|
import io |
|
|
|
import torch |
|
from PIL import Image |
|
import struct |
|
import numpy as np |
|
from comfy.cli_args import args, LatentPreviewMethod |
|
from comfy.taesd.taesd import TAESD |
|
import comfy.model_management |
|
import folder_paths |
|
import comfy.utils |
|
import logging |
|
|
|
MAX_PREVIEW_RESOLUTION = args.preview_size |
|
|
|
def preview_to_image(latent_image): |
|
latents_ubyte = (((latent_image + 1.0) / 2.0).clamp(0, 1) |
|
.mul(0xFF) |
|
).to(device="cpu", dtype=torch.uint8, non_blocking=comfy.model_management.device_supports_non_blocking(latent_image.device)) |
|
|
|
return Image.fromarray(latents_ubyte.numpy()) |
|
|
|
class LatentPreviewer: |
|
def decode_latent_to_preview(self, x0): |
|
pass |
|
|
|
def decode_latent_to_preview_image(self, preview_format, x0): |
|
preview_image = self.decode_latent_to_preview(x0) |
|
return ("GIF", preview_image, MAX_PREVIEW_RESOLUTION) |
|
|
|
class Latent2RGBPreviewer(LatentPreviewer): |
|
def __init__(self): |
|
latent_rgb_factors = [[0.11945946736445662, 0.09919175788574555, -0.004832707433877734], [-0.0011977028264356232, 0.05496505130267682, 0.021321622433638193], [-0.014088548986590666, -0.008701477861945644, -0.020991313281459367], [0.03063921972519621, 0.12186477097625073, 0.0139593690235148], [0.0927403067854673, 0.030293187650929136, 0.05083134241694003], [0.0379112441305742, 0.04935199882777209, 0.058562766246777774], [0.017749911959153715, 0.008839453404921545, 0.036005638019226294], [0.10610119248526109, 0.02339855688237826, 0.057154257614084596], [0.1273639464837117, -0.010959856130713416, 0.043268631260428896], [-0.01873510946881321, 0.08220930648486932, 0.10613256772247093], [0.008429116376722327, 0.07623856561000408, 0.09295712117576727], [0.12938137079617007, 0.12360403483892413, 0.04478930933220116], [0.04565908794779364, 0.041064156741596365, -0.017695041535528512], [0.00019003240570281826, -0.013965147883381978, 0.05329669529635849], [0.08082391586738358, 0.11548306825496074, -0.021464170006615893], [-0.01517932393230994, -0.0057985555313003236, 0.07216646476618871]] |
|
|
|
self.latent_rgb_factors = torch.tensor(latent_rgb_factors, device="cpu").transpose(0, 1) |
|
self.latent_rgb_factors_bias = None |
|
|
|
|
|
|
|
def decode_latent_to_preview(self, x0): |
|
self.latent_rgb_factors = self.latent_rgb_factors.to(dtype=x0.dtype, device=x0.device) |
|
if self.latent_rgb_factors_bias is not None: |
|
self.latent_rgb_factors_bias = self.latent_rgb_factors_bias.to(dtype=x0.dtype, device=x0.device) |
|
|
|
latent_image = torch.nn.functional.linear(x0[0].permute(1, 2, 0), self.latent_rgb_factors, |
|
bias=self.latent_rgb_factors_bias) |
|
return preview_to_image(latent_image) |
|
|
|
|
|
def get_previewer(): |
|
previewer = None |
|
method = args.preview_method |
|
if method != LatentPreviewMethod.NoPreviews: |
|
|
|
|
|
if method == LatentPreviewMethod.Auto: |
|
method = LatentPreviewMethod.Latent2RGB |
|
|
|
if previewer is None: |
|
previewer = Latent2RGBPreviewer() |
|
return previewer |
|
|
|
def prepare_callback(model, steps, x0_output_dict=None): |
|
preview_format = "JPEG" |
|
if preview_format not in ["JPEG", "PNG"]: |
|
preview_format = "JPEG" |
|
|
|
previewer = get_previewer() |
|
|
|
pbar = comfy.utils.ProgressBar(steps) |
|
def callback(step, x0, x, total_steps): |
|
if x0_output_dict is not None: |
|
x0_output_dict["x0"] = x0 |
|
preview_bytes = None |
|
if previewer: |
|
preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0) |
|
pbar.update_absolute(step + 1, total_steps, preview_bytes) |
|
return callback |
|
|
|
|