|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
from typing import Callable, Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
import math |
|
|
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
from diffusers.schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler |
|
from diffusers.utils import logging |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
|
|
from diffusers.loaders import CogVideoXLoraLoaderMixin |
|
|
|
from .embeddings import get_3d_rotary_pos_embed |
|
from .custom_cogvideox_transformer_3d import CogVideoXTransformer3DModel |
|
|
|
from comfy.utils import ProgressBar |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
def get_resize_crop_region_for_grid(src, tgt_width, tgt_height): |
|
tw = tgt_width |
|
th = tgt_height |
|
h, w = src |
|
r = h / w |
|
if r > (th / tw): |
|
resize_height = th |
|
resize_width = int(round(th / h * w)) |
|
else: |
|
resize_width = tw |
|
resize_height = int(round(tw / w * h)) |
|
|
|
crop_top = int(round((th - resize_height) / 2.0)) |
|
crop_left = int(round((tw - resize_width) / 2.0)) |
|
|
|
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width) |
|
|
|
|
|
def retrieve_timesteps( |
|
scheduler, |
|
num_inference_steps: Optional[int] = None, |
|
device: Optional[Union[str, torch.device]] = None, |
|
timesteps: Optional[List[int]] = None, |
|
sigmas: Optional[List[float]] = None, |
|
**kwargs, |
|
): |
|
""" |
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles |
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. |
|
|
|
Args: |
|
scheduler (`SchedulerMixin`): |
|
The scheduler to get timesteps from. |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` |
|
must be `None`. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, |
|
`num_inference_steps` and `sigmas` must be `None`. |
|
sigmas (`List[float]`, *optional*): |
|
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, |
|
`num_inference_steps` and `timesteps` must be `None`. |
|
|
|
Returns: |
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the |
|
second element is the number of inference steps. |
|
""" |
|
if timesteps is not None and sigmas is not None: |
|
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") |
|
if timesteps is not None: |
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accepts_timesteps: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" timestep schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
elif sigmas is not None: |
|
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accept_sigmas: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" sigmas schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
else: |
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
return timesteps, num_inference_steps |
|
|
|
class CogVideoXPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin): |
|
r""" |
|
Pipeline for text-to-video generation using CogVideoX. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
Args: |
|
transformer ([`CogVideoXTransformer3DModel`]): |
|
A text conditioned `CogVideoXTransformer3DModel` to denoise the encoded video latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `transformer` to denoise the encoded video latents. |
|
""" |
|
|
|
_optional_components = ["tokenizer", "text_encoder"] |
|
model_cpu_offload_seq = "text_encoder->transformer->vae" |
|
|
|
def __init__( |
|
self, |
|
transformer: CogVideoXTransformer3DModel, |
|
scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler], |
|
dtype: torch.dtype = torch.bfloat16, |
|
is_fun_inpaint: bool = False, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules(transformer=transformer, scheduler=scheduler) |
|
self.vae_scale_factor_spatial = 8 |
|
self.vae_scale_factor_temporal = 4 |
|
self.vae_latent_channels = 16 |
|
self.vae_dtype = dtype |
|
self.is_fun_inpaint = is_fun_inpaint |
|
|
|
self.input_with_padding = True |
|
|
|
|
|
def prepare_latents( |
|
self, batch_size, num_channels_latents, num_frames, height, width, device, generator, timesteps, denoise_strength, |
|
num_inference_steps, latents=None, freenoise=True, context_size=None, context_overlap=None |
|
): |
|
shape = ( |
|
batch_size, |
|
