|
import os |
|
import json |
|
import folder_paths |
|
import comfy.model_management as mm |
|
from typing import Union |
|
|
|
def patched_write_atomic( |
|
path_: str, |
|
content: Union[str, bytes], |
|
make_dirs: bool = False, |
|
encode_utf_8: bool = False, |
|
) -> None: |
|
|
|
|
|
from pathlib import Path |
|
import os |
|
import shutil |
|
import threading |
|
assert isinstance( |
|
content, (str, bytes) |
|
), "Only strings and byte arrays can be saved in the cache" |
|
path = Path(path_) |
|
if make_dirs: |
|
path.parent.mkdir(parents=True, exist_ok=True) |
|
tmp_path = path.parent / f".{os.getpid()}.{threading.get_ident()}.tmp" |
|
write_mode = "w" if isinstance(content, str) else "wb" |
|
with tmp_path.open(write_mode, encoding="utf-8" if encode_utf_8 else None) as f: |
|
f.write(content) |
|
shutil.copy2(src=tmp_path, dst=path) |
|
os.remove(tmp_path) |
|
try: |
|
import torch._inductor.codecache |
|
torch._inductor.codecache.write_atomic = patched_write_atomic |
|
except: |
|
pass |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from diffusers.models import AutoencoderKLCogVideoX |
|
from diffusers.schedulers import CogVideoXDDIMScheduler |
|
from .custom_cogvideox_transformer_3d import CogVideoXTransformer3DModel |
|
from .pipeline_cogvideox import CogVideoXPipeline |
|
from contextlib import nullcontext |
|
|
|
from accelerate import init_empty_weights |
|
from accelerate.utils import set_module_tensor_to_device |
|
|
|
from .utils import remove_specific_blocks, log |
|
from comfy.utils import load_torch_file |
|
|
|
script_directory = os.path.dirname(os.path.abspath(__file__)) |
|
|
|
class CogVideoLoraSelect: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"lora": (folder_paths.get_filename_list("cogvideox_loras"), |
|
{"tooltip": "LORA models are expected to be in ComfyUI/models/CogVideo/loras with .safetensors extension"}), |
|
"strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.0001, "tooltip": "LORA strength, set to 0.0 to unmerge the LORA"}), |
|
}, |
|
"optional": { |
|
"prev_lora":("COGLORA", {"default": None, "tooltip": "For loading multiple LoRAs"}), |
|
"fuse_lora": ("BOOLEAN", {"default": False, "tooltip": "Fuse the LoRA weights into the transformer"}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("COGLORA",) |
|
RETURN_NAMES = ("lora", ) |
|
FUNCTION = "getlorapath" |
|
CATEGORY = "CogVideoWrapper" |
|
DESCRIPTION = "Select a LoRA model from ComfyUI/models/CogVideo/loras" |
|
|
|
def getlorapath(self, lora, strength, prev_lora=None, fuse_lora=False): |
|
cog_loras_list = [] |
|
|
|
cog_lora = { |
|
"path": folder_paths.get_full_path("cogvideox_loras", lora), |
|
"strength": strength, |
|
"name": lora.split(".")[0], |
|
"fuse_lora": fuse_lora |
|
} |
|
if prev_lora is not None: |
|
cog_loras_list.extend(prev_lora) |
|
|
|
cog_loras_list.append(cog_lora) |
|
print(cog_loras_list) |
|
return (cog_loras_list,) |
|
|
|
class CogVideoLoraSelectComfy: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"lora": (folder_paths.get_filename_list("loras"), |
|
{"tooltip": "LORA models are expected to be in ComfyUI/models/loras with .safetensors extension"}), |
|
"strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.0001, "tooltip": "LORA strength, set to 0.0 to unmerge the LORA"}), |
|
}, |
|
"optional": { |
|
"prev_lora":("COGLORA", {"default": None, "tooltip": "For loading multiple LoRAs"}), |
|
"fuse_lora": ("BOOLEAN", {"default": False, "tooltip": "Fuse the LoRA weights into the transformer"}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("COGLORA",) |
|
RETURN_NAMES = ("lora", ) |
|
FUNCTION = "getlorapath" |
|
CATEGORY = "CogVideoWrapper" |
|
DESCRIPTION = "Select a LoRA model from ComfyUI/models/loras" |
|
|
|
def getlorapath(self, lora, strength, prev_lora=None, fuse_lora=False): |
|
cog_loras_list = [] |
|
|
|
cog_lora = { |
|
"path": folder_paths.get_full_path("loras", lora), |
|
"strength": strength, |
|
"name": lora.split(".")[0], |
|
"fuse_lora": fuse_lora |
|
} |
|
if prev_lora is not None: |
|
cog_loras_list.extend(prev_lora) |
|
|
|
cog_loras_list.append(cog_lora) |
|
print(cog_loras_list) |
|
return (cog_loras_list,) |
|
|
|
|
|
class DownloadAndLoadCogVideoModel: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"model": ( |
|
[ |
|
"THUDM/CogVideoX-2b", |
|
"THUDM/CogVideoX-5b", |
|
"THUDM/CogVideoX-5b-I2V", |
|
"kijai/CogVideoX-5b-1.5-T2V", |
|
"kijai/CogVideoX-5b-1.5-I2V", |
|
"bertjiazheng/KoolCogVideoX-5b", |
|
"kijai/CogVideoX-Fun-2b", |
|
"kijai/CogVideoX-Fun-5b", |
|
"kijai/CogVideoX-5b-Tora", |
|
"alibaba-pai/CogVideoX-Fun-V1.1-2b-InP", |
|
"alibaba-pai/CogVideoX-Fun-V1.1-5b-InP", |
|
"alibaba-pai/CogVideoX-Fun-V1.1-2b-Pose", |
|
"alibaba-pai/CogVideoX-Fun-V1.1-5b-Pose", |
|
"alibaba-pai/CogVideoX-Fun-V1.1-5b-Control", |
|
"feizhengcong/CogvideoX-Interpolation", |
|
"NimVideo/cogvideox-2b-img2vid" |
|
], |
|
), |
|
|
|
}, |
|
"optional": { |
|
"precision": (["fp16", "fp32", "bf16"], |
|
