = True |
|
|
|
elif "task_embedding" in key: |
|
pass |
|
|
|
elif "lora_layer" in key: |
|
controlnet_type = ControlWeightType.CTRLORA |
|
break |
|
|
|
if has_controlnet_key and has_motion_modules_key: |
|
controlnet_type = ControlWeightType.SPARSECTRL |
|
elif has_controlnet_key and has_temporal_res_block_key: |
|
controlnet_type = ControlWeightType.SVD_CONTROLNET |
|
|
|
if controlnet_type != ControlWeightType.DEFAULT: |
|
if controlnet_type == ControlWeightType.CONTROLLLLITE: |
|
control = load_controllllite(ckpt_path, controlnet_data=controlnet_data, timestep_keyframe=timestep_keyframe) |
|
elif controlnet_type == ControlWeightType.SPARSECTRL: |
|
control = load_sparsectrl(ckpt_path, controlnet_data=controlnet_data, timestep_keyframe=timestep_keyframe, model=model) |
|
elif controlnet_type == ControlWeightType.SVD_CONTROLNET: |
|
control = load_svdcontrolnet(ckpt_path, controlnet_data=controlnet_data, timestep_keyframe=timestep_keyframe) |
|
elif controlnet_type == ControlWeightType.CTRLORA: |
|
raise Exception("This is a CtrLoRA; use the Load CtrLoRA Model node.") |
|
|
|
else: |
|
try: |
|
|
|
orig_load_torch_file = comfy.utils.load_torch_file |
|
comfy.utils.load_torch_file = load_torch_file_with_dict_factory(controlnet_data, orig_load_torch_file) |
|
control = comfy_cn.load_controlnet(ckpt_path, model=model) |
|
finally: |
|
comfy.utils.load_torch_file = orig_load_torch_file |
|
if control is None: |
|
raise Exception(f"Something went wrong when loading '{ckpt_path}'; ControlNet is None.") |
|
return convert_to_advanced(control, timestep_keyframe=timestep_keyframe) |
|
|
|
|
|
def convert_to_advanced(control, timestep_keyframe: TimestepKeyframeGroup=None): |
|
|
|
if is_advanced_controlnet(control): |
|
return control |
|
|
|
if type(control) == ControlNet: |
|
control = ControlNetAdvanced.from_vanilla(v=control, timestep_keyframe=timestep_keyframe) |
|
if is_sd3_advanced_controlnet(control): |
|
control.require_vae = True |
|
return control |
|
|
|
elif type(control) == ControlNetSD35: |
|
control = ControlNetSD35Advanced.from_vanilla(v=control, timestep_keyframe=timestep_keyframe) |
|
if is_sd3_advanced_controlnet(control): |
|
control.require_vae = True |
|
return control |
|
|
|
elif type(control) == ControlLora: |
|
return ControlLoraAdvanced.from_vanilla(v=control, timestep_keyframe=timestep_keyframe) |
|
|
|
elif isinstance(control, T2IAdapter): |
|
return T2IAdapterAdvanced.from_vanilla(v=control, timestep_keyframe=timestep_keyframe) |
|
|
|
return control |
|
|
|
|
|
def convert_all_to_advanced(conds: dict[str, list[dict[str]]]) -> tuple[bool, list]: |
|
cache = {} |
|
modified = False |
|
new_conds = {} |
|
for cond_type in conds: |
|
converted_cond: list[dict[str]] = None |
|
cond = conds[cond_type] |
|
if cond is not None: |
|
for actual_cond in cond: |
|
need_to_convert = False |
|
if "control" in actual_cond: |
|
if not are_all_advanced_controlnet(actual_cond["control"]): |
|
need_to_convert = True |
|
break |
|
if not need_to_convert: |
|
converted_cond = cond |
|
else: |
|
converted_cond = [] |
|
for actual_cond in cond: |
|
if not isinstance(actual_cond, dict): |
|
converted_cond.append(actual_cond) |
|
continue |
|
if "control" not in actual_cond: |
|
converted_cond.append(actual_cond) |
|
elif are_all_advanced_controlnet(actual_cond["control"]): |
|
converted_cond.append(actual_cond) |
|
else: |
|
actual_cond = actual_cond.copy() |
|
actual_cond["control"] = _convert_all_control_to_advanced(actual_cond["control"], cache) |
|
converted_cond.append(actual_cond) |
|
modified = True |
|
new_conds[cond_type] = converted_cond |
|
return modified, new_conds |
|
|
|
|
|
def _convert_all_control_to_advanced(input_object: ControlBase, cache: dict): |
|
output_object = input_object |
|
|
|
next_cn = None |
|
curr_cn = input_object |
|
iter = 0 |
|
while curr_cn is not None: |
|
if not is_advanced_controlnet(curr_cn): |
|
|
|
if curr_cn in cache: |
|
new_cn = cache[curr_cn] |
|
if next_cn is not None: |
|
setattr(next_cn, ORIG_PREVIOUS_CONTROLNET, next_cn.previous_controlnet) |
