|
import torch |
|
import math |
|
import comfy.supported_models_base |
|
import comfy.latent_formats |
|
import comfy.model_patcher |
|
import comfy.model_base |
|
import comfy.utils |
|
import comfy.conds |
|
from comfy import model_management |
|
from .diffusers_convert import convert_state_dict |
|
|
|
|
|
class EXM_PixArt(comfy.supported_models_base.BASE): |
|
unet_config = {} |
|
unet_extra_config = {} |
|
latent_format = comfy.latent_formats.SD15 |
|
|
|
def __init__(self, model_conf): |
|
self.model_target = model_conf.get("target") |
|
self.unet_config = model_conf.get("unet_config", {}) |
|
self.sampling_settings = model_conf.get("sampling_settings", {}) |
|
self.latent_format = self.latent_format() |
|
|
|
self.unet_config["disable_unet_model_creation"] = True |
|
|
|
def model_type(self, state_dict, prefix=""): |
|
return comfy.model_base.ModelType.EPS |
|
|
|
|
|
class EXM_PixArt_Model(comfy.model_base.BaseModel): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
def extra_conds(self, **kwargs): |
|
out = super().extra_conds(**kwargs) |
|
|
|
img_hw = kwargs.get("img_hw", None) |
|
if img_hw is not None: |
|
out["img_hw"] = comfy.conds.CONDRegular(torch.tensor(img_hw)) |
|
|
|
aspect_ratio = kwargs.get("aspect_ratio", None) |
|
if aspect_ratio is not None: |
|
out["aspect_ratio"] = comfy.conds.CONDRegular(torch.tensor(aspect_ratio)) |
|
|
|
cn_hint = kwargs.get("cn_hint", None) |
|
if cn_hint is not None: |
|
out["cn_hint"] = comfy.conds.CONDRegular(cn_hint) |
|
|
|
return out |
|
|
|
|
|
def load_pixart(model_path, model_conf=None): |
|
state_dict = comfy.utils.load_torch_file(model_path) |
|
state_dict = state_dict.get("model", state_dict) |
|
|
|
|
|
for prefix in ["model.diffusion_model.", ]: |
|
if any(True for x in state_dict if x.startswith(prefix)): |
|
state_dict = {k[len(prefix):]: v for k, v in state_dict.items()} |
|
|
|
|
|
if "adaln_single.linear.weight" in state_dict: |
|
state_dict = convert_state_dict(state_dict) |
|
|
|
|
|
if model_conf is None: |
|
model_conf = guess_pixart_config(state_dict) |
|
|
|
parameters = comfy.utils.calculate_parameters(state_dict) |
|
unet_dtype = model_management.unet_dtype(model_params=parameters) |
|
load_device = comfy.model_management.get_torch_device() |
|
offload_device = comfy.model_management.unet_offload_device() |
|
|
|
|
|
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device) |
|
if manual_cast_dtype: |
|
print(f"PixArt: falling back to {manual_cast_dtype}") |
|
unet_dtype = manual_cast_dtype |
|
|
|
model_conf = EXM_PixArt(model_conf) |
|
model = EXM_PixArt_Model( |
|
model_conf, |
|
model_type=comfy.model_base.ModelType.EPS, |
|
device=model_management.get_torch_device() |
|
) |
|
|
|
if model_conf.model_target == "PixArtMS": |
|
from .models.PixArtMS import PixArtMS |
|
model.diffusion_model = PixArtMS(**model_conf.unet_config) |
|
elif model_conf.model_target == "PixArt": |
|
from .models.PixArt import PixArt |
|
model.diffusion_model = PixArt(**model_conf.unet_config) |
|
elif model_conf.model_target == "PixArtMSSigma": |
|
from .models.PixArtMS import PixArtMS |
|
model.diffusion_model = PixArtMS(**model_conf.unet_config) |
|
model.latent_format = comfy.latent_formats.SDXL() |
|
elif model_conf.model_target == "ControlPixArtMSHalf": |
|
from .models.PixArtMS import PixArtMS |
|
from .models.pixart_controlnet import ControlPixArtMSHalf |
|
model.diffusion_model = PixArtMS(**model_conf.unet_config) |
|
model.diffusion_model = ControlPixArtMSHalf(model.diffusion_model) |
|
elif model_conf.model_target == "ControlPixArtHalf": |
|
from .models.PixArt import PixArt |
|
from .models.pixart_controlnet import ControlPixArtHalf |
