|
|
|
|
|
|
|
import os |
|
import types |
|
|
|
import torch |
|
from accelerate import init_empty_weights, load_checkpoint_and_dispatch |
|
|
|
import comfy |
|
|
|
from .model import BrushNetModel, PowerPaintModel |
|
from .model_patch import add_model_patch_option, patch_model_function_wrapper |
|
from .powerpaint_utils import TokenizerWrapper, add_tokens |
|
|
|
cwd_path = os.path.dirname(os.path.realpath(__file__)) |
|
brushnet_config_file = os.path.join(cwd_path, 'config', 'brushnet.json') |
|
brushnet_xl_config_file = os.path.join(cwd_path, 'config', 'brushnet_xl.json') |
|
powerpaint_config_file = os.path.join(cwd_path, 'config', 'powerpaint.json') |
|
|
|
sd15_scaling_factor = 0.18215 |
|
sdxl_scaling_factor = 0.13025 |
|
|
|
ModelsToUnload = [comfy.sd1_clip.SD1ClipModel, comfy.ldm.models.autoencoder.AutoencoderKL] |
|
|
|
class BrushNet: |
|
|
|
|
|
def check_compatibilty(self, model, brushnet): |
|
is_SDXL = False |
|
is_PP = False |
|
if isinstance(model.model.model_config, comfy.supported_models.SD15): |
|
print('Base model type: SD1.5') |
|
is_SDXL = False |
|
if brushnet["SDXL"]: |
|
raise Exception("Base model is SD15, but BrushNet is SDXL type") |
|
if brushnet["PP"]: |
|
is_PP = True |
|
elif isinstance(model.model.model_config, comfy.supported_models.SDXL): |
|
print('Base model type: SDXL') |
|
is_SDXL = True |
|
if not brushnet["SDXL"]: |
|
raise Exception("Base model is SDXL, but BrushNet is SD15 type") |
|
else: |
|
print('Base model type: ', type(model.model.model_config)) |
|
raise Exception("Unsupported model type: " + str(type(model.model.model_config))) |
|
|
|
return (is_SDXL, is_PP) |
|
|
|
def check_image_mask(self, image, mask, name): |
|
if len(image.shape) < 4: |
|
|
|
image = image[None, :, :, :] |
|
|
|
if len(mask.shape) > 3: |
|
|
|
|
|
mask = (mask[:, :, :, 0])[:, :, :] |
|
elif len(mask.shape) < 3: |
|
|
|
mask = mask[None, :, :] |
|
|
|
if image.shape[0] > mask.shape[0]: |
|
print(name, "gets batch of images (%d) but only %d masks" % (image.shape[0], mask.shape[0])) |
|
if mask.shape[0] == 1: |
|
print(name, "will copy the mask to fill batch") |
|
mask = torch.cat([mask] * image.shape[0], dim=0) |
|
else: |
|
print(name, "will add empty masks to fill batch") |
|
empty_mask = torch.zeros([image.shape[0] - mask.shape[0], mask.shape[1], mask.shape[2]]) |
|
mask = torch.cat([mask, empty_mask], dim=0) |
|
elif image.shape[0] < mask.shape[0]: |
|
print(name, "gets batch of images (%d) but too many (%d) masks" % (image.shape[0], mask.shape[0])) |
|
mask = mask[:image.shape[0], :, :] |
|
|
|
return (image, mask) |
|
|
|
|
|
def prepare_image(self, image, mask): |
|
|
|
image, mask = self.check_image_mask(image, mask, 'BrushNet') |
|
|
|
print("BrushNet image.shape =", image.shape, "mask.shape =", mask.shape) |
|
|
|
if mask.shape[2] != image.shape[2] or mask.shape[1] != image.shape[1]: |
|
raise Exception("Image and mask should be the same size") |
|
|
|
|
|
mask = mask.round() |
|
|
|
masked_image = image * (1.0 - mask[:, :, :, None]) |
|
|
|
return (masked_image, mask) |
|
|
|
|
|
def cut_with_mask(self, mask, width, height): |
|
iy, ix = (mask == 1).nonzero(as_tuple=True) |
|
|
|
h0, w0 = mask.shape |
|
|
|
if iy.numel() == 0: |
|
x_c = w0 / 2.0 |
|
y_c = h0 / 2.0 |
|
else: |
|
x_min = ix.min().item() |
|
x_max = ix.max().item() |
|
y_min = iy.min().item() |
|
y_max = iy.max().item() |
|
|
|
if x_max - x_min > width or y_max - y_min > height: |
|
raise Exception("Mask is bigger than provided dimensions") |
|
|
|
x_c = (x_min + x_max) / 2.0 |
|
y_c = (y_min + y_max) / 2.0 |
|
|
|
width2 = width / 2.0 |
|
height2 = height / 2.0 |
|