(num_frames - 1) // self.vae_scale_factor_temporal + 1, |
|
num_channels_latents, |
|
height // self.vae_scale_factor_spatial, |
|
width // self.vae_scale_factor_spatial, |
|
) |
|
|
|
noise = randn_tensor(shape, generator=generator, device=torch.device("cpu"), dtype=self.vae_dtype) |
|
if freenoise: |
|
logger.info("Applying FreeNoise") |
|
|
|
video_length = num_frames // 4 |
|
delta = context_size - context_overlap |
|
for start_idx in range(0, video_length-context_size, delta): |
|
|
|
|
|
|
|
place_idx = start_idx + context_size |
|
|
|
if place_idx >= video_length: |
|
break |
|
end_idx = place_idx - 1 |
|
|
|
|
|
|
|
if end_idx + delta >= video_length: |
|
final_delta = video_length - place_idx |
|
|
|
list_idx = torch.tensor(list(range(start_idx,start_idx+final_delta)), device=torch.device("cpu"), dtype=torch.long) |
|
|
|
list_idx = list_idx[torch.randperm(final_delta, generator=generator)] |
|
|
|
noise[:, place_idx:place_idx + final_delta, :, :, :] = noise[:, list_idx, :, :, :] |
|
break |
|
|
|
|
|
list_idx = torch.tensor(list(range(start_idx,start_idx+delta)), device=torch.device("cpu"), dtype=torch.long) |
|
|
|
list_idx = list_idx[torch.randperm(delta, generator=generator)] |
|
|
|
|
|
noise[:, place_idx:place_idx + delta, :, :, :] = noise[:, list_idx, :, :, :] |
|
if latents is None: |
|
latents = noise.to(device) |
|
else: |
|
latents = latents.to(device) |
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, denoise_strength, device) |
|
latent_timestep = timesteps[:1] |
|
|
|
frames_needed = noise.shape[1] |
|
current_frames = latents.shape[1] |
|
|
|
if frames_needed > current_frames: |
|
repeat_factor = frames_needed - current_frames |
|
additional_frame = torch.randn((latents.size(0), repeat_factor, latents.size(2), latents.size(3), latents.size(4)), dtype=latents.dtype, device=latents.device) |
|
latents = torch.cat((additional_frame, latents), dim=1) |
|
self.additional_frames = repeat_factor |
|
elif frames_needed < current_frames: |
|
latents = latents[:, :frames_needed, :, :, :] |
|
|
|
latents = self.scheduler.add_noise(latents, noise.to(device), latent_timestep) |
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents, timesteps |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
|
|
def check_inputs( |
|
self, |
|
height, |
|
width, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
): |
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
def get_timesteps(self, num_inference_steps, strength, device): |
|
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) |
|
|
|
t_start = max(num_inference_steps - init_timestep, 0) |
|
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] |
|
if hasattr(self.scheduler, "set_begin_index"): |
|
self.scheduler.set_begin_index(t_start * self.scheduler.order) |
|
|
|
return timesteps.to(device), num_inference_steps - t_start |
|
|
|
def _prepare_rotary_positional_embeddings( |
|
self, |
|
height: int, |
|
width: int, |
|
num_frames: int, |
|
device: torch.device, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) |
|
grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) |
|
|
|
p = self.transformer.config.patch_size |
|
p_t = self.transformer.config.patch_size_t |
|
|
|
if p_t is None: |
|
|
|
base_size_width = self.transformer.config.sample_width // p |
|
base_size_height = self.transformer.config.sample_height // p |
|
|
|
grid_crops_coords = get_resize_crop_region_for_grid( |
|
(grid_height, grid_width), base_size_width, base_size_height |
|
) |
|
freqs_cos, freqs_sin = get_3d_rotary_pos_embed( |
|
embed_dim=self.transformer.config.attention_head_dim, |
|
crops_coords=grid_crops_coords, |
|
grid_size=(grid_height, grid_width), |
|
temporal_size=num_frames, |
|
) |
|
else: |
|
|
|
base_size_width = self.transformer.config.sample_width // p |
|
base_size_height = self.transformer.config.sample_height // p |
|
base_num_frames = (num_frames + p_t - 1) // p_t |
|
|
|
freqs_cos, freqs_sin = get_3d_rotary_pos_embed( |
|
embed_dim=self.transformer.config.attention_head_dim, |
|
crops_coords=None, |
|
grid_size=(grid_height, grid_width), |
|
temporal_size=base_num_frames, |
|
grid_type="slice", |
|
