jaxmetaverse's picture
Upload folder using huggingface_hub
82ea528 verified
import os
import torch
import folder_paths
import numpy as np
from PIL import Image, ImageOps
from .control import load_controlnet, is_advanced_controlnet
from .nodes_main import AdvancedControlNetApply
from .utils import BIGMAX, ControlWeights, TimestepKeyframeGroup, TimestepKeyframe, get_properly_arranged_t2i_weights
from .logger import logger
class LoadImagesFromDirectory:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"directory": ("STRING", {"default": ""}),
},
"optional": {
"image_load_cap": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1}),
"start_index": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1}),
}
}
RETURN_TYPES = ("IMAGE", "MASK", "INT")
FUNCTION = "load_images"
CATEGORY = ""
def load_images(self, directory: str, image_load_cap: int = 0, start_index: int = 0):
if not os.path.isdir(directory):
raise FileNotFoundError(f"Directory '{directory} cannot be found.'")
dir_files = os.listdir(directory)
if len(dir_files) == 0:
raise FileNotFoundError(f"No files in directory '{directory}'.")
dir_files = sorted(dir_files)
dir_files = [os.path.join(directory, x) for x in dir_files]
# start at start_index
dir_files = dir_files[start_index:]
images = []
masks = []
limit_images = False
if image_load_cap > 0:
limit_images = True
image_count = 0
for image_path in dir_files:
if os.path.isdir(image_path):
continue
if limit_images and image_count >= image_load_cap:
break
i = Image.open(image_path)
i = ImageOps.exif_transpose(i)
image = i.convert("RGB")
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
if 'A' in i.getbands():
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
mask = 1. - torch.from_numpy(mask)
else:
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
images.append(image)
masks.append(mask)
image_count += 1
if len(images) == 0:
raise FileNotFoundError(f"No images could be loaded from directory '{directory}'.")
return (torch.cat(images, dim=0), torch.stack(masks, dim=0), image_count)
class ScaledSoftUniversalWeightsDeprecated:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"base_multiplier": ("FLOAT", {"default": 0.825, "min": 0.0, "max": 1.0, "step": 0.001}, ),
"flip_weights": ("BOOLEAN", {"default": False}),
},
"optional": {
"uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
"cn_extras": ("CN_WEIGHTS_EXTRAS",),
},
"hidden": {
"autosize": ("ACNAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
RETURN_NAMES = ("CN_WEIGHTS", "TK_SHORTCUT")
FUNCTION = "load_weights"
CATEGORY = ""
def load_weights(self, base_multiplier, flip_weights, uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
weights = ControlWeights.universal(base_multiplier=base_multiplier, uncond_multiplier=uncond_multiplier, extras=cn_extras)
return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
class SoftControlNetWeightsDeprecated:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"weight_00": ("FLOAT", {"default": 0.09941396206337118, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_01": ("FLOAT", {"default": 0.12050177219802567, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_02": ("FLOAT", {"default": 0.14606275417942507, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_03": ("FLOAT", {"default": 0.17704576264172736, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_04": ("FLOAT", {"default": 0.214600924414215, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_05": ("FLOAT", {"default": 0.26012233262329093, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_06": ("FLOAT", {"default": 0.3152997971191405, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_07": ("FLOAT", {"default": 0.3821815722656249, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_08": ("FLOAT", {"default": 0.4632503906249999, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_09": ("FLOAT", {"default": 0.561515625, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_10": ("FLOAT", {"default": 0.6806249999999999, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_11": ("FLOAT", {"default": 0.825, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_12": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"flip_weights": ("BOOLEAN", {"default": False}),
},
"optional": {
"uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
"cn_extras": ("CN_WEIGHTS_EXTRAS",),
},
"hidden": {
"autosize": ("ACNAUTOSIZE", {"padding": 0}),
}
}
DEPRECATED = True
RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
RETURN_NAMES = ("CN_WEIGHTS", "TK_SHORTCUT")
FUNCTION = "load_weights"
