|
from typing import Union |
|
import torch |
|
|
|
from comfy.model_patcher import ModelPatcher |
|
|
|
from .ad_settings import AnimateDiffSettings |
|
from .context import ContextOptionsGroup |
|
from .logger import logger |
|
from .utils_model import BIGMAX, BetaSchedules, get_available_motion_models |
|
from .utils_motion import ADKeyframeGroup, ADKeyframe, InputPIA |
|
from .motion_lora import MotionLoraList |
|
from .motion_module_ad import AllPerBlocks |
|
from .model_injection import (ModelPatcherHelper, |
|
InjectionParams, MotionModelGroup, MotionModelPatcher, get_mm_attachment, create_fresh_motion_module, |
|
load_motion_module_gen2, load_motion_lora_as_patches, validate_model_compatibility_gen2, validate_per_block_compatibility) |
|
from .sample_settings import SampleSettings |
|
from .sampling import outer_sample_wrapper, sliding_calc_cond_batch |
|
|
|
|
|
class UseEvolvedSamplingNode: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"model": ("MODEL",), |
|
"beta_schedule": (BetaSchedules.ALIAS_LIST, {"default": BetaSchedules.AUTOSELECT}), |
|
}, |
|
"optional": { |
|
"m_models": ("M_MODELS",), |
|
"context_options": ("CONTEXT_OPTIONS",), |
|
"sample_settings": ("SAMPLE_SETTINGS",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("MODEL",) |
|
CATEGORY = "Animate Diff ππ
π
/β‘ Gen2 nodes β‘" |
|
FUNCTION = "use_evolved_sampling" |
|
|
|
def use_evolved_sampling(self, model: ModelPatcher, beta_schedule: str, m_models: MotionModelGroup=None, context_options: ContextOptionsGroup=None, |
|
sample_settings: SampleSettings=None): |
|
model = model.clone() |
|
helper = ModelPatcherHelper(model) |
|
params = InjectionParams() |
|
if m_models is not None: |
|
m_models = m_models.clone() |
|
|
|
for motion_model in m_models.models: |
|
validate_model_compatibility_gen2(model=model, motion_model=motion_model) |
|
|
|
|
|
if context_options: |
|
params.set_context(context_options) |
|
|
|
|
|
helper.set_all_properties( |
|
outer_sampler_wrapper=outer_sample_wrapper, |
|
calc_cond_batch_wrapper=sliding_calc_cond_batch, |
|
params=params, |
|
sample_settings=sample_settings, |
|
motion_models=m_models, |
|
) |
|
|
|
sample_settings = helper.get_sample_settings() |
|
if sample_settings.custom_cfg is not None: |
|
logger.info("[Sample Settings] custom_cfg is set; will override any KSampler cfg values or patches.") |
|
|
|
if sample_settings.sigma_schedule is not None: |
|
logger.info("[Sample Settings] sigma_schedule is set; will override beta_schedule.") |
|
model.add_object_patch("model_sampling", sample_settings.sigma_schedule.clone().model_sampling) |
|
else: |
|
|
|
|
|
if beta_schedule == BetaSchedules.AUTOSELECT: |
|
if helper.get_motion_models(): |
|
beta_schedule = helper.get_motion_models()[0].model.get_best_beta_schedule(log=True) |
|
else: |
|
beta_schedule = BetaSchedules.USE_EXISTING |
|
|
|
new_model_sampling = BetaSchedules.to_model_sampling(beta_schedule, model) |
|
if new_model_sampling is not None: |
|
model.add_object_patch("model_sampling", new_model_sampling) |
|
|
|
del m_models |
|
return (model,) |
|
|
|
|
|
class ApplyAnimateDiffModelNode: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"motion_model": ("MOTION_MODEL_ADE",), |
|
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), |
|
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}), |
|
}, |
|
"optional": { |
|
"motion_lora": ("MOTION_LORA",), |
|
"scale_multival": ("MULTIVAL",), |
|
"effect_multival": ("MULTIVAL",), |
|
"ad_keyframes": ("AD_KEYFRAMES",), |
|
"prev_m_models": ("M_MODELS",), |
|
"per_block": ("PER_BLOCK",), |
|
}, |
|
"hidden": { |
|
"autosize": ("ADEAUTOSIZE", {"padding": 0}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("M_MODELS",) |
|
CATEGORY = "Animate Diff ππ
π
/β‘ Gen2 nodes β‘" |
|
FUNCTION = "apply_motion_model" |
|
|
|
def apply_motion_model(self, motion_model: MotionModelPatcher, start_percent: float=0.0, end_percent: float=1.0, |
|
motion_lora: MotionLoraList=None, ad_keyframes: ADKeyframeGroup=None, |
|
scale_multival=None, effect_multival=None, per_block: AllPerBlocks=None, |
|