|
model.diffusion_model = PixArt(**model_conf.unet_config) |
|
model.diffusion_model = ControlPixArtHalf(model.diffusion_model) |
|
else: |
|
raise NotImplementedError(f"Unknown model target '{model_conf.model_target}'") |
|
|
|
m, u = model.diffusion_model.load_state_dict(state_dict, strict=False) |
|
if len(m) > 0: print("Missing UNET keys", m) |
|
if len(u) > 0: print("Leftover UNET keys", u) |
|
model.diffusion_model.dtype = unet_dtype |
|
model.diffusion_model.eval() |
|
model.diffusion_model.to(unet_dtype) |
|
|
|
model_patcher = comfy.model_patcher.ModelPatcher( |
|
model, |
|
load_device=load_device, |
|
offload_device=offload_device, |
|
) |
|
return model_patcher |
|
|
|
|
|
def guess_pixart_config(sd): |
|
""" |
|
Guess config based on converted state dict. |
|
""" |
|
|
|
config = { |
|
"num_heads": 16, |
|
"patch_size": 2, |
|
"hidden_size": 1152, |
|
} |
|
config["depth"] = sum([key.endswith(".attn.proj.weight") for key in sd.keys()]) or 28 |
|
|
|
try: |
|
|
|
config["model_max_length"] = sd["y_embedder.y_embedding"].shape[0] |
|
except KeyError: |
|
|
|
config["model_max_length"] = 300 |
|
|
|
if "pos_embed" in sd: |
|
config["input_size"] = int(math.sqrt(sd["pos_embed"].shape[1])) * config["patch_size"] |
|
config["pe_interpolation"] = config["input_size"] // (512 // 8) |
|
|
|
target_arch = "PixArtMS" |
|
if config["model_max_length"] == 300: |
|
|
|
target_arch = "PixArtMSSigma" |
|
config["micro_condition"] = False |
|
if "input_size" not in config: |
|
|
|
|
|
print(f"PixArt: diffusers weights - 2K model will be broken, use manual loading!") |
|
config["input_size"] = 1024 // 8 |
|
else: |
|
|
|
if "csize_embedder.mlp.0.weight" in sd: |
|
|
|
target_arch = "PixArtMS" |
|
config["micro_condition"] = True |
|
if "input_size" not in config: |
|
config["input_size"] = 1024 // 8 |
|
config["pe_interpolation"] = 2 |
|
else: |
|
|
|
target_arch = "PixArt" |
|
if "input_size" not in config: |
|
config["input_size"] = 512 // 8 |
|
config["pe_interpolation"] = 1 |
|
|
|
print("PixArt guessed config:", target_arch, config) |
|
return { |
|
"target": target_arch, |
|
"unet_config": config, |
|
"sampling_settings": { |
|
"beta_schedule": "sqrt_linear", |
|
"linear_start": 0.0001, |
|
"linear_end": 0.02, |
|
"timesteps": 1000, |
|
} |
|
} |
|
|
|
|
|
class EXM_PixArt_ModelPatcher(comfy.model_patcher.ModelPatcher): |
|
def calculate_weight(self, patches, weight, key): |
|
""" |
|
This is almost the same as the comfy function, but stripped down to just the LoRA patch code. |
|
The problem with the original code is the q/k/v keys being combined into one for the attention. |
|
In the diffusers code, they're treated as separate keys, but in the reference code they're recombined (q+kv|qkv). |
|
This means, for example, that the [1152,1152] weights become [3456,1152] in the state dict. |
|
The issue with this is that the LoRA weights are [128,1152],[1152,128] and become [384,1162],[3456,128] instead. |
|
|
|
This is the best thing I could think of that would fix that, but it's very fragile. |
|
- Check key shape to determine if it needs the fallback logic |
|
- Cut the input into parts based on the shape (undoing the torch.cat) |
|
- Do the matrix multiplication logic |
|
- Recombine them to match the expected shape |
|
""" |
|
for p in patches: |
|
alpha = p[0] |
|
v = p[1] |
|
strength_model = p[2] |
|
if strength_model != 1.0: |
|
weight *= strength_model |
|
|
|
if isinstance(v, list): |
|
v = (self.calculate_weight(v[1:], v[0].clone(), key),) |
|
|
|
if len(v) == 2: |
|
patch_type = v[0] |
|
v = v[1] |
|
|
|
if patch_type == "lora": |
|