CATEGORY = ""
def load_weights(self, weight_00, weight_01, weight_02, weight_03, weight_04, weight_05, weight_06,
weight_07, weight_08, weight_09, weight_10, weight_11, weight_12, flip_weights,
uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
weights_output = [weight_00, weight_01, weight_02, weight_03, weight_04, weight_05, weight_06,
weight_07, weight_08, weight_09, weight_10, weight_11]
weights_middle = [weight_12]
weights = ControlWeights.controlnet(weights_output=weights_output, weights_middle=weights_middle, uncond_multiplier=uncond_multiplier, extras=cn_extras)
return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
class CustomControlNetWeightsDeprecated:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"weight_00": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_01": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_02": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_03": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_04": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_05": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_06": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_07": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_08": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_09": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_10": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_11": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_12": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"flip_weights": ("BOOLEAN", {"default": False}),
},
"optional": {
"uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
"cn_extras": ("CN_WEIGHTS_EXTRAS",),
},
"hidden": {
"autosize": ("ACNAUTOSIZE", {"padding": 0}),
}
}
DEPRECATED = True
RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
RETURN_NAMES = ("CN_WEIGHTS", "TK_SHORTCUT")
FUNCTION = "load_weights"
CATEGORY = ""
def load_weights(self, weight_00, weight_01, weight_02, weight_03, weight_04, weight_05, weight_06,
weight_07, weight_08, weight_09, weight_10, weight_11, weight_12, flip_weights,
uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
weights_output = [weight_00, weight_01, weight_02, weight_03, weight_04, weight_05, weight_06,
weight_07, weight_08, weight_09, weight_10, weight_11]
weights_middle = [weight_12]
weights = ControlWeights.controlnet(weights_output=weights_output, weights_middle=weights_middle, uncond_multiplier=uncond_multiplier, extras=cn_extras)
return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
class SoftT2IAdapterWeightsDeprecated:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"weight_00": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_01": ("FLOAT", {"default": 0.62, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_02": ("FLOAT", {"default": 0.825, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_03": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"flip_weights": ("BOOLEAN", {"default": False}),
},
"optional": {
"uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
"cn_extras": ("CN_WEIGHTS_EXTRAS",),
},
"hidden": {
"autosize": ("ACNAUTOSIZE", {"padding": 0}),
}
}
DEPRECATED = True
RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
RETURN_NAMES = ("CN_WEIGHTS", "TK_SHORTCUT")
FUNCTION = "load_weights"
CATEGORY = ""
def load_weights(self, weight_00, weight_01, weight_02, weight_03, flip_weights,
uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
weights = [weight_00, weight_01, weight_02, weight_03]
weights = get_properly_arranged_t2i_weights(weights)
weights = ControlWeights.t2iadapter(weights_input=weights, uncond_multiplier=uncond_multiplier, extras=cn_extras)
return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
class CustomT2IAdapterWeightsDeprecated:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"weight_00": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_01": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_02": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"weight_03": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
"flip_weights": ("BOOLEAN", {"default": False}),
},
"optional": {
"uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
"cn_extras": ("CN_WEIGHTS_EXTRAS",),
},
"hidden": {
"autosize": ("ACNAUTOSIZE", {"padding": 0}),
}
}
DEPRECATED = True
RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
RETURN_NAMES = ("CN_WEIGHTS", "TK_SHORTCUT")
FUNCTION = "load_weights"
CATEGORY = ""
def load_weights(self, weight_00, weight_01, weight_02, weight_03, flip_weights,
uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