|
|
if w0 <= width: |
|
x0 = 0 |
|
w = w0 |
|
else: |
|
x0 = max(0, x_c - width2) |
|
w = width |
|
if x0 + width > w0: |
|
x0 = w0 - width |
|
|
|
if h0 <= height: |
|
y0 = 0 |
|
h = h0 |
|
else: |
|
y0 = max(0, y_c - height2) |
|
h = height |
|
if y0 + height > h0: |
|
y0 = h0 - height |
|
|
|
return (int(x0), int(y0), int(w), int(h)) |
|
|
|
|
|
@torch.inference_mode() |
|
def get_image_latents(self, masked_image, mask, vae, scaling_factor): |
|
processed_image = masked_image.to(vae.device) |
|
image_latents = vae.encode(processed_image[:, :, :, :3]) * scaling_factor |
|
processed_mask = 1. - mask[:, None, :, :] |
|
interpolated_mask = torch.nn.functional.interpolate( |
|
processed_mask, |
|
size=( |
|
image_latents.shape[-2], |
|
image_latents.shape[-1] |
|
) |
|
) |
|
interpolated_mask = interpolated_mask.to(image_latents.device) |
|
|
|
conditioning_latents = [image_latents, interpolated_mask] |
|
|
|
print('BrushNet CL: image_latents shape =', image_latents.shape, 'interpolated_mask shape =', |
|
interpolated_mask.shape) |
|
|
|
return conditioning_latents |
|
|
|
def brushnet_blocks(self, sd): |
|
brushnet_down_block = 0 |
|
brushnet_mid_block = 0 |
|
brushnet_up_block = 0 |
|
for key in sd: |
|
if 'brushnet_down_block' in key: |
|
brushnet_down_block += 1 |
|
if 'brushnet_mid_block' in key: |
|
brushnet_mid_block += 1 |
|
if 'brushnet_up_block' in key: |
|
brushnet_up_block += 1 |
|
return (brushnet_down_block, brushnet_mid_block, brushnet_up_block, len(sd)) |
|
|
|
def get_model_type(self, brushnet_file): |
|
sd = comfy.utils.load_torch_file(brushnet_file) |
|
brushnet_down_block, brushnet_mid_block, brushnet_up_block, keys = self.brushnet_blocks(sd) |
|
del sd |
|
if brushnet_down_block == 24 and brushnet_mid_block == 2 and brushnet_up_block == 30: |
|
is_SDXL = False |
|
if keys == 322: |
|
is_PP = False |
|
print('BrushNet model type: SD1.5') |
|
else: |
|
is_PP = True |
|
print('PowerPaint model type: SD1.5') |
|
elif brushnet_down_block == 18 and brushnet_mid_block == 2 and brushnet_up_block == 22: |
|
print('BrushNet model type: Loading SDXL') |
|
is_SDXL = True |
|
is_PP = False |
|
else: |
|
raise Exception("Unknown BrushNet model") |
|
return is_SDXL, is_PP |
|
|
|
def load_brushnet_model(self, brushnet_file, dtype='float16'): |
|
is_SDXL, is_PP = self.get_model_type(brushnet_file) |
|
with init_empty_weights(): |
|
if is_SDXL: |
|
brushnet_config = BrushNetModel.load_config(brushnet_xl_config_file) |
|
brushnet_model = BrushNetModel.from_config(brushnet_config) |
|
elif is_PP: |
|
brushnet_config = PowerPaintModel.load_config(powerpaint_config_file) |
|
brushnet_model = PowerPaintModel.from_config(brushnet_config) |
|
else: |
|
brushnet_config = BrushNetModel.load_config(brushnet_config_file) |
|
brushnet_model = BrushNetModel.from_config(brushnet_config) |
|
if is_PP: |
|
print("PowerPaint model file:", brushnet_file) |
|
else: |
|
print("BrushNet model file:", brushnet_file) |
|
|
|
if dtype == 'float16': |
|
torch_dtype = torch.float16 |
|
elif dtype == 'bfloat16': |
|
torch_dtype = torch.bfloat16 |
|
elif dtype == 'float32': |
|
torch_dtype = torch.float32 |
|
else: |
|
torch_dtype = torch.float64 |
|
|
|
brushnet_model = load_checkpoint_and_dispatch( |
|
brushnet_model, |
|
brushnet_file, |
|
device_map="sequential", |
|
max_memory=None, |
|
offload_folder=None, |
|
offload_state_dict=False, |
|
dtype=torch_dtype, |
|
force_hooks=False, |
|
) |
|
|
|
if is_PP: |
|
print("PowerPaint model is loaded") |
|
elif is_SDXL: |
|
print("BrushNet SDXL model is loaded") |
|
else: |
|
print("BrushNet SD1.5 model is loaded") |
|
|
|