max_size=(base_size_height, base_size_width), |
|
) |
|
|
|
freqs_cos = freqs_cos.to(device=device) |
|
freqs_sin = freqs_sin.to(device=device) |
|
return freqs_cos, freqs_sin |
|
|
|
|
|
|
|
|
|
@property |
|
def do_classifier_free_guidance(self): |
|
return self._guidance_scale > 1 |
|
|
|
@property |
|
def num_timesteps(self): |
|
return self._num_timesteps |
|
|
|
@property |
|
def interrupt(self): |
|
return self._interrupt |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
height: int = 480, |
|
width: int = 720, |
|
num_frames: int = 48, |
|
num_inference_steps: int = 50, |
|
timesteps: Optional[List[int]] = None, |
|
guidance_scale: float = 6, |
|
denoise_strength: float = 1.0, |
|
sigmas: Optional[List[float]] = None, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.Tensor] = None, |
|
fun_mask: Optional[torch.Tensor] = None, |
|
image_cond_latents: Optional[torch.Tensor] = None, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
device = torch.device("cuda"), |
|
context_schedule: Optional[str] = None, |
|
context_frames: Optional[int] = None, |
|
context_stride: Optional[int] = None, |
|
context_overlap: Optional[int] = None, |
|
freenoise: Optional[bool] = True, |
|
controlnet: Optional[dict] = None, |
|
tora: Optional[dict] = None, |
|
image_cond_start_percent: float = 0.0, |
|
image_cond_end_percent: float = 1.0, |
|
|
|
): |
|
""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. This is set to 1024 by default for the best results. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. This is set to 1024 by default for the best results. |
|
num_frames (`int`, defaults to `48`): |
|
Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will |
|
contain 1 extra frame because CogVideoX is conditioned with (num_seconds * fps + 1) frames where |
|
num_seconds is 6 and fps is 4. However, since videos can be saved at any fps, the only condition that |
|
needs to be satisfied is that of divisibility mentioned above. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument |
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is |
|
passed will be used. Must be in descending order. |
|
guidance_scale (`float`, *optional*, defaults to 7.0): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
""" |
|
|
|
height = height or self.transformer.config.sample_size * self.vae_scale_factor_spatial |
|
width = width or self.transformer.config.sample_size * self.vae_scale_factor_spatial |
|
|
|
self.num_frames = num_frames |
|
|
|
|
|
self.check_inputs( |
|
height, |
|
width, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
) |
|
self._guidance_scale = guidance_scale |
|
self._interrupt = False |
|
|
|
|
|
|
|
batch_size = prompt_embeds.shape[0] |
|
|
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale[0] > 1.0 |
|
|
|
if do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) |
|
prompt_embeds = prompt_embeds.to(self.vae_dtype) |
|
|
|
|
|
if sigmas is None: |
|
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) |
|
else: |
|
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, sigmas=sigmas, device=device) |
|
self._num_timesteps = len(timesteps) |
|
|
|
|
|
latent_channels = self.vae_latent_channels |
|
latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1 |
|
|
|
|
|
patch_size_t = getattr(self.transformer.config, "patch_size_t", None) |
|
if patch_size_t is None: |
|
self.transformer.config.patch_size_t = None |
|
ofs_embed_dim = getattr(self.transformer.config, "ofs_embed_dim", None) |
|
if ofs_embed_dim is None: |
|
self.transformer.config.ofs_embed_dim = None |
|
|
|
self.additional_frames = 0 |
|
if patch_size_t is not None and latent_frames % patch_size_t != 0: |
|
self.additional_frames = patch_size_t - latent_frames % patch_size_t |
|
num_frames += self.additional_frames * self.vae_scale_factor_temporal |
|
|
|
latents, timesteps = self.prepare_latents( |
|
batch_size, |
|
latent_channels, |
|
num_frames, |
|
height, |
|
width, |
|
device, |
|
generator, |
|
timesteps, |
|
denoise_strength, |
|
num_inference_steps, |
|
latents, |
|
context_size=context_frames, |
|
context_overlap=context_overlap, |
|
freenoise=freenoise, |
|
) |
|
latents = latents.to(self.vae_dtype) |