|
next_cn.previous_controlnet = new_cn |
|
if iter == 0: |
|
output_object = new_cn |
|
break |
|
try: |
|
|
|
new_cn = convert_to_advanced(curr_cn) |
|
except Exception as e: |
|
raise Exception("Failed to automatically convert a ControlNet to Advanced to support sliding window context.", e) |
|
new_cn.previous_controlnet = curr_cn.previous_controlnet |
|
if iter == 0: |
|
output_object = new_cn |
|
|
|
if next_cn is not None: |
|
setattr(next_cn, ORIG_PREVIOUS_CONTROLNET, next_cn.previous_controlnet) |
|
next_cn.previous_controlnet = new_cn |
|
|
|
cache[curr_cn] = new_cn |
|
curr_cn = new_cn |
|
next_cn = curr_cn |
|
curr_cn = curr_cn.previous_controlnet |
|
iter += 1 |
|
return output_object |
|
|
|
|
|
def restore_all_controlnet_conns(conds: dict[str, list[dict[str]]]): |
|
|
|
for cond_type in conds: |
|
cond = conds[cond_type] |
|
if cond is not None: |
|
for actual_cond in cond: |
|
if "control" in actual_cond: |
|
|
|
|
|
if CONTROL_INIT_BY_ACN in actual_cond: |
|
actual_cond.pop("control") |
|
actual_cond.pop(CONTROL_INIT_BY_ACN) |
|
else: |
|
_restore_all_controlnet_conns(actual_cond["control"]) |
|
|
|
|
|
|
|
def _restore_all_controlnet_conns(input_object: ControlBase): |
|
|
|
curr_cn = input_object |
|
while curr_cn is not None: |
|
if hasattr(curr_cn, ORIG_PREVIOUS_CONTROLNET): |
|
curr_cn.previous_controlnet = getattr(curr_cn, ORIG_PREVIOUS_CONTROLNET) |
|
delattr(curr_cn, ORIG_PREVIOUS_CONTROLNET) |
|
curr_cn = curr_cn.previous_controlnet |
|
|
|
|
|
def are_all_advanced_controlnet(input_object: ControlBase): |
|
|
|
curr_cn = input_object |
|
while curr_cn is not None: |
|
if not is_advanced_controlnet(curr_cn): |
|
return False |
|
curr_cn = curr_cn.previous_controlnet |
|
return True |
|
|
|
|
|
def is_advanced_controlnet(input_object): |
|
return hasattr(input_object, "sub_idxs") |
|
|
|
|
|
def is_sd3_advanced_controlnet(input_object: ControlNetAdvanced): |
|
return type(input_object) in [ControlNetAdvanced, ControlNetSD35Advanced] and input_object.latent_format is not None |
|
|
|
|
|
def load_sparsectrl(ckpt_path: str, controlnet_data: dict[str, Tensor]=None, timestep_keyframe: TimestepKeyframeGroup=None, sparse_settings=SparseSettings.default(), model=None) -> SparseCtrlAdvanced: |
|
if controlnet_data is None: |
|
controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True) |
|
|
|
motion_data = {} |
|
for key in list(controlnet_data.keys()): |
|
if "temporal" in key: |
|
motion_data[key] = controlnet_data.pop(key) |
|
if len(motion_data) == 0: |
|
raise ValueError(f"No motion-related keys in '{ckpt_path}'; not a valid SparseCtrl model!") |
|
|
|
|
|
controlnet_config: dict[str] = None |
|
is_diffusers = False |
|
use_simplified_conditioning_embedding = False |
|
if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: |
|
is_diffusers = True |
|
if "controlnet_cond_embedding.weight" in controlnet_data: |
|
is_diffusers = True |
|
use_simplified_conditioning_embedding = True |
|
if is_diffusers: |
|
unet_dtype = comfy.model_management.unet_dtype() |
|
controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data, unet_dtype) |
|
diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config) |
|
diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight" |
|
diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias" |
|
|
|
count = 0 |
|
loop = True |
|
while loop: |
|
suffix = [".weight", ".bias"] |
|
for s in suffix: |
|
k_in = "controlnet_down_blocks.{}{}".format(count, s) |
|
k_out = "zero_convs.{}.0{}".format(count, s) |
|
if k_in not in controlnet_data: |
|
loop = False |
|
break |
|
diffusers_keys[k_in] = k_out |
|
count += 1 |
|
|
|
if not use_simplified_conditioning_embedding: |
|
count = 0 |
|
loop = True |
|
while loop: |
|
suffix = [".weight", ".bias"] |
|
for s in suffix: |
|
if count == 0: |
|
k_in = "controlnet_cond_embedding.conv_in{}".format(s) |
|
else: |
|
k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s) |
|
k_out = "input_hint_block.{}{}".format(count * 2, s) |