{"default": "bf16", "tooltip": "official recommendation is that 2b model should be fp16, 5b model should be bf16"} |
|
), |
|
"quantization": (['disabled', 'fp8_e4m3fn', 'fp8_e4m3fn_fastmode', 'torchao_fp8dq', "torchao_fp8dqrow", "torchao_int8dq", "torchao_fp6"], {"default": 'disabled', "tooltip": "enabled casts the transformer to torch.float8_e4m3fn, fastmode is only for latest nvidia GPUs and requires torch 2.4.0 and cu124 minimum"}), |
|
"enable_sequential_cpu_offload": ("BOOLEAN", {"default": False, "tooltip": "significantly reducing memory usage and slows down the inference"}), |
|
"block_edit": ("TRANSFORMERBLOCKS", {"default": None}), |
|
"lora": ("COGLORA", {"default": None}), |
|
"compile_args":("COMPILEARGS", ), |
|
"attention_mode": ([ |
|
"sdpa", |
|
"fused_sdpa", |
|
"sageattn", |
|
"fused_sageattn", |
|
"sageattn_qk_int8_pv_fp8_cuda", |
|
"sageattn_qk_int8_pv_fp16_cuda", |
|
"sageattn_qk_int8_pv_fp16_triton", |
|
"fused_sageattn_qk_int8_pv_fp8_cuda", |
|
"fused_sageattn_qk_int8_pv_fp16_cuda", |
|
"fused_sageattn_qk_int8_pv_fp16_triton", |
|
"comfy" |
|
], {"default": "sdpa"}), |
|
"load_device": (["main_device", "offload_device"], {"default": "main_device"}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("COGVIDEOMODEL", "VAE",) |
|
RETURN_NAMES = ("model", "vae", ) |
|
FUNCTION = "loadmodel" |
|
CATEGORY = "CogVideoWrapper" |
|
DESCRIPTION = "Downloads and loads the selected CogVideo model from Huggingface to 'ComfyUI/models/CogVideo'" |
|
|
|
def loadmodel(self, model, precision, quantization="disabled", compile="disabled", |
|
enable_sequential_cpu_offload=False, block_edit=None, lora=None, compile_args=None, |
|
attention_mode="sdpa", load_device="main_device"): |
|
|
|
transformer = None |
|
|
|
if "sage" in attention_mode: |
|
try: |
|
from sageattention import sageattn |
|
except Exception as e: |
|
raise ValueError(f"Can't import SageAttention: {str(e)}") |
|
if "qk_int8" in attention_mode: |
|
try: |
|
from sageattention import sageattn_qk_int8_pv_fp16_cuda |
|
except Exception as e: |
|
raise ValueError(f"Can't import SageAttention 2.0.0: {str(e)}") |
|
|
|
if precision == "fp16" and "1.5" in model: |
|
raise ValueError("1.5 models do not currently work in fp16") |
|
|
|
device = mm.get_torch_device() |
|
offload_device = mm.unet_offload_device() |
|
manual_offloading = True |
|
transformer_load_device = device if load_device == "main_device" else offload_device |
|
mm.soft_empty_cache() |
|
|
|
dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[precision] |
|
download_path = folder_paths.get_folder_paths("CogVideo")[0] |
|
|
|
if "Fun" in model: |
|
if not "1.1" in model: |
|
repo_id = "kijai/CogVideoX-Fun-pruned" |
|
if "2b" in model: |
|
base_path = os.path.join(folder_paths.models_dir, "CogVideoX_Fun", "CogVideoX-Fun-2b-InP") |
|
if not os.path.exists(base_path): |
|
base_path = os.path.join(download_path, "CogVideoX-Fun-2b-InP") |
|
elif "5b" in model: |
|
base_path = os.path.join(folder_paths.models_dir, "CogVideoX_Fun", "CogVideoX-Fun-5b-InP") |
|
if not os.path.exists(base_path): |
|
base_path = os.path.join(download_path, "CogVideoX-Fun-5b-InP") |
|
elif "1.1" in model: |
|
repo_id = model |
|
base_path = os.path.join(folder_paths.models_dir, "CogVideoX_Fun", (model.split("/")[-1])) |
|
if not os.path.exists(base_path): |
|
base_path = os.path.join(download_path, (model.split("/")[-1])) |
|
download_path = base_path |
|
subfolder = "transformer" |
|
allow_patterns = ["*transformer*", "*scheduler*", "*vae*"] |
|
|
|
elif "2b" in model: |
|
if 'img2vid' in model: |
|
base_path = os.path.join(download_path, "cogvideox-2b-img2vid") |
|
download_path = base_path |
|
repo_id = model |
|
else: |
|
base_path = os.path.join(download_path, "CogVideo2B") |
|
download_path = base_path |
|
repo_id = model |
|
subfolder = "transformer" |
|
allow_patterns = ["*transformer*", "*scheduler*", "*vae*"] |
|
elif "1.5-T2V" in model or "1.5-I2V" in model: |
|
base_path = os.path.join(download_path, "CogVideoX-5b-1.5") |
|
download_path = base_path |
|
subfolder = "transformer_T2V" if "1.5-T2V" in model else "transformer_I2V" |
|
allow_patterns = [f"*{subfolder}*", "*vae*", "*scheduler*"] |
|
repo_id = "kijai/CogVideoX-5b-1.5" |
|
else: |
|
base_path = os.path.join(download_path, (model.split("/")[-1])) |
|
download_path = base_path |
|
repo_id = model |
|
subfolder = "transformer" |
|
allow_patterns = ["*transformer*", "*scheduler*", "*vae*"] |
|
|
|
if "2b" in model: |
|
scheduler_path = os.path.join(script_directory, 'configs', 'scheduler_config_2b.json') |
|
else: |
|
scheduler_path = os.path.join(script_directory, 'configs', 'scheduler_config_5b.json') |
|
|
|
if not os.path.exists(base_path) or not os.path.exists(os.path.join(base_path, subfolder)): |
|
log.info(f"Downloading model to: {base_path}") |
|
from huggingface_hub import snapshot_download |
|
|
|
snapshot_download( |
|
repo_id=repo_id, |
|
allow_patterns=allow_patterns, |
|