return ({"brushnet": brushnet_model, "SDXL": is_SDXL, "PP": is_PP, "dtype": torch_dtype},) |
|
|
|
def brushnet_model_update(self, model, vae, image, mask, brushnet, positive, negative, scale, start_at, end_at): |
|
|
|
is_SDXL, is_PP = self.check_compatibilty(model, brushnet) |
|
|
|
if is_PP: |
|
raise Exception("PowerPaint model was loaded, please use PowerPaint node") |
|
|
|
|
|
model = model.clone() |
|
|
|
|
|
|
|
masked_image, mask = self.prepare_image(image, mask) |
|
|
|
batch = masked_image.shape[0] |
|
width = masked_image.shape[2] |
|
height = masked_image.shape[1] |
|
|
|
if hasattr(model.model.model_config, 'latent_format') and hasattr(model.model.model_config.latent_format, |
|
'scale_factor'): |
|
scaling_factor = model.model.model_config.latent_format.scale_factor |
|
elif is_SDXL: |
|
scaling_factor = sdxl_scaling_factor |
|
else: |
|
scaling_factor = sd15_scaling_factor |
|
|
|
torch_dtype = brushnet['dtype'] |
|
|
|
|
|
conditioning_latents = self.get_image_latents(masked_image, mask, vae, scaling_factor) |
|
conditioning_latents[0] = conditioning_latents[0].to(dtype=torch_dtype).to(brushnet['brushnet'].device) |
|
conditioning_latents[1] = conditioning_latents[1].to(dtype=torch_dtype).to(brushnet['brushnet'].device) |
|
|
|
|
|
del vae |
|
for loaded_model in comfy.model_management.current_loaded_models: |
|
if type(loaded_model.model.model) in ModelsToUnload: |
|
comfy.model_management.current_loaded_models.remove(loaded_model) |
|
loaded_model.model_unload() |
|
del loaded_model |
|
|
|
|
|
prompt_embeds = positive[0][0].to(dtype=torch_dtype).to(brushnet['brushnet'].device) |
|
negative_prompt_embeds = negative[0][0].to(dtype=torch_dtype).to(brushnet['brushnet'].device) |
|
|
|
max_tokens = max(prompt_embeds.shape[1], negative_prompt_embeds.shape[1]) |
|
if prompt_embeds.shape[1] < max_tokens: |
|
multiplier = max_tokens // 77 - prompt_embeds.shape[1] // 77 |
|
prompt_embeds = torch.concat([prompt_embeds] + [prompt_embeds[:, -77:, :]] * multiplier, dim=1) |
|
print('BrushNet: negative prompt more than 75 tokens:', negative_prompt_embeds.shape, |
|
'multiplying prompt_embeds') |
|
if negative_prompt_embeds.shape[1] < max_tokens: |
|
multiplier = max_tokens // 77 - negative_prompt_embeds.shape[1] // 77 |
|
negative_prompt_embeds = torch.concat( |
|
[negative_prompt_embeds] + [negative_prompt_embeds[:, -77:, :]] * multiplier, dim=1) |
|
print('BrushNet: positive prompt more than 75 tokens:', prompt_embeds.shape, |
|
'multiplying negative_prompt_embeds') |
|
|
|
if len(positive[0]) > 1 and 'pooled_output' in positive[0][1] and positive[0][1]['pooled_output'] is not None: |
|
pooled_prompt_embeds = positive[0][1]['pooled_output'].to(dtype=torch_dtype).to(brushnet['brushnet'].device) |
|
else: |
|
print('BrushNet: positive conditioning has not pooled_output') |
|
if is_SDXL: |
|
print('BrushNet will not produce correct results') |
|
pooled_prompt_embeds = torch.empty([2, 1280], device=brushnet['brushnet'].device).to(dtype=torch_dtype) |
|
|
|
if len(negative[0]) > 1 and 'pooled_output' in negative[0][1] and negative[0][1]['pooled_output'] is not None: |
|
negative_pooled_prompt_embeds = negative[0][1]['pooled_output'].to(dtype=torch_dtype).to( |
|
brushnet['brushnet'].device) |
|
else: |
|
print('BrushNet: negative conditioning has not pooled_output') |
|
if is_SDXL: |
|
print('BrushNet will not produce correct results') |
|
negative_pooled_prompt_embeds = torch.empty([1, pooled_prompt_embeds.shape[1]], |
|
device=brushnet['brushnet'].device).to(dtype=torch_dtype) |
|
|
|
time_ids = torch.FloatTensor([[height, width, 0., 0., height, width]]).to(dtype=torch_dtype).to( |