|
|
|
if self.is_fun_inpaint and fun_mask is None: |
|
fun_mask = torch.zeros_like(latents[:, :, :1, :, :], device=latents.device, dtype=latents.dtype) |
|
fun_masked_video_latents = torch.zeros_like(latents, device=latents.device, dtype=latents.dtype) |
|
|
|
|
|
if image_cond_latents is not None: |
|
if image_cond_latents.shape[1] == 2: |
|
logger.info("More than one image conditioning frame received, interpolating") |
|
padding_shape = ( |
|
batch_size, |
|
(latents.shape[1] - 2), |
|
self.vae_latent_channels, |
|
height // self.vae_scale_factor_spatial, |
|
width // self.vae_scale_factor_spatial, |
|
) |
|
latent_padding = torch.zeros(padding_shape, device=device, dtype=self.vae_dtype) |
|
image_cond_latents = torch.cat([image_cond_latents[:, 0, :, :, :].unsqueeze(1), latent_padding, image_cond_latents[:, -1, :, :, :].unsqueeze(1)], dim=1) |
|
if self.transformer.config.patch_size_t is not None: |
|
first_frame = image_cond_latents[:, : image_cond_latents.size(1) % self.transformer.config.patch_size_t, ...] |
|
image_cond_latents = torch.cat([first_frame, image_cond_latents], dim=1) |
|
|
|
logger.info(f"image cond latents shape: {image_cond_latents.shape}") |
|
elif image_cond_latents.shape[1] == 1: |
|
logger.info("Only one image conditioning frame received, img2vid") |
|
if self.input_with_padding: |
|
padding_shape = ( |
|
batch_size, |
|
(latents.shape[1] - 1), |
|
self.vae_latent_channels, |
|
height // self.vae_scale_factor_spatial, |
|
width // self.vae_scale_factor_spatial, |
|
) |
|
latent_padding = torch.zeros(padding_shape, device=device, dtype=self.vae_dtype) |
|
image_cond_latents = torch.cat([image_cond_latents, latent_padding], dim=1) |
|
|
|
if self.transformer.config.patch_size_t is not None: |
|
first_frame = image_cond_latents[:, : image_cond_latents.size(1) % self.transformer.config.patch_size_t, ...] |
|
image_cond_latents = torch.cat([first_frame, image_cond_latents], dim=1) |
|
else: |
|
image_cond_latents = image_cond_latents.repeat(1, latents.shape[1], 1, 1, 1) |
|
else: |
|
logger.info(f"Received {image_cond_latents.shape[1]} image conditioning frames") |
|
image_cond_latents = image_cond_latents.to(self.vae_dtype) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) |
|
|
|
|
|
if context_schedule is not None: |
|
|
|
|
|
logger.info(f"Context schedule enabled: {context_frames} frames, {context_stride} stride, {context_overlap} overlap") |
|
use_context_schedule = True |
|
from .context import get_context_scheduler |
|
context = get_context_scheduler(context_schedule) |
|
|
|
|
|
else: |
|
use_context_schedule = False |
|
logger.info("Context schedule disabled") |
|
|
|
image_rotary_emb = ( |
|
self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device) |
|
if self.transformer.config.use_rotary_positional_embeddings |
|
else None |
|
) |
|
|
|
ofs_emb = None if self.transformer.config.ofs_embed_dim is None else latents.new_full((1,), fill_value=2.0) |
|
|
|
if tora is not None and do_classifier_free_guidance: |
|
video_flow_features = tora["video_flow_features"].repeat(1, 2, 1, 1, 1).contiguous() |
|
|
|
|
|
if controlnet is not None: |
|
self.controlnet = controlnet["control_model"].to(device) |
|
if self.transformer.dtype == torch.float8_e4m3fn: |
|
for name, param in self.controlnet.named_parameters(): |
|
if "patch_embed" not in name and param.data.dtype != torch.float8_e4m3fn: |
|
param.data = param.data.to(torch.float8_e4m3fn) |
|
else: |
|
self.controlnet.to(self.transformer.dtype) |
|
|
|
if getattr(self.transformer, 'fp8_matmul_enabled', False): |
|
from .fp8_optimization import convert_fp8_linear |
|
if not hasattr(self.controlnet, 'fp8_matmul_enabled') or not self.controlnet.fp8_matmul_enabled: |
|
convert_fp8_linear(self.controlnet, torch.float16) |
|
setattr(self.controlnet, "fp8_matmul_enabled", True) |
|
|
|
control_frames = controlnet["control_frames"].to(device).to(self.controlnet.dtype).contiguous() |
|
control_frames = torch.cat([control_frames] * 2) if do_classifier_free_guidance else control_frames |
|
control_weights = controlnet["control_weights"] |
|
logger.info(f"Controlnet enabled with weights: {control_weights}") |