ignore_patterns=["*text_encoder*", "*tokenizer*"], |
|
local_dir=download_path, |
|
local_dir_use_symlinks=False, |
|
) |
|
|
|
transformer = CogVideoXTransformer3DModel.from_pretrained(base_path, subfolder=subfolder, attention_mode=attention_mode) |
|
transformer = transformer.to(dtype).to(transformer_load_device) |
|
|
|
if "1.5" in model: |
|
transformer.config.sample_height = 300 |
|
transformer.config.sample_width = 300 |
|
|
|
if block_edit is not None: |
|
transformer = remove_specific_blocks(transformer, block_edit) |
|
|
|
with open(scheduler_path) as f: |
|
scheduler_config = json.load(f) |
|
scheduler = CogVideoXDDIMScheduler.from_config(scheduler_config) |
|
|
|
|
|
vae = AutoencoderKLCogVideoX.from_pretrained(base_path, subfolder="vae").to(dtype).to(offload_device) |
|
|
|
|
|
pipe = CogVideoXPipeline( |
|
transformer, |
|
scheduler, |
|
dtype=dtype, |
|
is_fun_inpaint="fun" in model.lower() and not ("pose" in model.lower() or "control" in model.lower()) |
|
) |
|
if "cogvideox-2b-img2vid" in model: |
|
pipe.input_with_padding = False |
|
|
|
|
|
if lora is not None: |
|
dimensionx_loras = ["orbit", "dimensionx"] |
|
dimensionx_lora = False |
|
adapter_list = [] |
|
adapter_weights = [] |
|
for l in lora: |
|
if any(item in l["path"].lower() for item in dimensionx_loras): |
|
dimensionx_lora = True |
|
fuse = True if l["fuse_lora"] else False |
|
lora_sd = load_torch_file(l["path"]) |
|
lora_rank = None |
|
for key, val in lora_sd.items(): |
|
if "lora_B" in key: |
|
lora_rank = val.shape[1] |
|
break |
|
if lora_rank is not None: |
|
log.info(f"Merging rank {lora_rank} LoRA weights from {l['path']} with strength {l['strength']}") |
|
adapter_name = l['path'].split("/")[-1].split(".")[0] |
|
adapter_weight = l['strength'] |
|
pipe.load_lora_weights(l['path'], weight_name=l['path'].split("/")[-1], lora_rank=lora_rank, adapter_name=adapter_name) |
|
|
|
adapter_list.append(adapter_name) |
|
adapter_weights.append(adapter_weight) |
|
else: |
|
try: |
|
from .lora_utils import merge_lora |
|
log.info(f"Merging LoRA weights from {l['path']} with strength {l['strength']}") |
|
pipe.transformer = merge_lora(pipe.transformer, l["path"], l["strength"], device=transformer_load_device, state_dict=lora_sd) |
|
except: |
|
raise ValueError(f"Can't recognize LoRA {l['path']}") |
|
if adapter_list: |
|
pipe.set_adapters(adapter_list, adapter_weights=adapter_weights) |
|
if fuse: |
|
lora_scale = 1 |
|
if dimensionx_lora: |
|
lora_scale = lora_scale / lora_rank |
|
pipe.fuse_lora(lora_scale=lora_scale, components=["transformer"]) |
|
|
|
|
|
if "fused" in attention_mode: |
|
from diffusers.models.attention import Attention |
|
pipe.transformer.fuse_qkv_projections = True |
|
for module in pipe.transformer.modules(): |
|
if isinstance(module, Attention): |
|
module.fuse_projections(fuse=True) |
|
|
|
if compile_args is not None: |
|
pipe.transformer.to(memory_format=torch.channels_last) |
|
|
|
|
|
if quantization == "fp8_e4m3fn" or quantization == "fp8_e4m3fn_fastmode": |
|
params_to_keep = {"patch_embed", "lora", "pos_embedding", "time_embedding", "norm_k", "norm_q", "to_k.bias", "to_q.bias", "to_v.bias"} |
|
if "1.5" in model: |
|
params_to_keep.update({"norm1.linear.weight", "ofs_embedding", "norm_final", "norm_out", "proj_out"}) |
|
for name, param in pipe.transformer.named_parameters(): |
|
if not any(keyword in name for keyword in params_to_keep): |
|
param.data = param.data.to(torch.float8_e4m3fn) |
|
|
|
if quantization == "fp8_e4m3fn_fastmode": |
|
from .fp8_optimization import convert_fp8_linear |
|
if "1.5" in model: |
|
params_to_keep.update({"ff"}) |
|
convert_fp8_linear(pipe.transformer, dtype, params_to_keep=params_to_keep) |
|
|
|
|
|
if compile_args is not None: |
|
torch._dynamo.config.cache_size_limit = compile_args["dynamo_cache_size_limit"] |
|
for i, block in enumerate(pipe.transformer.transformer_blocks): |
|
if "CogVideoXBlock" in str(block): |
|
pipe.transformer.transformer_blocks[i] = torch.compile(block, fullgraph=compile_args["fullgraph"], dynamic=compile_args["dynamic"], backend=compile_args["backend"], mode=compile_args["mode"]) |
|
|
|
if "torchao" in quantization: |
|
try: |
|
from torchao.quantization import ( |
|
quantize_, |
|
fpx_weight_only, |
|
float8_dynamic_activation_float8_weight, |
|
int8_dynamic_activation_int8_weight |
|
) |
|
except: |
|
raise ImportError("torchao is not installed, please install torchao to use fp8dq") |
|
|
|
def filter_fn(module: nn.Module, fqn: str) -> bool: |
|
target_submodules = {'attn1', 'ff'} |
|
if any(sub in fqn for sub in target_submodules): |
|
return isinstance(module, nn.Linear) |
|
return False |
|
|
|
if "fp6" in quantization: |
|
quant_func = fpx_weight_only(3, 2) |
|
elif "fp8dq" in quantization: |
|
quant_func = float8_dynamic_activation_float8_weight() |
|
elif 'fp8dqrow' in quantization: |
|
from torchao.quantization.quant_api import PerRow |
|
quant_func = float8_dynamic_activation_float8_weight(granularity=PerRow()) |