|
brushnet['brushnet'].device) |
|
|
|
if not is_SDXL: |
|
pooled_prompt_embeds = None |
|
negative_pooled_prompt_embeds = None |
|
time_ids = None |
|
|
|
|
|
brushnet_conditioning_scale = scale |
|
control_guidance_start = start_at |
|
control_guidance_end = end_at |
|
|
|
add_brushnet_patch(model, |
|
brushnet['brushnet'], |
|
torch_dtype, |
|
conditioning_latents, |
|
(brushnet_conditioning_scale, control_guidance_start, control_guidance_end), |
|
prompt_embeds, negative_prompt_embeds, |
|
pooled_prompt_embeds, negative_pooled_prompt_embeds, time_ids, |
|
False) |
|
|
|
latent = torch.zeros([batch, 4, conditioning_latents[0].shape[2], conditioning_latents[0].shape[3]], |
|
device=brushnet['brushnet'].device) |
|
|
|
return (model, positive, negative, {"samples": latent},) |
|
|
|
|
|
def load_powerpaint_clip(self, base_clip_file, pp_clip_file): |
|
pp_clip = comfy.sd.load_clip(ckpt_paths=[base_clip_file]) |
|
|
|
print('PowerPaint base CLIP file: ', base_clip_file) |
|
|
|
pp_tokenizer = TokenizerWrapper(pp_clip.tokenizer.clip_l.tokenizer) |
|
pp_text_encoder = pp_clip.patcher.model.clip_l.transformer |
|
|
|
add_tokens( |
|
tokenizer=pp_tokenizer, |
|
text_encoder=pp_text_encoder, |
|
placeholder_tokens=["P_ctxt", "P_shape", "P_obj"], |
|
initialize_tokens=["a", "a", "a"], |
|
num_vectors_per_token=10, |
|
) |
|
|
|
pp_text_encoder.load_state_dict(comfy.utils.load_torch_file(pp_clip_file), strict=False) |
|
|
|
print('PowerPaint CLIP file: ', pp_clip_file) |
|
|
|
pp_clip.tokenizer.clip_l.tokenizer = pp_tokenizer |
|
pp_clip.patcher.model.clip_l.transformer = pp_text_encoder |
|
|
|
return (pp_clip,) |
|
|
|
def powerpaint_model_update(self, model, vae, image, mask, powerpaint, clip, positive, negative, fitting, function, scale, start_at, end_at, save_memory): |
|
is_SDXL, is_PP = self.check_compatibilty(model, powerpaint) |
|
if not is_PP: |
|
raise Exception("BrushNet model was loaded, please use BrushNet node") |
|
|
|
|
|
model = model.clone() |
|
|
|
|
|
|
|
masked_image, mask = self.prepare_image(image, mask) |
|
|
|
batch = masked_image.shape[0] |
|
|
|
|
|
|
|
if hasattr(model.model.model_config, 'latent_format') and hasattr(model.model.model_config.latent_format, |
|
'scale_factor'): |
|
scaling_factor = model.model.model_config.latent_format.scale_factor |
|
else: |
|
scaling_factor = sd15_scaling_factor |
|
|
|
torch_dtype = powerpaint['dtype'] |
|
|
|
|
|
conditioning_latents = self.get_image_latents(masked_image, mask, vae, scaling_factor) |
|
conditioning_latents[0] = conditioning_latents[0].to(dtype=torch_dtype).to(powerpaint['brushnet'].device) |
|
conditioning_latents[1] = conditioning_latents[1].to(dtype=torch_dtype).to(powerpaint['brushnet'].device) |
|
|
|
|
|
|
|
if function == "object removal": |
|
promptA = "P_ctxt" |
|
promptB = "P_ctxt" |
|
negative_promptA = "P_obj" |
|
negative_promptB = "P_obj" |
|
print('You should add to positive prompt: "empty scene blur"') |
|
|
|
elif function == "context aware": |
|
promptA = "P_ctxt" |
|
promptB = "P_ctxt" |
|
negative_promptA = "" |
|
negative_promptB = "" |
|
|
|
print('You should add to positive prompt: "empty scene"') |
|
elif function == "shape guided": |
|
promptA = "P_shape" |
|
promptB = "P_ctxt" |
|
negative_promptA = "P_shape" |
|
negative_promptB = "P_ctxt" |
|
elif function == "image outpainting": |
|
promptA = "P_ctxt" |
|
promptB = "P_ctxt" |
|
negative_promptA = "P_obj" |
|
negative_promptB = "P_obj" |
|
|
|
print('You should add to positive prompt: "empty scene"') |
|
else: |
|
promptA = "P_obj" |
|
promptB = "P_obj" |
|
negative_promptA = "P_obj" |
|
negative_promptB = "P_obj" |