weights = [weight_00, weight_01, weight_02, weight_03]
weights = get_properly_arranged_t2i_weights(weights)
weights = ControlWeights.t2iadapter(weights_input=weights, uncond_multiplier=uncond_multiplier, extras=cn_extras)
return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
class AdvancedControlNetApplyDEPR:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"control_net": ("CONTROL_NET", ),
"image": ("IMAGE", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
},
"optional": {
"mask_optional": ("MASK", ),
"timestep_kf": ("TIMESTEP_KEYFRAME", ),
"latent_kf_override": ("LATENT_KEYFRAME", ),
"weights_override": ("CONTROL_NET_WEIGHTS", ),
"model_optional": ("MODEL",),
"vae_optional": ("VAE",),
},
"hidden": {
"autosize": ("ACNAUTOSIZE", {"padding": 0}),
}
}
DEPRECATED = True
RETURN_TYPES = ("CONDITIONING","CONDITIONING","MODEL",)
RETURN_NAMES = ("positive", "negative", "model_opt")
FUNCTION = "apply_controlnet"
CATEGORY = ""
def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent,
mask_optional=None, model_optional=None, vae_optional=None,
timestep_kf: TimestepKeyframeGroup=None, latent_kf_override=None,
weights_override: ControlWeights=None, control_apply_to_uncond=False):
new_positive, new_negative = AdvancedControlNetApply.apply_controlnet(self, positive=positive, negative=negative, control_net=control_net, image=image,
strength=strength, start_percent=start_percent, end_percent=end_percent,
mask_optional=mask_optional, vae_optional=vae_optional,
timestep_kf=timestep_kf, latent_kf_override=latent_kf_override, weights_override=weights_override,)
return (new_positive, new_negative, model_optional)
class AdvancedControlNetApplySingleDEPR:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"conditioning": ("CONDITIONING", ),
"control_net": ("CONTROL_NET", ),
"image": ("IMAGE", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
},
"optional": {
"mask_optional": ("MASK", ),
"timestep_kf": ("TIMESTEP_KEYFRAME", ),
"latent_kf_override": ("LATENT_KEYFRAME", ),
"weights_override": ("CONTROL_NET_WEIGHTS", ),
"model_optional": ("MODEL",),
"vae_optional": ("VAE",),
},
"hidden": {
"autosize": ("ACNAUTOSIZE", {"padding": 0}),
}
}
DEPRECATED = True
RETURN_TYPES = ("CONDITIONING","MODEL",)
RETURN_NAMES = ("CONDITIONING", "model_opt")
FUNCTION = "apply_controlnet"
CATEGORY = ""
def apply_controlnet(self, conditioning, control_net, image, strength, start_percent, end_percent,
mask_optional=None, model_optional=None, vae_optional=None,
timestep_kf: TimestepKeyframeGroup=None, latent_kf_override=None,
weights_override: ControlWeights=None):
values = AdvancedControlNetApply.apply_controlnet(self, positive=conditioning, negative=None, control_net=control_net, image=image,
strength=strength, start_percent=start_percent, end_percent=end_percent,
mask_optional=mask_optional, vae_optional=vae_optional,
timestep_kf=timestep_kf, latent_kf_override=latent_kf_override, weights_override=weights_override,
control_apply_to_uncond=True)
return (values[0], model_optional)
class ControlNetLoaderAdvancedDEPR:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"control_net_name": (folder_paths.get_filename_list("controlnet"), ),
},
"optional": {
"tk_optional": ("TIMESTEP_KEYFRAME", ),
}
}
DEPRECATED = True
RETURN_TYPES = ("CONTROL_NET", )
FUNCTION = "load_controlnet"
CATEGORY = ""
def load_controlnet(self, control_net_name,
tk_optional: TimestepKeyframeGroup=None,
timestep_keyframe: TimestepKeyframeGroup=None,
):
if timestep_keyframe is not None: # backwards compatibility
tk_optional = timestep_keyframe
controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
controlnet = load_controlnet(controlnet_path, tk_optional)
return (controlnet,)
class DiffControlNetLoaderAdvancedDEPR:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"control_net_name": (folder_paths.get_filename_list("controlnet"), )
},
"optional": {
"tk_optional": ("TIMESTEP_KEYFRAME", ),
},
"hidden": {
"autosize": ("ACNAUTOSIZE", {"padding": 0}),
}
}
DEPRECATED = True
RETURN_TYPES = ("CONTROL_NET", )
FUNCTION = "load_controlnet"
CATEGORY = ""
def load_controlnet(self, control_net_name, model,
tk_optional: TimestepKeyframeGroup=None,
timestep_keyframe: TimestepKeyframeGroup=None
):
if timestep_keyframe is not None: # backwards compatibility
tk_optional = timestep_keyframe
controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
controlnet = load_controlnet(controlnet_path, tk_optional, model)
if is_advanced_controlnet(controlnet):
controlnet.verify_all_weights()
return (controlnet,)