jaxmetaverse's picture
Upload folder using huggingface_hub
82ea528 verified
import torch
import math
import comfy.supported_models_base
import comfy.latent_formats
import comfy.model_patcher
import comfy.model_base
import comfy.utils
import comfy.conds
from comfy import model_management
from .diffusers_convert import convert_state_dict
# checkpointbf
class EXM_PixArt(comfy.supported_models_base.BASE):
unet_config = {}
unet_extra_config = {}
latent_format = comfy.latent_formats.SD15
def __init__(self, model_conf):
self.model_target = model_conf.get("target")
self.unet_config = model_conf.get("unet_config", {})
self.sampling_settings = model_conf.get("sampling_settings", {})
self.latent_format = self.latent_format()
# UNET is handled by extension
self.unet_config["disable_unet_model_creation"] = True
def model_type(self, state_dict, prefix=""):
return comfy.model_base.ModelType.EPS
class EXM_PixArt_Model(comfy.model_base.BaseModel):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
img_hw = kwargs.get("img_hw", None)
if img_hw is not None:
out["img_hw"] = comfy.conds.CONDRegular(torch.tensor(img_hw))
aspect_ratio = kwargs.get("aspect_ratio", None)
if aspect_ratio is not None:
out["aspect_ratio"] = comfy.conds.CONDRegular(torch.tensor(aspect_ratio))
cn_hint = kwargs.get("cn_hint", None)
if cn_hint is not None:
out["cn_hint"] = comfy.conds.CONDRegular(cn_hint)
return out
def load_pixart(model_path, model_conf=None):
state_dict = comfy.utils.load_torch_file(model_path)
state_dict = state_dict.get("model", state_dict)
# prefix
for prefix in ["model.diffusion_model.", ]:
if any(True for x in state_dict if x.startswith(prefix)):
state_dict = {k[len(prefix):]: v for k, v in state_dict.items()}
# diffusers
if "adaln_single.linear.weight" in state_dict:
state_dict = convert_state_dict(state_dict) # Diffusers
# guess auto config
if model_conf is None:
model_conf = guess_pixart_config(state_dict)
parameters = comfy.utils.calculate_parameters(state_dict)
unet_dtype = model_management.unet_dtype(model_params=parameters)
load_device = comfy.model_management.get_torch_device()
offload_device = comfy.model_management.unet_offload_device()
# ignore fp8/etc and use directly for now
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device)
if manual_cast_dtype:
print(f"PixArt: falling back to {manual_cast_dtype}")
unet_dtype = manual_cast_dtype
model_conf = EXM_PixArt(model_conf) # convert to object
model = EXM_PixArt_Model( # same as comfy.model_base.BaseModel
model_conf,
model_type=comfy.model_base.ModelType.EPS,
device=model_management.get_torch_device()
)
if model_conf.model_target == "PixArtMS":
from .models.PixArtMS import PixArtMS
model.diffusion_model = PixArtMS(**model_conf.unet_config)
elif model_conf.model_target == "PixArt":
from .models.PixArt import PixArt
model.diffusion_model = PixArt(**model_conf.unet_config)
elif model_conf.model_target == "PixArtMSSigma":
from .models.PixArtMS import PixArtMS
model.diffusion_model = PixArtMS(**model_conf.unet_config)
model.latent_format = comfy.latent_formats.SDXL()
elif model_conf.model_target == "ControlPixArtMSHalf":
from .models.PixArtMS import PixArtMS
from .models.pixart_controlnet import ControlPixArtMSHalf
model.diffusion_model = PixArtMS(**model_conf.unet_config)
model.diffusion_model = ControlPixArtMSHalf(model.diffusion_model)
elif model_conf.model_target == "ControlPixArtHalf":
from .models.PixArt import PixArt
from .models.pixart_controlnet import ControlPixArtHalf
model.diffusion_model = PixArt(**model_conf.unet_config)
model.diffusion_model = ControlPixArtHalf(model.diffusion_model)
else:
raise NotImplementedError(f"Unknown model target '{model_conf.model_target}'")
m, u = model.diffusion_model.load_state_dict(state_dict, strict=False)
if len(m) > 0: print("Missing UNET keys", m)
if len(u) > 0: print("Leftover UNET keys", u)
model.diffusion_model.dtype = unet_dtype
model.diffusion_model.eval()
model.diffusion_model.to(unet_dtype)
model_patcher = comfy.model_patcher.ModelPatcher(
model,
load_device=load_device,
offload_device=offload_device,
)
return model_patcher
def guess_pixart_config(sd):
"""
Guess config based on converted state dict.
"""
# Shared settings based on DiT_XL_2 - could be enumerated
config = {
"num_heads": 16, # get from attention
"patch_size": 2, # final layer I guess?
"hidden_size": 1152, # pos_embed.shape[2]
}
config["depth"] = sum([key.endswith(".attn.proj.weight") for key in sd.keys()]) or 28
try:
# this is not present in the diffusers version for sigma?
config["model_max_length"] = sd["y_embedder.y_embedding"].shape[0]
except KeyError:
# need better logic to guess this
config["model_max_length"] = 300
if "pos_embed" in sd:
config["input_size"] = int(math.sqrt(sd["pos_embed"].shape[1])) * config["patch_size"]
config["pe_interpolation"] = config["input_size"] // (512 // 8) # dumb guess
target_arch = "PixArtMS"
if config["model_max_length"] == 300:
# Sigma
target_arch = "PixArtMSSigma"
config["micro_condition"] = False
if "input_size" not in config:
# The diffusers weights for 1K/2K are exactly the same...?
# replace patch embed logic with HyDiT?
print(f"PixArt: diffusers weights - 2K model will be broken, use manual loading!")