|
|
|
tokens = clip.tokenize(promptA) |
|
prompt_embedsA = clip.encode_from_tokens(tokens, return_pooled=False) |
|
|
|
tokens = clip.tokenize(negative_promptA) |
|
negative_prompt_embedsA = clip.encode_from_tokens(tokens, return_pooled=False) |
|
|
|
tokens = clip.tokenize(promptB) |
|
prompt_embedsB = clip.encode_from_tokens(tokens, return_pooled=False) |
|
|
|
tokens = clip.tokenize(negative_promptB) |
|
negative_prompt_embedsB = clip.encode_from_tokens(tokens, return_pooled=False) |
|
|
|
prompt_embeds_pp = (prompt_embedsA * fitting + (1.0 - fitting) * prompt_embedsB).to(dtype=torch_dtype).to( |
|
powerpaint['brushnet'].device) |
|
negative_prompt_embeds_pp = (negative_prompt_embedsA * fitting + (1.0 - fitting) * negative_prompt_embedsB).to( |
|
dtype=torch_dtype).to(powerpaint['brushnet'].device) |
|
|
|
|
|
del vae |
|
del clip |
|
for loaded_model in comfy.model_management.current_loaded_models: |
|
if type(loaded_model.model.model) in ModelsToUnload: |
|
comfy.model_management.current_loaded_models.remove(loaded_model) |
|
loaded_model.model_unload() |
|
del loaded_model |
|
|
|
|
|
|
|
brushnet_conditioning_scale = scale |
|
control_guidance_start = start_at |
|
control_guidance_end = end_at |
|
|
|
if save_memory != 'none': |
|
powerpaint['brushnet'].set_attention_slice(save_memory) |
|
|
|
add_brushnet_patch(model, |
|
powerpaint['brushnet'], |
|
torch_dtype, |
|
conditioning_latents, |
|
(brushnet_conditioning_scale, control_guidance_start, control_guidance_end), |
|
negative_prompt_embeds_pp, prompt_embeds_pp, |
|
None, None, None, |
|
False) |
|
|
|
latent = torch.zeros([batch, 4, conditioning_latents[0].shape[2], conditioning_latents[0].shape[3]], |
|
device=powerpaint['brushnet'].device) |
|
|
|
return (model, positive, negative, {"samples": latent},) |
|
@torch.inference_mode() |
|
def brushnet_inference(x, timesteps, transformer_options, debug): |
|
if 'model_patch' not in transformer_options: |
|
print('BrushNet inference: there is no model_patch key in transformer_options') |
|
return ([], 0, []) |
|
mp = transformer_options['model_patch'] |
|
if 'brushnet' not in mp: |
|
print('BrushNet inference: there is no brushnet key in mdel_patch') |
|
return ([], 0, []) |
|
bo = mp['brushnet'] |
|
if 'model' not in bo: |
|
print('BrushNet inference: there is no model key in brushnet') |
|
return ([], 0, []) |
|
brushnet = bo['model'] |
|
if not (isinstance(brushnet, BrushNetModel) or isinstance(brushnet, PowerPaintModel)): |
|
print('BrushNet model is not a BrushNetModel class') |
|
return ([], 0, []) |
|
|
|
torch_dtype = bo['dtype'] |
|
cl_list = bo['latents'] |
|
brushnet_conditioning_scale, control_guidance_start, control_guidance_end = bo['controls'] |
|
pe = bo['prompt_embeds'] |
|
npe = bo['negative_prompt_embeds'] |
|
ppe, nppe, time_ids = bo['add_embeds'] |
|
|
|
|
|
do_classifier_free_guidance = len(transformer_options['cond_or_uncond']) > 1 |
|
|
|
x = x.detach().clone() |
|
x = x.to(torch_dtype).to(brushnet.device) |
|
|
|
timesteps = timesteps.detach().clone() |
|
timesteps = timesteps.to(torch_dtype).to(brushnet.device) |
|
|
|
total_steps = mp['total_steps'] |
|
step = mp['step'] |
|
|
|
added_cond_kwargs = {} |
|
|
|
if do_classifier_free_guidance and step == 0: |
|
print('BrushNet inference: do_classifier_free_guidance is True') |
|
|
|
sub_idx = None |
|
if 'ad_params' in transformer_options and 'sub_idxs' in transformer_options['ad_params']: |
|
sub_idx = transformer_options['ad_params']['sub_idxs'] |
|
|
|
|
|
batch = cl_list[0].shape[0] |
|
|
|
latents_incoming = x.shape[0] |
|
|
|
latents_got = bo['latent_id'] |
|
if step == 0 or batch > 1: |