|
elif 'int8dq' in quantization: |
|
quant_func = int8_dynamic_activation_int8_weight() |
|
|
|
for i, block in enumerate(pipe.transformer.transformer_blocks): |
|
if "CogVideoXBlock" in str(block): |
|
quantize_(block, quant_func, filter_fn=filter_fn) |
|
|
|
manual_offloading = False |
|
|
|
if enable_sequential_cpu_offload: |
|
pipe.enable_sequential_cpu_offload() |
|
manual_offloading = False |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pipeline = { |
|
"pipe": pipe, |
|
"dtype": dtype, |
|
"quantization": quantization, |
|
"base_path": base_path, |
|
"onediff": True if compile == "onediff" else False, |
|
"cpu_offloading": enable_sequential_cpu_offload, |
|
"manual_offloading": manual_offloading, |
|
"scheduler_config": scheduler_config, |
|
"model_name": model, |
|
} |
|
|
|
return (pipeline, vae) |
|
|
|
class DownloadAndLoadCogVideoGGUFModel: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"model": ( |
|
[ |
|
"CogVideoX_5b_GGUF_Q4_0.safetensors", |
|
"CogVideoX_5b_I2V_GGUF_Q4_0.safetensors", |
|
"CogVideoX_5b_1_5_I2V_GGUF_Q4_0.safetensors", |
|
"CogVideoX_5b_fun_GGUF_Q4_0.safetensors", |
|
"CogVideoX_5b_fun_1_1_GGUF_Q4_0.safetensors", |
|
"CogVideoX_5b_fun_1_1_Pose_GGUF_Q4_0.safetensors", |
|
"CogVideoX_5b_Interpolation_GGUF_Q4_0.safetensors", |
|
"CogVideoX_5b_Tora_GGUF_Q4_0.safetensors", |
|
], |
|
), |
|
"vae_precision": (["fp16", "fp32", "bf16"], {"default": "bf16", "tooltip": "VAE dtype"}), |
|
"fp8_fastmode": ("BOOLEAN", {"default": False, "tooltip": "only supported on 4090 and later GPUs, also requires torch 2.4.0 with cu124 minimum"}), |
|
"load_device": (["main_device", "offload_device"], {"default": "main_device"}), |
|
"enable_sequential_cpu_offload": ("BOOLEAN", {"default": False, "tooltip": "significantly reducing memory usage and slows down the inference"}), |
|
}, |
|
"optional": { |
|
"block_edit": ("TRANSFORMERBLOCKS", {"default": None}), |
|
|
|
"attention_mode": (["sdpa", "sageattn"], {"default": "sdpa"}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("COGVIDEOMODEL", "VAE",) |
|
RETURN_NAMES = ("model", "vae",) |
|
FUNCTION = "loadmodel" |
|
CATEGORY = "CogVideoWrapper" |
|
|
|
def loadmodel(self, model, vae_precision, fp8_fastmode, load_device, enable_sequential_cpu_offload, |
|
block_edit=None, compile_args=None, attention_mode="sdpa"): |
|
|
|
if "sage" in attention_mode: |
|
try: |
|
from sageattention import sageattn |
|
except Exception as e: |
|
raise ValueError(f"Can't import SageAttention: {str(e)}") |
|
|
|
device = mm.get_torch_device() |
|
offload_device = mm.unet_offload_device() |
|
mm.soft_empty_cache() |
|
|
|
vae_dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[vae_precision] |
|
download_path = os.path.join(folder_paths.models_dir, 'CogVideo', 'GGUF') |
|
gguf_path = os.path.join(folder_paths.models_dir, 'diffusion_models', model) |
|
if not os.path.exists(gguf_path): |
|
gguf_path = os.path.join(download_path, model) |
|
if not os.path.exists(gguf_path): |
|
if "I2V" in model or "1_1" in model or "Interpolation" in model or "Tora" in model: |
|
repo_id = "Kijai/CogVideoX_GGUF" |
|
else: |
|
repo_id = "MinusZoneAI/ComfyUI-CogVideoX-MZ" |
|
log.info(f"Downloading model to: {gguf_path}") |
|
from huggingface_hub import snapshot_download |
|
|
|
snapshot_download( |
|
repo_id=repo_id, |
|
allow_patterns=[f"*{model}*"], |
|
local_dir=download_path, |
|
local_dir_use_symlinks=False, |
|
) |
|
|
|
if "5b" in model: |
|
scheduler_path = os.path.join(script_directory, 'configs', 'scheduler_config_5b.json') |
|
transformer_path = os.path.join(script_directory, 'configs', 'transformer_config_5b.json') |
|
elif "2b" in model: |
|
scheduler_path = os.path.join(script_directory, 'configs', 'scheduler_config_2b.json') |
|
transformer_path = os.path.join(script_directory, 'configs', 'transformer_config_2b.json') |
|
|
|
with open(transformer_path) as f: |
|
transformer_config = json.load(f) |
|
|
|
|
|
from . import mz_gguf_loader |
|
import importlib |
|
importlib.reload(mz_gguf_loader) |
|
|
|
with mz_gguf_loader.quantize_lazy_load(): |
|
if "fun" in model: |
|
if "Pose" in model: |
|
transformer_config["in_channels"] = 32 |
|
else: |
|
transformer_config["in_channels"] = 33 |
|
elif "I2V" in model or "Interpolation" in model: |
|
transformer_config["in_channels"] = 32 |
|
if "1_5" in model: |
|
transformer_config["ofs_embed_dim"] = 512 |
|
transformer_config["use_learned_positional_embeddings"] = False |
|
transformer_config["patch_size_t"] = 2 |
|
transformer_config["patch_bias"] = False |
|
transformer_config["sample_height"] = 300 |
|
transformer_config["sample_width"] = 300 |
|
else: |
|
transformer_config["in_channels"] = 16 |
|
|
|
transformer = CogVideoXTransformer3DModel.from_config(transformer_config, attention_mode=attention_mode) |
|
cast_dtype = vae_dtype |
|
params_to_keep = {"patch_embed", "pos_embedding", "time_embedding"} |
|
if "2b" in model: |
|
cast_dtype = torch.float16 |