|
control_start = controlnet["control_start"] |
|
control_end = controlnet["control_end"] |
|
else: |
|
controlnet_states = None |
|
control_weights= None |
|
|
|
if tora is not None: |
|
trajectory_length = tora["video_flow_features"].shape[1] |
|
logger.info(f"Tora trajectory length: {trajectory_length}") |
|
|
|
|
|
for module in self.transformer.fuser_list: |
|
for param in module.parameters(): |
|
param.data = param.data.to(self.vae_dtype).to(device) |
|
|
|
logger.info(f"Sampling {num_frames} frames in {latent_frames} latent frames at {width}x{height} with {num_inference_steps} inference steps") |
|
|
|
from .latent_preview import prepare_callback |
|
callback = prepare_callback(self.transformer, num_inference_steps) |
|
|
|
|
|
comfy_pbar = ProgressBar(len(timesteps)) |
|
with self.progress_bar(total=len(timesteps)) as progress_bar: |
|
old_pred_original_sample = None |
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
if use_context_schedule: |
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
counter = torch.zeros_like(latent_model_input) |
|
noise_pred = torch.zeros_like(latent_model_input) |
|
|
|
if image_cond_latents is not None: |
|
latent_image_input = torch.cat([image_cond_latents] * 2) if do_classifier_free_guidance else image_cond_latents |
|
latent_model_input = torch.cat([latent_model_input, latent_image_input], dim=2) |
|
|
|
|
|
timestep = t.expand(latent_model_input.shape[0]) |
|
|
|
current_step_percentage = i / num_inference_steps |
|
|
|
|
|
image_rotary_emb = ( |
|
self._prepare_rotary_positional_embeddings(height, width, context_frames, device) |
|
if self.transformer.config.use_rotary_positional_embeddings |
|
else None |
|
) |
|
|
|
context_queue = list(context( |
|
i, num_inference_steps, latents.shape[1], context_frames, context_stride, context_overlap, |
|
)) |
|
|
|
if controlnet is not None: |
|
|
|
control_context_queue = list(context( |
|
i, |
|
num_inference_steps, |
|
control_frames.shape[1], |
|
context_frames * self.vae_scale_factor_temporal, |
|
context_stride * self.vae_scale_factor_temporal, |
|
context_overlap * self.vae_scale_factor_temporal, |
|
)) |
|
|
|
for c, control_c in zip(context_queue, control_context_queue): |
|
partial_latent_model_input = latent_model_input[:, c, :, :, :] |
|
partial_control_frames = control_frames[:, control_c, :, :, :] |
|
|
|
controlnet_states = None |
|
|
|
if (control_start <= current_step_percentage <= control_end): |
|
|
|
controlnet_states = self.controlnet( |
|
hidden_states=partial_latent_model_input, |
|
encoder_hidden_states=prompt_embeds, |
|
image_rotary_emb=image_rotary_emb, |
|
controlnet_states=partial_control_frames, |
|
timestep=timestep, |
|
return_dict=False, |
|
)[0] |
|
if isinstance(controlnet_states, (tuple, list)): |
|
controlnet_states = [x.to(dtype=self.controlnet.dtype) for x in controlnet_states] |
|
else: |
|
controlnet_states = controlnet_states.to(dtype=self.controlnet.dtype) |
|
|
|
|
|
noise_pred[:, c, :, :, :] += self.transformer( |
|
hidden_states=partial_latent_model_input, |
|
encoder_hidden_states=prompt_embeds, |
|
timestep=timestep, |
|
image_rotary_emb=image_rotary_emb, |
|
return_dict=False, |
|
controlnet_states=controlnet_states, |
|
controlnet_weights=control_weights, |
|
)[0] |
|
|
|
counter[:, c, :, :, :] += 1 |
|
noise_pred = noise_pred.float() |
|
else: |
|
for c in context_queue: |
|
partial_latent_model_input = latent_model_input[:, c, :, :, :] |
|
if (tora is not None and tora["start_percent"] <= current_step_percentage <= tora["end_percent"]): |
|
if do_classifier_free_guidance: |
|
partial_video_flow_features = tora["video_flow_features"][:, c, :, :, :].repeat(1, 2, 1, 1, 1).contiguous() |
|
else: |
|
partial_video_flow_features = tora["video_flow_features"][:, c, :, :, :] |
|
else: |
|
partial_video_flow_features = None |
|
|
|
|
|
noise_pred[:, c, :, :, :] += self.transformer( |
|
hidden_states=partial_latent_model_input, |
|
encoder_hidden_states=prompt_embeds, |
|
timestep=timestep, |
|
image_rotary_emb=image_rotary_emb, |
|
video_flow_features=partial_video_flow_features, |
|
return_dict=False |
|
)[0] |
|
|
|
counter[:, c, :, :, :] += 1 |