|
print('BrushNet inference, step = %d: image batch = %d, got %d latents, starting from %d' \ |
|
% (step, batch, latents_incoming, latents_got)) |
|
|
|
image_latents = [] |
|
masks = [] |
|
prompt_embeds = [] |
|
negative_prompt_embeds = [] |
|
pooled_prompt_embeds = [] |
|
negative_pooled_prompt_embeds = [] |
|
if sub_idx: |
|
|
|
if step == 0: |
|
print('BrushNet inference: AnimateDiff indexes detected and applied') |
|
|
|
batch = len(sub_idx) |
|
|
|
if do_classifier_free_guidance: |
|
for i in sub_idx: |
|
image_latents.append(cl_list[0][i][None,:,:,:]) |
|
masks.append(cl_list[1][i][None,:,:,:]) |
|
prompt_embeds.append(pe) |
|
negative_prompt_embeds.append(npe) |
|
pooled_prompt_embeds.append(ppe) |
|
negative_pooled_prompt_embeds.append(nppe) |
|
for i in sub_idx: |
|
image_latents.append(cl_list[0][i][None,:,:,:]) |
|
masks.append(cl_list[1][i][None,:,:,:]) |
|
else: |
|
for i in sub_idx: |
|
image_latents.append(cl_list[0][i][None,:,:,:]) |
|
masks.append(cl_list[1][i][None,:,:,:]) |
|
prompt_embeds.append(pe) |
|
pooled_prompt_embeds.append(ppe) |
|
else: |
|
|
|
continue_batch = True |
|
for i in range(latents_incoming): |
|
number = latents_got + i |
|
if number < batch: |
|
|
|
image_latents.append(cl_list[0][number][None,:,:,:]) |
|
masks.append(cl_list[1][number][None,:,:,:]) |
|
prompt_embeds.append(pe) |
|
pooled_prompt_embeds.append(ppe) |
|
elif do_classifier_free_guidance and number < batch * 2: |
|
|
|
image_latents.append(cl_list[0][number-batch][None,:,:,:]) |
|
masks.append(cl_list[1][number-batch][None,:,:,:]) |
|
negative_prompt_embeds.append(npe) |
|
negative_pooled_prompt_embeds.append(nppe) |
|
else: |
|
|
|
image_latents.append(cl_list[0][0][None,:,:,:]) |
|
masks.append(cl_list[1][0][None,:,:,:]) |
|
prompt_embeds.append(pe) |
|
pooled_prompt_embeds.append(ppe) |
|
latents_got = -i |
|
continue_batch = False |
|
|
|
if continue_batch: |
|
|
|
if do_classifier_free_guidance: |
|
if number < batch * 2 - 1: |
|
bo['latent_id'] = number + 1 |
|
else: |
|
bo['latent_id'] = 0 |
|
else: |
|
if number < batch - 1: |
|
bo['latent_id'] = number + 1 |
|
else: |
|
bo['latent_id'] = 0 |
|
else: |
|
bo['latent_id'] = 0 |
|
|
|
cl = [] |
|
for il, m in zip(image_latents, masks): |
|
cl.append(torch.concat([il, m], dim=1)) |
|
cl2apply = torch.concat(cl, dim=0) |
|
|
|
conditioning_latents = cl2apply.to(torch_dtype).to(brushnet.device) |
|
|
|
prompt_embeds.extend(negative_prompt_embeds) |
|
prompt_embeds = torch.concat(prompt_embeds, dim=0).to(torch_dtype).to(brushnet.device) |
|
|
|
if ppe is not None: |
|
added_cond_kwargs = {} |
|
added_cond_kwargs['time_ids'] = torch.concat([time_ids] * latents_incoming, dim = 0).to(torch_dtype).to(brushnet.device) |
|
|
|
pooled_prompt_embeds.extend(negative_pooled_prompt_embeds) |
|
pooled_prompt_embeds = torch.concat(pooled_prompt_embeds, dim=0).to(torch_dtype).to(brushnet.device) |
|
added_cond_kwargs['text_embeds'] = pooled_prompt_embeds |
|
else: |
|
added_cond_kwargs = None |
|
|
|
if x.shape[2] != conditioning_latents.shape[2] or x.shape[3] != conditioning_latents.shape[3]: |
|
if step == 0: |
|
print('BrushNet inference: image', conditioning_latents.shape, 'and latent', x.shape, 'have different size, resizing image') |
|
conditioning_latents = torch.nn.functional.interpolate( |
|
conditioning_latents, size=( |
|
x.shape[2], |
|
x.shape[3], |
|
), mode='bicubic', |
|
).to(torch_dtype).to(brushnet.device) |
|
|
|
if step == 0: |
|
print('BrushNet inference: sample', x.shape, ', CL', conditioning_latents.shape, 'dtype', torch_dtype) |
|
|
|
if debug: print('BrushNet: step =', step) |
|
|
|