|
elif "1_5" in model: |
|
params_to_keep = {"norm1.linear.weight", "patch_embed", "time_embedding", "ofs_embedding", "norm_final", "norm_out", "proj_out"} |
|
cast_dtype = torch.bfloat16 |
|
for name, param in transformer.named_parameters(): |
|
if not any(keyword in name for keyword in params_to_keep): |
|
param.data = param.data.to(torch.float8_e4m3fn) |
|
else: |
|
param.data = param.data.to(cast_dtype) |
|
|
|
|
|
|
|
if block_edit is not None: |
|
transformer = remove_specific_blocks(transformer, block_edit) |
|
|
|
transformer.attention_mode = attention_mode |
|
|
|
if fp8_fastmode: |
|
params_to_keep = {"patch_embed", "lora", "pos_embedding", "time_embedding"} |
|
if "1.5" in model: |
|
params_to_keep.update({"ff","norm1.linear.weight", "norm_k", "norm_q","ofs_embedding", "norm_final", "norm_out", "proj_out"}) |
|
from .fp8_optimization import convert_fp8_linear |
|
convert_fp8_linear(transformer, vae_dtype, params_to_keep=params_to_keep) |
|
|
|
with open(scheduler_path) as f: |
|
scheduler_config = json.load(f) |
|
|
|
scheduler = CogVideoXDDIMScheduler.from_config(scheduler_config, subfolder="scheduler") |
|
|
|
|
|
vae_dl_path = os.path.join(folder_paths.models_dir, 'CogVideo', 'VAE') |
|
vae_path = os.path.join(vae_dl_path, "cogvideox_vae.safetensors") |
|
if not os.path.exists(vae_path): |
|
log.info(f"Downloading VAE model to: {vae_path}") |
|
from huggingface_hub import snapshot_download |
|
|
|
snapshot_download( |
|
repo_id="Kijai/CogVideoX-Fun-pruned", |
|
allow_patterns=["*cogvideox_vae.safetensors*"], |
|
local_dir=vae_dl_path, |
|
local_dir_use_symlinks=False, |
|
) |
|
with open(os.path.join(script_directory, 'configs', 'vae_config.json')) as f: |
|
vae_config = json.load(f) |
|
|
|
|
|
vae_sd = load_torch_file(vae_path) |
|
vae = AutoencoderKLCogVideoX.from_config(vae_config).to(vae_dtype).to(offload_device) |
|
vae.load_state_dict(vae_sd) |
|
del vae_sd |
|
pipe = CogVideoXPipeline( |
|
transformer, |
|
scheduler, |
|
dtype=vae_dtype, |
|
is_fun_inpaint="fun" in model.lower() and not ("pose" in model.lower() or "control" in model.lower()) |
|
) |
|
|
|
if enable_sequential_cpu_offload: |
|
pipe.enable_sequential_cpu_offload() |
|
|
|
sd = load_torch_file(gguf_path) |
|
pipe.transformer = mz_gguf_loader.quantize_load_state_dict(pipe.transformer, sd, device="cpu") |
|
del sd |
|
|
|
if load_device == "offload_device": |
|
pipe.transformer.to(offload_device) |
|
else: |
|
pipe.transformer.to(device) |
|
|
|
pipeline = { |
|
"pipe": pipe, |
|
"dtype": vae_dtype, |
|
"quantization": "GGUF", |
|
"base_path": model, |
|
"onediff": False, |
|
"cpu_offloading": enable_sequential_cpu_offload, |
|
"scheduler_config": scheduler_config, |
|
"model_name": model, |
|
"manual_offloading": True, |
|
} |
|
|
|
return (pipeline, vae) |
|
|
|
|
|
class CogVideoXModelLoader: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"model": (folder_paths.get_filename_list("diffusion_models"), {"tooltip": "These models are loaded from the 'ComfyUI/models/diffusion_models' -folder",}), |
|
|
|
"base_precision": (["fp16", "fp32", "bf16"], {"default": "bf16"}), |
|
"quantization": (['disabled', 'fp8_e4m3fn', 'fp8_e4m3fn_fast', 'torchao_fp8dq', "torchao_fp8dqrow", "torchao_int8dq", "torchao_fp6"], {"default": 'disabled', "tooltip": "optional quantization method"}), |
|
"load_device": (["main_device", "offload_device"], {"default": "main_device"}), |
|
"enable_sequential_cpu_offload": ("BOOLEAN", {"default": False, "tooltip": "significantly reducing memory usage and slows down the inference"}), |
|
}, |
|
"optional": { |
|
"block_edit": ("TRANSFORMERBLOCKS", {"default": None}), |
|
"lora": ("COGLORA", {"default": None}), |
|
"compile_args":("COMPILEARGS", ), |
|
"attention_mode": ([ |
|
"sdpa", |
|
"fused_sdpa", |
|
"sageattn", |
|
"fused_sageattn", |
|
"sageattn_qk_int8_pv_fp8_cuda", |
|
"sageattn_qk_int8_pv_fp16_cuda", |
|
"sageattn_qk_int8_pv_fp16_triton", |
|
"fused_sageattn_qk_int8_pv_fp8_cuda", |
|
"fused_sageattn_qk_int8_pv_fp16_cuda", |
|
"fused_sageattn_qk_int8_pv_fp16_triton", |
|
"comfy" |
|
], {"default": "sdpa"}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("COGVIDEOMODEL",) |
|
RETURN_NAMES = ("model", ) |
|
FUNCTION = "loadmodel" |
|
CATEGORY = "CogVideoWrapper" |
|
|
|
def loadmodel(self, model, base_precision, load_device, enable_sequential_cpu_offload, |
|
block_edit=None, compile_args=None, lora=None, attention_mode="sdpa", quantization="disabled"): |
|
transformer = None |
|
if "sage" in attention_mode: |
|
try: |
|
from sageattention import sageattn |
|
except Exception as e: |
|
raise ValueError(f"Can't import SageAttention: {str(e)}") |
|
|
|
device = mm.get_torch_device() |
|
offload_device = mm.unet_offload_device() |
|
manual_offloading = True |
|
transformer_load_device = device if load_device == "main_device" else offload_device |
|
mm.soft_empty_cache() |
|
|
|