prev_m_models: MotionModelGroup=None,): |
|
|
|
if prev_m_models is None: |
|
prev_m_models = MotionModelGroup() |
|
prev_m_models = prev_m_models.clone() |
|
motion_model = motion_model.clone() |
|
|
|
for prev_model in prev_m_models.models: |
|
if motion_model.model is prev_model.model: |
|
|
|
motion_model = create_fresh_motion_module(motion_model) |
|
|
|
if motion_lora is not None: |
|
for lora in motion_lora.loras: |
|
load_motion_lora_as_patches(motion_model, lora) |
|
attachment = get_mm_attachment(motion_model) |
|
attachment.scale_multival = scale_multival |
|
attachment.effect_multival = effect_multival |
|
if per_block is not None: |
|
validate_per_block_compatibility(motion_model=motion_model, all_per_blocks=per_block) |
|
attachment.per_block_list = per_block.per_block_list |
|
attachment.keyframes = ad_keyframes.clone() if ad_keyframes else ADKeyframeGroup() |
|
attachment.timestep_percent_range = (start_percent, end_percent) |
|
|
|
prev_m_models.add_to_start(mm=motion_model) |
|
return (prev_m_models,) |
|
|
|
|
|
class ApplyAnimateDiffModelBasicNode: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"motion_model": ("MOTION_MODEL_ADE",), |
|
}, |
|
"optional": { |
|
"motion_lora": ("MOTION_LORA",), |
|
"scale_multival": ("MULTIVAL",), |
|
"effect_multival": ("MULTIVAL",), |
|
"ad_keyframes": ("AD_KEYFRAMES",), |
|
"per_block": ("PER_BLOCK",), |
|
}, |
|
"hidden": { |
|
"autosize": ("ADEAUTOSIZE", {"padding": 0}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("M_MODELS",) |
|
CATEGORY = "Animate Diff ππ
π
/β‘ Gen2 nodes β‘" |
|
FUNCTION = "apply_motion_model" |
|
|
|
def apply_motion_model(self, |
|
motion_model: MotionModelPatcher, motion_lora: MotionLoraList=None, |
|
scale_multival=None, effect_multival=None, ad_keyframes=None, |
|
per_block: AllPerBlocks=None): |
|
|
|
return ApplyAnimateDiffModelNode.apply_motion_model(self, motion_model, motion_lora=motion_lora, |
|
scale_multival=scale_multival, effect_multival=effect_multival, |
|
ad_keyframes=ad_keyframes, per_block=per_block) |
|
|
|
|
|
class LoadAnimateDiffModelNode: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"model_name": (get_available_motion_models(),), |
|
}, |
|
"optional": { |
|
"ad_settings": ("AD_SETTINGS",), |
|
}, |
|
"hidden": { |
|
"autosize": ("ADEAUTOSIZE", {"padding": 50}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("MOTION_MODEL_ADE",) |
|
RETURN_NAMES = ("MOTION_MODEL",) |
|
CATEGORY = "Animate Diff ππ
π
/β‘ Gen2 nodes β‘" |
|
FUNCTION = "load_motion_model" |
|
|
|
def load_motion_model(self, model_name: str, ad_settings: AnimateDiffSettings=None): |
|
|
|
motion_model = load_motion_module_gen2(model_name=model_name, motion_model_settings=ad_settings) |
|
return (motion_model,) |
|
|
|
|
|
class ADKeyframeNode: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}, ), |
|
}, |
|
"optional": { |
|
"prev_ad_keyframes": ("AD_KEYFRAMES", ), |
|
"scale_multival": ("MULTIVAL",), |
|
"effect_multival": ("MULTIVAL",), |
|
"inherit_missing": ("BOOLEAN", {"default": True}, ), |
|
"guarantee_steps": ("INT", {"default": 1, "min": 0, "max": BIGMAX}), |
|
}, |
|
"hidden": { |
|
"autosize": ("ADEAUTOSIZE", {"padding": 0}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("AD_KEYFRAMES", ) |
|
FUNCTION = "load_keyframe" |
|
|
|
CATEGORY = "Animate Diff ππ
π
" |
|
|
|
def load_keyframe(self, |
|
start_percent: float, prev_ad_keyframes=None, |
|
scale_multival: Union[float, torch.Tensor]=None, effect_multival: Union[float, torch.Tensor]=None, |
|
cameractrl_multival: Union[float, torch.Tensor]=None, pia_input: InputPIA=None, |
|
inherit_missing: bool=True, guarantee_steps: int=1): |
|
if not prev_ad_keyframes: |
|
prev_ad_keyframes = ADKeyframeGroup() |
|
prev_ad_keyframes = prev_ad_keyframes.clone() |
|
keyframe = ADKeyframe(start_percent=start_percent, |
|
scale_multival=scale_multival, effect_multival=effect_multival, |
|
cameractrl_multival=cameractrl_multival, pia_input=pia_input, |
|
inherit_missing=inherit_missing, guarantee_steps=guarantee_steps) |
|
prev_ad_keyframes.add(keyframe) |
|
return (prev_ad_keyframes,) |
|
|