if step < control_guidance_start or step > control_guidance_end: |
|
cond_scale = 0.0 |
|
else: |
|
cond_scale = brushnet_conditioning_scale |
|
|
|
return brushnet(x, |
|
encoder_hidden_states=prompt_embeds, |
|
brushnet_cond=conditioning_latents, |
|
timestep = timesteps, |
|
conditioning_scale=cond_scale, |
|
guess_mode=False, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
debug=debug, |
|
) |
|
|
|
def add_brushnet_patch(model, brushnet, torch_dtype, conditioning_latents, |
|
controls, |
|
prompt_embeds, negative_prompt_embeds, |
|
pooled_prompt_embeds, negative_pooled_prompt_embeds, time_ids, |
|
debug): |
|
|
|
is_SDXL = isinstance(model.model.model_config, comfy.supported_models.SDXL) |
|
|
|
if is_SDXL: |
|
input_blocks = [[0, comfy.ops.manual_cast.Conv2d], |
|
[1, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock], |
|
[2, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock], |
|
[3, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample], |
|
[4, comfy.ldm.modules.attention.SpatialTransformer], |
|
[5, comfy.ldm.modules.attention.SpatialTransformer], |
|
[6, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample], |
|
[7, comfy.ldm.modules.attention.SpatialTransformer], |
|
[8, comfy.ldm.modules.attention.SpatialTransformer]] |
|
middle_block = [0, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock] |
|
output_blocks = [[0, comfy.ldm.modules.attention.SpatialTransformer], |
|
[1, comfy.ldm.modules.attention.SpatialTransformer], |
|
[2, comfy.ldm.modules.attention.SpatialTransformer], |
|
[2, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample], |
|
[3, comfy.ldm.modules.attention.SpatialTransformer], |
|
[4, comfy.ldm.modules.attention.SpatialTransformer], |
|
[5, comfy.ldm.modules.attention.SpatialTransformer], |
|
[5, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample], |
|
[6, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock], |
|
[7, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock], |
|
[8, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock]] |
|
else: |
|
input_blocks = [[0, comfy.ops.manual_cast.Conv2d], |
|
[1, comfy.ldm.modules.attention.SpatialTransformer], |
|
[2, comfy.ldm.modules.attention.SpatialTransformer], |
|
[3, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample], |
|
[4, comfy.ldm.modules.attention.SpatialTransformer], |
|
[5, comfy.ldm.modules.attention.SpatialTransformer], |
|
[6, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample], |
|
[7, comfy.ldm.modules.attention.SpatialTransformer], |
|
[8, comfy.ldm.modules.attention.SpatialTransformer], |
|
[9, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample], |
|
[10, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock], |
|
[11, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock]] |
|
middle_block = [0, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock] |
|
output_blocks = [[0, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock], |
|
[1, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock], |
|
[2, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock], |
|
[2, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample], |
|
[3, comfy.ldm.modules.attention.SpatialTransformer], |
|
[4, comfy.ldm.modules.attention.SpatialTransformer], |
|
[5, comfy.ldm.modules.attention.SpatialTransformer], |
|
[5, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample], |
|
[6, comfy.ldm.modules.attention.SpatialTransformer], |
|
[7, comfy.ldm.modules.attention.SpatialTransformer], |
|
[8, comfy.ldm.modules.attention.SpatialTransformer], |
|
[8, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample], |