base_dtype = {"fp8_e4m3fn": torch.float8_e4m3fn, "fp8_e4m3fn_fast": torch.float8_e4m3fn, "bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[base_precision] |
|
|
|
model_path = folder_paths.get_full_path_or_raise("diffusion_models", model) |
|
sd = load_torch_file(model_path, device=transformer_load_device) |
|
|
|
model_type = "" |
|
if sd["patch_embed.proj.weight"].shape == (3072, 33, 2, 2): |
|
model_type = "fun_5b" |
|
elif sd["patch_embed.proj.weight"].shape == (3072, 16, 2, 2): |
|
model_type = "5b" |
|
elif sd["patch_embed.proj.weight"].shape == (3072, 128): |
|
model_type = "5b_1_5" |
|
elif sd["patch_embed.proj.weight"].shape == (3072, 256): |
|
model_type = "5b_I2V_1_5" |
|
elif sd["patch_embed.proj.weight"].shape == (1920, 33, 2, 2): |
|
model_type = "fun_2b" |
|
elif sd["patch_embed.proj.weight"].shape == (1920, 16, 2, 2): |
|
model_type = "2b" |
|
elif sd["patch_embed.proj.weight"].shape == (3072, 32, 2, 2): |
|
if "pos_embedding" in sd: |
|
model_type = "fun_5b_pose" |
|
else: |
|
model_type = "I2V_5b" |
|
else: |
|
raise Exception("Selected model is not recognized") |
|
log.info(f"Detected CogVideoX model type: {model_type}") |
|
|
|
if "5b" in model_type: |
|
scheduler_config_path = os.path.join(script_directory, 'configs', 'scheduler_config_5b.json') |
|
transformer_config_path = os.path.join(script_directory, 'configs', 'transformer_config_5b.json') |
|
elif "2b" in model_type: |
|
scheduler_config_path = os.path.join(script_directory, 'configs', 'scheduler_config_2b.json') |
|
transformer_config_path = os.path.join(script_directory, 'configs', 'transformer_config_2b.json') |
|
|
|
with open(transformer_config_path) as f: |
|
transformer_config = json.load(f) |
|
|
|
if model_type in ["I2V", "I2V_5b", "fun_5b_pose", "5b_I2V_1_5"]: |
|
transformer_config["in_channels"] = 32 |
|
if "1_5" in model_type: |
|
transformer_config["ofs_embed_dim"] = 512 |
|
elif "fun" in model_type: |
|
transformer_config["in_channels"] = 33 |
|
else: |
|
transformer_config["in_channels"] = 16 |
|
if "1_5" in model_type: |
|
transformer_config["use_learned_positional_embeddings"] = False |
|
transformer_config["patch_size_t"] = 2 |
|
transformer_config["patch_bias"] = False |
|
transformer_config["sample_height"] = 300 |
|
transformer_config["sample_width"] = 300 |
|
|
|
with init_empty_weights(): |
|
transformer = CogVideoXTransformer3DModel.from_config(transformer_config, attention_mode=attention_mode) |
|
|
|
|
|
|
|
log.info("Using accelerate to load and assign model weights to device...") |
|
|
|
for name, param in transformer.named_parameters(): |
|
|
|
set_module_tensor_to_device(transformer, name, device=transformer_load_device, dtype=base_dtype, value=sd[name]) |
|
del sd |
|
|
|
|
|
with open(scheduler_config_path) as f: |
|
scheduler_config = json.load(f) |
|
scheduler = CogVideoXDDIMScheduler.from_config(scheduler_config, subfolder="scheduler") |
|
|
|
if block_edit is not None: |
|
transformer = remove_specific_blocks(transformer, block_edit) |
|
|
|
if "fused" in attention_mode: |
|
from diffusers.models.attention import Attention |
|
transformer.fuse_qkv_projections = True |
|
for module in transformer.modules(): |
|
if isinstance(module, Attention): |
|
module.fuse_projections(fuse=True) |
|
transformer.attention_mode = attention_mode |
|
|
|
pipe = CogVideoXPipeline( |
|
transformer, |
|
scheduler, |
|
dtype=base_dtype, |
|
is_fun_inpaint="fun" in model.lower() and not ("pose" in model.lower() or "control" in model.lower()) |
|
) |
|
|
|
if enable_sequential_cpu_offload: |
|
pipe.enable_sequential_cpu_offload() |
|
|
|
|
|
if lora is not None: |
|
dimensionx_loras = ["orbit", "dimensionx"] |
|
dimensionx_lora = False |
|
adapter_list = [] |
|
adapter_weights = [] |
|
for l in lora: |
|
if any(item in l["path"].lower() for item in dimensionx_loras): |
|
dimensionx_lora = True |
|
fuse = True if l["fuse_lora"] else False |
|
lora_sd = load_torch_file(l["path"]) |
|
lora_rank = None |
|
for key, val in lora_sd.items(): |
|
if "lora_B" in key: |
|
lora_rank = val.shape[1] |
|
break |
|
if lora_rank is not None: |
|
log.info(f"Merging rank {lora_rank} LoRA weights from {l['path']} with strength {l['strength']}") |
|
adapter_name = l['path'].split("/")[-1].split(".")[0] |
|
adapter_weight = l['strength'] |
|
pipe.load_lora_weights(l['path'], weight_name=l['path'].split("/")[-1], lora_rank=lora_rank, adapter_name=adapter_name) |
|
|
|
adapter_list.append(adapter_name) |
|
adapter_weights.append(adapter_weight) |
|
else: |
|
try: |
|
from .lora_utils import merge_lora |
|
log.info(f"Merging LoRA weights from {l['path']} with strength {l['strength']}") |
|
pipe.transformer = merge_lora(pipe.transformer, l["path"], l["strength"], device=transformer_load_device, state_dict=lora_sd) |
|
except: |
|
raise ValueError(f"Can't recognize LoRA {l['path']}") |
|
if adapter_list: |
|
pipe.set_adapters(adapter_list, adapter_weights=adapter_weights) |
|
if fuse: |
|
lora_scale = 1 |
|
if dimensionx_lora: |
|
lora_scale = lora_scale / lora_rank |