|
if k_in not in controlnet_data: |
|
k_in = "controlnet_cond_embedding.conv_out{}".format(s) |
|
loop = False |
|
diffusers_keys[k_in] = k_out |
|
count += 1 |
|
|
|
else: |
|
count = 0 |
|
suffix = [".weight", ".bias"] |
|
for s in suffix: |
|
k_in = "controlnet_cond_embedding{}".format(s) |
|
k_out = "input_hint_block.{}{}".format(count, s) |
|
diffusers_keys[k_in] = k_out |
|
|
|
new_sd = {} |
|
for k in diffusers_keys: |
|
if k in controlnet_data: |
|
new_sd[diffusers_keys[k]] = controlnet_data.pop(k) |
|
|
|
leftover_keys = controlnet_data.keys() |
|
if len(leftover_keys) > 0: |
|
logger.info("leftover keys:", leftover_keys) |
|
controlnet_data = new_sd |
|
|
|
pth_key = 'control_model.zero_convs.0.0.weight' |
|
pth = False |
|
key = 'zero_convs.0.0.weight' |
|
if pth_key in controlnet_data: |
|
pth = True |
|
key = pth_key |
|
prefix = "control_model." |
|
elif key in controlnet_data: |
|
prefix = "" |
|
else: |
|
raise ValueError("The provided model is not a valid SparseCtrl model! [ErrorCode: HORSERADISH]") |
|
|
|
if controlnet_config is None: |
|
unet_dtype = comfy.model_management.unet_dtype() |
|
controlnet_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, unet_dtype, True).unet_config |
|
load_device = comfy.model_management.get_torch_device() |
|
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device) |
|
if manual_cast_dtype is not None: |
|
controlnet_config["operations"] = manual_cast_clean_groupnorm |
|
else: |
|
controlnet_config["operations"] = disable_weight_init_clean_groupnorm |
|
controlnet_config.pop("out_channels") |
|
|
|
if use_simplified_conditioning_embedding: |
|
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1] |
|
controlnet_config["use_simplified_conditioning_embedding"] = use_simplified_conditioning_embedding |
|
else: |
|
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1] |
|
controlnet_config["use_simplified_conditioning_embedding"] = use_simplified_conditioning_embedding |
|
control_model = SparseControlNet(**controlnet_config) |
|
|
|
if pth: |
|
if 'difference' in controlnet_data: |
|
if model is not None: |
|
comfy.model_management.load_models_gpu([model]) |
|
model_sd = model.model_state_dict() |
|
for x in controlnet_data: |
|
c_m = "control_model." |
|
if x.startswith(c_m): |
|
sd_key = "diffusion_model.{}".format(x[len(c_m):]) |
|
if sd_key in model_sd: |
|
cd = controlnet_data[x] |
|
cd += model_sd[sd_key].type(cd.dtype).to(cd.device) |
|
else: |
|
logger.warning("WARNING: Loaded a diff SparseCtrl without a model. It will very likely not work.") |
|
|
|
class WeightsLoader(torch.nn.Module): |
|
pass |
|
w = WeightsLoader() |
|
w.control_model = control_model |
|
missing, unexpected = w.load_state_dict(controlnet_data, strict=False) |
|
else: |
|
missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False) |
|
if len(missing) > 0 or len(unexpected) > 0: |
|
logger.info(f"SparseCtrl ControlNet: {missing}, {unexpected}") |
|
|
|
global_average_pooling = False |
|
filename = os.path.splitext(ckpt_path)[0] |
|
if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): |
|
global_average_pooling = True |
|
|
|
|
|
motion_model = load_sparsectrl_motionmodel(ckpt_path=ckpt_path, motion_data=motion_data, ops=controlnet_config.get("operations", None)).to(comfy.model_management.unet_dtype()) |
|
|
|
if not sparse_settings.use_motion: |
|
motion_model = None |
|
|
|
control = SparseCtrlAdvanced(control_model, motion_model, timestep_keyframes=timestep_keyframe, sparse_settings=sparse_settings, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype) |
|
return control |
|
|
|
|
|
def load_svdcontrolnet(ckpt_path: str, controlnet_data: dict[str, Tensor]=None, timestep_keyframe: TimestepKeyframeGroup=None, model=None): |
|
if controlnet_data is None: |
|
controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True) |
|
|
|
controlnet_config = None |
|
if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: |
|
unet_dtype = comfy.model_management.unet_dtype() |
|