mat1 = comfy.model_management.cast_to_device(v[0], weight.device, torch.float32) |
|
mat2 = comfy.model_management.cast_to_device(v[1], weight.device, torch.float32) |
|
if v[2] is not None: |
|
alpha *= v[2] / mat2.shape[0] |
|
try: |
|
mat1 = mat1.flatten(start_dim=1) |
|
mat2 = mat2.flatten(start_dim=1) |
|
|
|
ch1 = mat1.shape[0] // mat2.shape[1] |
|
ch2 = mat2.shape[0] // mat1.shape[1] |
|
|
|
if mat1.shape[0] != mat2.shape[1] and ch1 == ch2 and (mat1.shape[0] / mat2.shape[1]) % 1 == 0: |
|
mat1 = mat1.chunk(ch1, dim=0) |
|
mat2 = mat2.chunk(ch1, dim=0) |
|
weight += torch.cat( |
|
[alpha * torch.mm(mat1[x], mat2[x]) for x in range(ch1)], |
|
dim=0, |
|
).reshape(weight.shape).type(weight.dtype) |
|
else: |
|
weight += (alpha * torch.mm(mat1, mat2)).reshape(weight.shape).type(weight.dtype) |
|
except Exception as e: |
|
print("ERROR", key, e) |
|
return weight |
|
|
|
def clone(self): |
|
n = EXM_PixArt_ModelPatcher(self.model, self.load_device, self.offload_device, self.size, self.current_device, |
|
weight_inplace_update=self.weight_inplace_update) |
|
n.patches = {} |
|
for k in self.patches: |
|
n.patches[k] = self.patches[k][:] |
|
|
|
n.object_patches = self.object_patches.copy() |
|
n.model_options = copy.deepcopy(self.model_options) |
|
n.model_keys = self.model_keys |
|
return n |
|
|
|
|
|
def replace_model_patcher(model): |
|
n = EXM_PixArt_ModelPatcher( |
|
model=model.model, |
|
size=model.size, |
|
load_device=model.load_device, |
|
offload_device=model.offload_device, |
|
current_device=model.current_device, |
|
weight_inplace_update=model.weight_inplace_update, |
|
) |
|
n.patches = {} |
|
for k in model.patches: |
|
n.patches[k] = model.patches[k][:] |
|
|
|
n.object_patches = model.object_patches.copy() |
|
n.model_options = copy.deepcopy(model.model_options) |
|
return n |
|
|
|
|
|
def find_peft_alpha(path): |
|
def load_json(json_path): |
|
with open(json_path) as f: |
|
data = json.load(f) |
|
alpha = data.get("lora_alpha") |
|
alpha = alpha or data.get("alpha") |
|
if not alpha: |
|
print(" Found config but `lora_alpha` is missing!") |
|
else: |
|
print(f" Found config at {json_path} [alpha:{alpha}]") |
|
return alpha |
|
|
|
|
|
print("PixArt: Warning! This is a PEFT LoRA. Trying to find config...") |
|
files = [ |
|
f"{os.path.splitext(path)[0]}.json", |
|
f"{os.path.splitext(path)[0]}.config.json", |
|
os.path.join(os.path.dirname(path), "adapter_config.json"), |
|
] |
|
for file in files: |
|
if os.path.isfile(file): |
|
return load_json(file) |
|
|
|
print(" Missing config/alpha! assuming alpha of 8. Consider converting it/adding a config json to it.") |
|
return 8.0 |
|
|
|
|
|
def load_pixart_lora(model, lora, lora_path, strength): |
|
k_back = lambda x: x.replace(".lora_up.weight", "") |
|
|
|
if any(True for x in lora.keys() if x.endswith("adaln_single.linear.lora_A.weight")): |
|
lora = convert_lora_state_dict(lora, peft=True) |
|
alpha = find_peft_alpha(lora_path) |
|
lora.update({f"{k_back(x)}.alpha": torch.tensor(alpha) for x in lora.keys() if "lora_up" in x}) |
|
else: |
|
lora = convert_lora_state_dict(lora, peft=False) |
|
|
|
key_map = {k_back(x): f"diffusion_model.{k_back(x)}.weight" for x in lora.keys() if "lora_up" in x} |
|
|
|
loaded = comfy.lora.load_lora(lora, key_map) |
|
if model is not None: |
|
|
|
if isinstance(model, EXM_PixArt_ModelPatcher): |
|
new_modelpatcher = model.clone() |
|
else: |
|
new_modelpatcher = replace_model_patcher(model) |
|
k = new_modelpatcher.add_patches(loaded, strength) |
|
else: |
|
k = () |
|
new_modelpatcher = None |
|
|
|
k = set(k) |
|
for x in loaded: |
|
if (x not in k): |
|
print("NOT LOADED", x) |
|
|
|
return new_modelpatcher |