|
pipe.fuse_lora(lora_scale=lora_scale, components=["transformer"]) |
|
|
|
if compile_args is not None: |
|
pipe.transformer.to(memory_format=torch.channels_last) |
|
|
|
|
|
if quantization == "fp8_e4m3fn" or quantization == "fp8_e4m3fn_fast": |
|
params_to_keep = {"patch_embed", "lora", "pos_embedding", "time_embedding", "norm_k", "norm_q", "to_k.bias", "to_q.bias", "to_v.bias"} |
|
if "1.5" in model: |
|
params_to_keep.update({"norm1.linear.weight", "ofs_embedding", "norm_final", "norm_out", "proj_out"}) |
|
for name, param in pipe.transformer.named_parameters(): |
|
if not any(keyword in name for keyword in params_to_keep): |
|
param.data = param.data.to(torch.float8_e4m3fn) |
|
|
|
if quantization == "fp8_e4m3fn_fast": |
|
from .fp8_optimization import convert_fp8_linear |
|
if "1.5" in model: |
|
params_to_keep.update({"ff"}) |
|
convert_fp8_linear(pipe.transformer, base_dtype, params_to_keep=params_to_keep) |
|
|
|
|
|
if compile_args is not None: |
|
torch._dynamo.config.cache_size_limit = compile_args["dynamo_cache_size_limit"] |
|
for i, block in enumerate(pipe.transformer.transformer_blocks): |
|
if "CogVideoXBlock" in str(block): |
|
pipe.transformer.transformer_blocks[i] = torch.compile(block, fullgraph=compile_args["fullgraph"], dynamic=compile_args["dynamic"], backend=compile_args["backend"], mode=compile_args["mode"]) |
|
|
|
if "torchao" in quantization: |
|
try: |
|
from torchao.quantization import ( |
|
quantize_, |
|
fpx_weight_only, |
|
float8_dynamic_activation_float8_weight, |
|
int8_dynamic_activation_int8_weight |
|
) |
|
except: |
|
raise ImportError("torchao is not installed, please install torchao to use fp8dq") |
|
|
|
def filter_fn(module: nn.Module, fqn: str) -> bool: |
|
target_submodules = {'attn1', 'ff'} |
|
if any(sub in fqn for sub in target_submodules): |
|
return isinstance(module, nn.Linear) |
|
return False |
|
|
|
if "fp6" in quantization: |
|
quant_func = fpx_weight_only(3, 2) |
|
elif "fp8dq" in quantization: |
|
quant_func = float8_dynamic_activation_float8_weight() |
|
elif 'fp8dqrow' in quantization: |
|
from torchao.quantization.quant_api import PerRow |
|
quant_func = float8_dynamic_activation_float8_weight(granularity=PerRow()) |
|
elif 'int8dq' in quantization: |
|
quant_func = int8_dynamic_activation_int8_weight() |
|
|
|
for i, block in enumerate(pipe.transformer.transformer_blocks): |
|
if "CogVideoXBlock" in str(block): |
|
quantize_(block, quant_func, filter_fn=filter_fn) |
|
|
|
manual_offloading = False |
|
log.info(f"Quantized transformer blocks to {quantization}") |
|
|
|
pipeline = { |
|
"pipe": pipe, |
|
"dtype": base_dtype, |
|
"quantization": quantization, |
|
"base_path": model, |
|
"onediff": False, |
|
"cpu_offloading": enable_sequential_cpu_offload, |
|
"scheduler_config": scheduler_config, |
|
"model_name": model, |
|
"manual_offloading": manual_offloading, |
|
} |
|
return (pipeline,) |
|
|
|
|
|
|
|
class CogVideoXVAELoader: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"model_name": (folder_paths.get_filename_list("vae"), {"tooltip": "These models are loaded from 'ComfyUI/models/vae'"}), |
|
}, |
|
"optional": { |
|
"precision": (["fp16", "fp32", "bf16"], |
|
{"default": "bf16"} |
|
), |
|
"compile_args":("COMPILEARGS", ), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("VAE",) |
|
RETURN_NAMES = ("vae", ) |
|
FUNCTION = "loadmodel" |
|
CATEGORY = "CogVideoWrapper" |
|
DESCRIPTION = "Loads CogVideoX VAE model from 'ComfyUI/models/vae'" |
|
|
|
def loadmodel(self, model_name, precision, compile_args=None): |
|
device = mm.get_torch_device() |
|
offload_device = mm.unet_offload_device() |
|
|
|
dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[precision] |
|
with open(os.path.join(script_directory, 'configs', 'vae_config.json')) as f: |
|
vae_config = json.load(f) |
|
model_path = folder_paths.get_full_path("vae", model_name) |
|
vae_sd = load_torch_file(model_path) |
|
|
|
vae = AutoencoderKLCogVideoX.from_config(vae_config).to(dtype).to(offload_device) |
|
vae.load_state_dict(vae_sd) |
|
|
|
if compile_args is not None: |
|
torch._dynamo.config.cache_size_limit = compile_args["dynamo_cache_size_limit"] |
|
vae = torch.compile(vae, fullgraph=compile_args["fullgraph"], dynamic=compile_args["dynamic"], backend=compile_args["backend"], mode=compile_args["mode"]) |
|
|
|
return (vae,) |
|
|
|
|
|
class DownloadAndLoadToraModel: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"model": ( |
|
[ |
|
"kijai/CogVideoX-5b-Tora", |
|
], |
|
), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("TORAMODEL",) |
|
RETURN_NAMES = ("tora_model", ) |
|
FUNCTION = "loadmodel" |
|
CATEGORY = "CogVideoWrapper" |
|
DESCRIPTION = "Downloads and loads the the Tora model from Huggingface to 'ComfyUI/models/CogVideo/CogVideoX-5b-Tora'" |
|
|
|
def loadmodel(self, model): |
|
device = mm.get_torch_device() |
|
offload_device = mm.unet_offload_device() |
|
mm.soft_empty_cache() |
|
|
|