|
noise_pred = noise_pred.float() |
|
|
|
noise_pred /= counter |
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + self._guidance_scale[i] * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
if not isinstance(self.scheduler, CogVideoXDPMScheduler): |
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] |
|
else: |
|
latents, old_pred_original_sample = self.scheduler.step( |
|
noise_pred, |
|
old_pred_original_sample, |
|
t, |
|
timesteps[i - 1] if i > 0 else None, |
|
latents, |
|
**extra_step_kwargs, |
|
return_dict=False, |
|
) |
|
latents = latents.to(prompt_embeds.dtype) |
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
comfy_pbar.update(1) |
|
|
|
|
|
else: |
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
current_step_percentage = i / num_inference_steps |
|
|
|
if image_cond_latents is not None: |
|
if not image_cond_start_percent <= current_step_percentage <= image_cond_end_percent: |
|
latent_image_input = torch.zeros_like(latent_model_input) |
|
else: |
|
latent_image_input = torch.cat([image_cond_latents] * 2) if do_classifier_free_guidance else image_cond_latents |
|
if fun_mask is not None: |
|
fun_inpaint_mask = torch.cat([fun_mask] * 2) if do_classifier_free_guidance else fun_mask |
|
masks_input = torch.cat([fun_inpaint_mask, latent_image_input], dim=2) |
|
latent_model_input = torch.cat([latent_model_input, masks_input], dim=2) |
|
else: |
|
latent_model_input = torch.cat([latent_model_input, latent_image_input], dim=2) |
|
else: |
|
if fun_mask is not None: |
|
fun_inpaint_mask = torch.cat([fun_mask] * 2) if do_classifier_free_guidance else fun_mask |
|
fun_inpaint_masked_video_latents = torch.cat([fun_masked_video_latents] * 2) if do_classifier_free_guidance else fun_masked_video_latents |
|
fun_inpaint_latents = torch.cat([fun_inpaint_mask, fun_inpaint_masked_video_latents], dim=2).to(latents.dtype) |
|
latent_model_input = torch.cat([latent_model_input, fun_inpaint_latents], dim=2) |
|
|
|
|
|
timestep = t.expand(latent_model_input.shape[0]) |
|
|
|
if controlnet is not None: |
|
controlnet_states = None |
|
if (control_start <= current_step_percentage <= control_end): |
|
|
|
controlnet_states = self.controlnet( |
|
hidden_states=latent_model_input, |
|
encoder_hidden_states=prompt_embeds, |
|
image_rotary_emb=image_rotary_emb, |
|
controlnet_states=control_frames, |
|
timestep=timestep, |
|
return_dict=False, |
|
)[0] |
|
if isinstance(controlnet_states, (tuple, list)): |
|
controlnet_states = [x.to(dtype=self.vae_dtype) for x in controlnet_states] |
|
else: |
|
controlnet_states = controlnet_states.to(dtype=self.vae_dtype) |
|
|
|
|
|
noise_pred = self.transformer( |
|
hidden_states=latent_model_input, |
|
encoder_hidden_states=prompt_embeds, |
|
timestep=timestep, |
|
image_rotary_emb=image_rotary_emb, |
|
ofs=ofs_emb, |
|
return_dict=False, |
|
controlnet_states=controlnet_states, |
|
controlnet_weights=control_weights, |
|
video_flow_features=video_flow_features if (tora is not None and tora["start_percent"] <= current_step_percentage <= tora["end_percent"]) else None, |
|
)[0] |
|
noise_pred = noise_pred.float() |
|
if isinstance(self.scheduler, CogVideoXDPMScheduler): |
|
self._guidance_scale[i] = 1 + guidance_scale[i] * ( |
|
(1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2 |
|
) |
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + self._guidance_scale[i] * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
if not isinstance(self.scheduler, CogVideoXDPMScheduler): |
|
latents = self.scheduler.step(noise_pred, t, latents.to(self.vae_dtype), **extra_step_kwargs, return_dict=False)[0] |
|
else: |
|
latents, old_pred_original_sample = self.scheduler.step( |
|
noise_pred, |
|
old_pred_original_sample, |
|
t, |
|
timesteps[i - 1] if i > 0 else None, |
|
latents.to(self.vae_dtype), |
|
**extra_step_kwargs, |
|
return_dict=False, |
|
) |
|
latents = latents.to(prompt_embeds.dtype) |
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None: |
|
callback(i, latents.detach()[-1], None, num_inference_steps) |
|
else: |
|
comfy_pbar.update(1) |
|
|
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
return latents |