jaxmetaverse's picture
Upload folder using huggingface_hub
82ea528 verified
from typing import Union
import inspect
import torch
from torch import Tensor
import comfy.model_patcher
import comfy.samplers
from .utils_motion import extend_to_batch_size, prepare_mask_batch
################################################################################
# helpers for modifying model_options to apply cfg function patches;
# taken from comfy/model_patcher.py
def set_model_options_sampler_cfg_function(model_options: dict[str], sampler_cfg_function, disable_cfg1_optimization=False):
if len(inspect.signature(sampler_cfg_function).parameters) == 3:
model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
else:
model_options["sampler_cfg_function"] = sampler_cfg_function
if disable_cfg1_optimization:
model_options["disable_cfg1_optimization"] = True
return model_options
def set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=False):
model_options["sampler_post_cfg_function"] = model_options.get("sampler_post_cfg_function", []) + [post_cfg_function]
if disable_cfg1_optimization:
model_options["disable_cfg1_optimization"] = True
return model_options
#-------------------------------------------------------------------------------
# this is a modified version of PerturbedAttentionGuidance from comfy_extras/nodes_pag.py
def perturbed_attention_guidance_patch(scale_multival: Union[float, Tensor]):
unet_block = "middle"
unet_block_id = 0
def perturbed_attention(q, k, v, extra_options, mask=None):
return v
def post_cfg_function(args):
model = args["model"]
cond_pred: Tensor = args["cond_denoised"]
cond = args["cond"]
cfg_result = args["denoised"]
sigma = args["sigma"]
model_options = args["model_options"].copy()
x = args["input"]
if type(scale_multival) != Tensor and scale_multival == 0:
return cfg_result
scale = scale_multival
if isinstance(scale, Tensor):
scale = prepare_mask_batch(scale.to(cond_pred.dtype).to(cond_pred.device), cond_pred.shape)
scale = extend_to_batch_size(scale, cond_pred.shape[0])
# Replace Self-attention with PAG
model_options = comfy.model_patcher.set_model_options_patch_replace(model_options, perturbed_attention, "attn1", unet_block, unet_block_id)
(pag,) = comfy.samplers.calc_cond_batch(model, [cond], x, sigma, model_options)
return cfg_result + (cond_pred - pag) * scale
return post_cfg_function
# this is a modified version of RescaleCFG from comfy_extras/nodes_model_advanced.py
def rescale_cfg_patch(multiplier_multival: Union[float, Tensor]):
def cfg_function(args):
cond: Tensor = args["cond"]
uncond = args["uncond"]
cond_scale = args["cond_scale"]
sigma = args["sigma"]
sigma = sigma.view(sigma.shape[:1] + (1,) * (cond.ndim - 1))
x_orig = args["input"]
#rescale cfg has to be done on v-pred model output
x = x_orig / (sigma * sigma + 1.0)
cond = ((x - (x_orig - cond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma)
uncond = ((x - (x_orig - uncond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma)
#rescalecfg
x_cfg = uncond + cond_scale * (cond - uncond)
ro_pos = torch.std(cond, dim=(1,2,3), keepdim=True)
ro_cfg = torch.std(x_cfg, dim=(1,2,3), keepdim=True)
multiplier = multiplier_multival
if isinstance(multiplier, Tensor):
multiplier = prepare_mask_batch(multiplier.to(cond.dtype).to(cond.device), cond.shape)
multiplier = extend_to_batch_size(multiplier, cond.shape[0])
x_rescaled = x_cfg * (ro_pos / ro_cfg)
x_final = multiplier * x_rescaled + (1.0 - multiplier) * x_cfg
return x_orig - (x - x_final * sigma / (sigma * sigma + 1.0) ** 0.5)
return cfg_function