|
[9, comfy.ldm.modules.attention.SpatialTransformer], |
|
[10, comfy.ldm.modules.attention.SpatialTransformer], |
|
[11, comfy.ldm.modules.attention.SpatialTransformer]] |
|
|
|
def last_layer_index(block, tp): |
|
layer_list = [] |
|
for layer in block: |
|
layer_list.append(type(layer)) |
|
layer_list.reverse() |
|
if tp not in layer_list: |
|
return -1, layer_list.reverse() |
|
return len(layer_list) - 1 - layer_list.index(tp), layer_list |
|
|
|
def brushnet_forward(model, x, timesteps, transformer_options, control): |
|
if 'brushnet' not in transformer_options['model_patch']: |
|
input_samples = [] |
|
mid_sample = 0 |
|
output_samples = [] |
|
else: |
|
|
|
input_samples, mid_sample, output_samples = brushnet_inference(x, timesteps, transformer_options, debug) |
|
|
|
|
|
for i, tp in input_blocks: |
|
idx, layer_list = last_layer_index(model.input_blocks[i], tp) |
|
if idx < 0: |
|
print("BrushNet can't find", tp, "layer in", i, "input block:", layer_list) |
|
continue |
|
model.input_blocks[i][idx].add_sample_after = input_samples.pop(0) if input_samples else 0 |
|
|
|
idx, layer_list = last_layer_index(model.middle_block, middle_block[1]) |
|
if idx < 0: |
|
print("BrushNet can't find", middle_block[1], "layer in middle block", layer_list) |
|
model.middle_block[idx].add_sample_after = mid_sample |
|
|
|
for i, tp in output_blocks: |
|
idx, layer_list = last_layer_index(model.output_blocks[i], tp) |
|
if idx < 0: |
|
print("BrushNet can't find", tp, "layer in", i, "outnput block:", layer_list) |
|
continue |
|
model.output_blocks[i][idx].add_sample_after = output_samples.pop(0) if output_samples else 0 |
|
|
|
patch_model_function_wrapper(model, brushnet_forward) |
|
|
|
to = add_model_patch_option(model) |
|
mp = to['model_patch'] |
|
if 'brushnet' not in mp: |
|
mp['brushnet'] = {} |
|
bo = mp['brushnet'] |
|
|
|
bo['model'] = brushnet |
|
bo['dtype'] = torch_dtype |
|
bo['latents'] = conditioning_latents |
|
bo['controls'] = controls |
|
bo['prompt_embeds'] = prompt_embeds |
|
bo['negative_prompt_embeds'] = negative_prompt_embeds |
|
bo['add_embeds'] = (pooled_prompt_embeds, negative_pooled_prompt_embeds, time_ids) |
|
bo['latent_id'] = 0 |
|
|
|
|
|
def forward_patched_by_brushnet(self, x, *args, **kwargs): |
|
h = self.original_forward(x, *args, **kwargs) |
|
if hasattr(self, 'add_sample_after') and type(self): |
|
to_add = self.add_sample_after |
|
if torch.is_tensor(to_add): |
|
|
|
if h.shape[2] != to_add.shape[2] or h.shape[3] != to_add.shape[3]: |
|
to_add = torch.nn.functional.interpolate(to_add, size=(h.shape[2], h.shape[3]), mode='bicubic') |
|
h += to_add.to(h.dtype).to(h.device) |
|
else: |
|
h += self.add_sample_after |
|
self.add_sample_after = 0 |
|
return h |
|
|
|
for i, block in enumerate(model.model.diffusion_model.input_blocks): |
|
for j, layer in enumerate(block): |
|
if not hasattr(layer, 'original_forward'): |
|
layer.original_forward = layer.forward |
|
layer.forward = types.MethodType(forward_patched_by_brushnet, layer) |
|
layer.add_sample_after = 0 |
|
|
|
for j, layer in enumerate(model.model.diffusion_model.middle_block): |
|
if not hasattr(layer, 'original_forward'): |
|
layer.original_forward = layer.forward |
|
layer.forward = types.MethodType(forward_patched_by_brushnet, layer) |
|
layer.add_sample_after = 0 |
|
|
|
for i, block in enumerate(model.model.diffusion_model.output_blocks): |
|
for j, layer in enumerate(block): |
|
if not hasattr(layer, 'original_forward'): |
|
layer.original_forward = layer.forward |
|
layer.forward = types.MethodType(forward_patched_by_brushnet, layer) |
|
layer.add_sample_after = 0 |