controlnet_config = svd_unet_config_from_diffusers_unet(controlnet_data, unet_dtype) |
|
diffusers_keys = svd_unet_to_diffusers(controlnet_config) |
|
diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight" |
|
diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias" |
|
|
|
count = 0 |
|
loop = True |
|
while loop: |
|
suffix = [".weight", ".bias"] |
|
for s in suffix: |
|
k_in = "controlnet_down_blocks.{}{}".format(count, s) |
|
k_out = "zero_convs.{}.0{}".format(count, s) |
|
if k_in not in controlnet_data: |
|
loop = False |
|
break |
|
diffusers_keys[k_in] = k_out |
|
count += 1 |
|
|
|
count = 0 |
|
loop = True |
|
while loop: |
|
suffix = [".weight", ".bias"] |
|
for s in suffix: |
|
if count == 0: |
|
k_in = "controlnet_cond_embedding.conv_in{}".format(s) |
|
else: |
|
k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s) |
|
k_out = "input_hint_block.{}{}".format(count * 2, s) |
|
if k_in not in controlnet_data: |
|
k_in = "controlnet_cond_embedding.conv_out{}".format(s) |
|
loop = False |
|
diffusers_keys[k_in] = k_out |
|
count += 1 |
|
|
|
new_sd = {} |
|
for k in diffusers_keys: |
|
if k in controlnet_data: |
|
new_sd[diffusers_keys[k]] = controlnet_data.pop(k) |
|
|
|
leftover_keys = controlnet_data.keys() |
|
if len(leftover_keys) > 0: |
|
spatial_leftover_keys = [] |
|
temporal_leftover_keys = [] |
|
other_leftover_keys = [] |
|
for key in leftover_keys: |
|
if "spatial" in key: |
|
spatial_leftover_keys.append(key) |
|
elif "temporal" in key: |
|
temporal_leftover_keys.append(key) |
|
else: |
|
other_leftover_keys.append(key) |
|
logger.warn(f"spatial_leftover_keys ({len(spatial_leftover_keys)}): {spatial_leftover_keys}") |
|
logger.warn(f"temporal_leftover_keys ({len(temporal_leftover_keys)}): {temporal_leftover_keys}") |
|
logger.warn(f"other_leftover_keys ({len(other_leftover_keys)}): {other_leftover_keys}") |
|
|
|
controlnet_data = new_sd |
|
|
|
pth_key = 'control_model.zero_convs.0.0.weight' |
|
pth = False |
|
key = 'zero_convs.0.0.weight' |
|
if pth_key in controlnet_data: |
|
pth = True |
|
key = pth_key |
|
prefix = "control_model." |
|
elif key in controlnet_data: |
|
prefix = "" |
|
else: |
|
raise ValueError("The provided model is not a valid SVD-ControlNet model! [ErrorCode: MUSTARD]") |
|
|
|
if controlnet_config is None: |
|
unet_dtype = comfy.model_management.unet_dtype() |
|
controlnet_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, unet_dtype, True).unet_config |
|
load_device = comfy.model_management.get_torch_device() |
|
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device) |
|
if manual_cast_dtype is not None: |
|
controlnet_config["operations"] = comfy.ops.manual_cast |
|
controlnet_config.pop("out_channels") |
|
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1] |
|
control_model = SVDControlNet(**controlnet_config) |
|
|
|
if pth: |
|
if 'difference' in controlnet_data: |
|
if model is not None: |
|
comfy.model_management.load_models_gpu([model]) |
|
model_sd = model.model_state_dict() |
|
for x in controlnet_data: |
|
c_m = "control_model." |
|
if x.startswith(c_m): |
|
sd_key = "diffusion_model.{}".format(x[len(c_m):]) |
|
if sd_key in model_sd: |
|
cd = controlnet_data[x] |
|
cd += model_sd[sd_key].type(cd.dtype).to(cd.device) |
|
else: |
|
print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.") |
|
|
|
class WeightsLoader(torch.nn.Module): |
|
pass |
|
w = WeightsLoader() |
|
w.control_model = control_model |
|
missing, unexpected = w.load_state_dict(controlnet_data, strict=False) |
|
else: |
|
missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False) |
|
if len(missing) > 0 or len(unexpected) > 0: |
|
logger.info(f"SVD-ControlNet: {missing}, {unexpected}") |
|
|
|
global_average_pooling = False |
|
filename = os.path.splitext(ckpt_path)[0] |
|
if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): |
|
global_average_pooling = True |
|
|
|
control = SVDControlNetAdvanced(control_model, timestep_keyframes=timestep_keyframe, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype) |
|
return control |
|
|
|
|