download_path = folder_paths.get_folder_paths("CogVideo")[0] |
|
|
|
from .tora.traj_module import MGF |
|
|
|
try: |
|
from accelerate import init_empty_weights |
|
from accelerate.utils import set_module_tensor_to_device |
|
is_accelerate_available = True |
|
except: |
|
is_accelerate_available = False |
|
pass |
|
|
|
download_path = os.path.join(folder_paths.models_dir, 'CogVideo', "CogVideoX-5b-Tora") |
|
fuser_path = os.path.join(download_path, "fuser", "fuser.safetensors") |
|
if not os.path.exists(fuser_path): |
|
log.info(f"Downloading Fuser model to: {fuser_path}") |
|
from huggingface_hub import snapshot_download |
|
|
|
snapshot_download( |
|
repo_id=model, |
|
allow_patterns=["*fuser.safetensors*"], |
|
local_dir=download_path, |
|
local_dir_use_symlinks=False, |
|
) |
|
|
|
hidden_size = 3072 |
|
num_layers = 42 |
|
|
|
with (init_empty_weights() if is_accelerate_available else nullcontext()): |
|
fuser_list = nn.ModuleList([MGF(128, hidden_size) for _ in range(num_layers)]) |
|
|
|
fuser_sd = load_torch_file(fuser_path) |
|
if is_accelerate_available: |
|
for key in fuser_sd: |
|
set_module_tensor_to_device(fuser_list, key, dtype=torch.float16, device=device, value=fuser_sd[key]) |
|
else: |
|
fuser_list.load_state_dict(fuser_sd) |
|
for module in fuser_list: |
|
for param in module.parameters(): |
|
param.data = param.data.to(torch.bfloat16).to(device) |
|
del fuser_sd |
|
|
|
traj_extractor_path = os.path.join(download_path, "traj_extractor", "traj_extractor.safetensors") |
|
if not os.path.exists(traj_extractor_path): |
|
log.info(f"Downloading trajectory extractor model to: {traj_extractor_path}") |
|
from huggingface_hub import snapshot_download |
|
|
|
snapshot_download( |
|
repo_id="kijai/CogVideoX-5b-Tora", |
|
allow_patterns=["*traj_extractor.safetensors*"], |
|
local_dir=download_path, |
|
local_dir_use_symlinks=False, |
|
) |
|
|
|
from .tora.traj_module import TrajExtractor |
|
with (init_empty_weights() if is_accelerate_available else nullcontext()): |
|
traj_extractor = TrajExtractor( |
|
vae_downsize=(4, 8, 8), |
|
patch_size=2, |
|
nums_rb=2, |
|
cin=16, |
|
channels=[128] * 42, |
|
sk=True, |
|
use_conv=False, |
|
) |
|
|
|
traj_sd = load_torch_file(traj_extractor_path) |
|
if is_accelerate_available: |
|
for key in traj_sd: |
|
set_module_tensor_to_device(traj_extractor, key, dtype=torch.float32, device=device, value=traj_sd[key]) |
|
else: |
|
traj_extractor.load_state_dict(traj_sd) |
|
traj_extractor.to(torch.float32).to(device) |
|
|
|
toramodel = { |
|
"fuser_list": fuser_list, |
|
"traj_extractor": traj_extractor, |
|
} |
|
|
|
return (toramodel,) |
|
|
|
class DownloadAndLoadCogVideoControlNet: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"model": ( |
|
[ |
|
"TheDenk/cogvideox-2b-controlnet-hed-v1", |
|
"TheDenk/cogvideox-2b-controlnet-canny-v1", |
|
"TheDenk/cogvideox-5b-controlnet-hed-v1", |
|
"TheDenk/cogvideox-5b-controlnet-canny-v1" |
|
], |
|
), |
|
|
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("COGVIDECONTROLNETMODEL",) |
|
RETURN_NAMES = ("cogvideo_controlnet", ) |
|
FUNCTION = "loadmodel" |
|
CATEGORY = "CogVideoWrapper" |
|
|
|
def loadmodel(self, model): |
|
from .cogvideo_controlnet import CogVideoXControlnet |
|
|
|
device = mm.get_torch_device() |
|
offload_device = mm.unet_offload_device() |
|
mm.soft_empty_cache() |
|
|
|
|
|
download_path = os.path.join(folder_paths.models_dir, 'CogVideo', 'ControlNet') |
|
base_path = os.path.join(download_path, (model.split("/")[-1])) |
|
|
|
if not os.path.exists(base_path): |
|
log.info(f"Downloading model to: {base_path}") |
|
from huggingface_hub import snapshot_download |
|
|
|
snapshot_download( |
|
repo_id=model, |
|
ignore_patterns=["*text_encoder*", "*tokenizer*"], |
|
local_dir=base_path, |
|
local_dir_use_symlinks=False, |
|
) |
|
|
|
controlnet = CogVideoXControlnet.from_pretrained(base_path) |
|
|
|
return (controlnet,) |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"DownloadAndLoadCogVideoModel": DownloadAndLoadCogVideoModel, |
|
"DownloadAndLoadCogVideoGGUFModel": DownloadAndLoadCogVideoGGUFModel, |
|
"DownloadAndLoadCogVideoControlNet": DownloadAndLoadCogVideoControlNet, |
|
"DownloadAndLoadToraModel": DownloadAndLoadToraModel, |
|
"CogVideoLoraSelect": CogVideoLoraSelect, |
|
"CogVideoXVAELoader": CogVideoXVAELoader, |
|
"CogVideoXModelLoader": CogVideoXModelLoader, |
|
"CogVideoLoraSelectComfy": CogVideoLoraSelectComfy |
|
} |
|
NODE_DISPLAY_NAME_MAPPINGS = { |
|
"DownloadAndLoadCogVideoModel": "(Down)load CogVideo Model", |
|
"DownloadAndLoadCogVideoGGUFModel": "(Down)load CogVideo GGUF Model", |
|
"DownloadAndLoadCogVideoControlNet": "(Down)load CogVideo ControlNet", |
|
"DownloadAndLoadToraModel": "(Down)load Tora Model", |
|
"CogVideoLoraSelect": "CogVideo LoraSelect", |
|
"CogVideoXVAELoader": "CogVideoX VAE Loader", |
|
"CogVideoXModelLoader": "CogVideoX Model Loader", |
|
"CogVideoLoraSelectComfy": "CogVideo LoraSelect Comfy" |
|
} |