config["input_size"] = 1024 // 8
else:
# Alpha
if "csize_embedder.mlp.0.weight" in sd:
# MS (microconds)
target_arch = "PixArtMS"
config["micro_condition"] = True
if "input_size" not in config:
config["input_size"] = 1024 // 8
config["pe_interpolation"] = 2
else:
# PixArt
target_arch = "PixArt"
if "input_size" not in config:
config["input_size"] = 512 // 8
config["pe_interpolation"] = 1
print("PixArt guessed config:", target_arch, config)
return {
"target": target_arch,
"unet_config": config,
"sampling_settings": {
"beta_schedule": "sqrt_linear",
"linear_start": 0.0001,
"linear_end": 0.02,
"timesteps": 1000,
}
}
# lora
class EXM_PixArt_ModelPatcher(comfy.model_patcher.ModelPatcher):
def calculate_weight(self, patches, weight, key):
"""
This is almost the same as the comfy function, but stripped down to just the LoRA patch code.
The problem with the original code is the q/k/v keys being combined into one for the attention.
In the diffusers code, they're treated as separate keys, but in the reference code they're recombined (q+kv|qkv).
This means, for example, that the [1152,1152] weights become [3456,1152] in the state dict.
The issue with this is that the LoRA weights are [128,1152],[1152,128] and become [384,1162],[3456,128] instead.
This is the best thing I could think of that would fix that, but it's very fragile.
- Check key shape to determine if it needs the fallback logic
- Cut the input into parts based on the shape (undoing the torch.cat)
- Do the matrix multiplication logic
- Recombine them to match the expected shape
"""
for p in patches:
alpha = p[0]
v = p[1]
strength_model = p[2]
if strength_model != 1.0:
weight *= strength_model
if isinstance(v, list):
v = (self.calculate_weight(v[1:], v[0].clone(), key),)
if len(v) == 2:
patch_type = v[0]
v = v[1]
if patch_type == "lora":
mat1 = comfy.model_management.cast_to_device(v[0], weight.device, torch.float32)
mat2 = comfy.model_management.cast_to_device(v[1], weight.device, torch.float32)
if v[2] is not None:
alpha *= v[2] / mat2.shape[0]
try:
mat1 = mat1.flatten(start_dim=1)
mat2 = mat2.flatten(start_dim=1)
ch1 = mat1.shape[0] // mat2.shape[1]
ch2 = mat2.shape[0] // mat1.shape[1]
### Fallback logic for shape mismatch ###
if mat1.shape[0] != mat2.shape[1] and ch1 == ch2 and (mat1.shape[0] / mat2.shape[1]) % 1 == 0:
mat1 = mat1.chunk(ch1, dim=0)
mat2 = mat2.chunk(ch1, dim=0)
weight += torch.cat(
[alpha * torch.mm(mat1[x], mat2[x]) for x in range(ch1)],
dim=0,
).reshape(weight.shape).type(weight.dtype)
else:
weight += (alpha * torch.mm(mat1, mat2)).reshape(weight.shape).type(weight.dtype)
except Exception as e:
print("ERROR", key, e)
return weight
def clone(self):
n = EXM_PixArt_ModelPatcher(self.model, self.load_device, self.offload_device, self.size, self.current_device,
weight_inplace_update=self.weight_inplace_update)
n.patches = {}
for k in self.patches:
n.patches[k] = self.patches[k][:]
n.object_patches = self.object_patches.copy()
n.model_options = copy.deepcopy(self.model_options)
n.model_keys = self.model_keys
return n
def replace_model_patcher(model):
n = EXM_PixArt_ModelPatcher(
model=model.model,
size=model.size,
load_device=model.load_device,
offload_device=model.offload_device,
current_device=model.current_device,
weight_inplace_update=model.weight_inplace_update,
)
n.patches = {}
for k in model.patches:
n.patches[k] = model.patches[k][:]
n.object_patches = model.object_patches.copy()
n.model_options = copy.deepcopy(model.model_options)
return n
def find_peft_alpha(path):
def load_json(json_path):
with open(json_path) as f:
data = json.load(f)
alpha = data.get("lora_alpha")
alpha = alpha or data.get("alpha")
if not alpha:
print(" Found config but `lora_alpha` is missing!")
else:
print(f" Found config at {json_path} [alpha:{alpha}]")
return alpha
# For some weird reason peft doesn't include the alpha in the actual model
print("PixArt: Warning! This is a PEFT LoRA. Trying to find config...")
files = [
f"{os.path.splitext(path)[0]}.json",
f"{os.path.splitext(path)[0]}.config.json",
os.path.join(os.path.dirname(path), "adapter_config.json"),
]
for file in files:
if os.path.isfile(file):
return load_json(file)
print(" Missing config/alpha! assuming alpha of 8. Consider converting it/adding a config json to it.")
return 8.0
def load_pixart_lora(model, lora, lora_path, strength):
k_back = lambda x: x.replace(".lora_up.weight", "")
# need to convert the actual weights for this to work.
if any(True for x in lora.keys() if x.endswith("adaln_single.linear.lora_A.weight")):
lora = convert_lora_state_dict(lora, peft=True)
alpha = find_peft_alpha(lora_path)
lora.update({f"{k_back(x)}.alpha": torch.tensor(alpha) for x in lora.keys() if "lora_up" in x})
else: # OneTrainer
lora = convert_lora_state_dict(lora, peft=False)
key_map = {k_back(x): f"diffusion_model.{k_back(x)}.weight" for x in lora.keys() if "lora_up" in x} # fake
loaded = comfy.lora.load_lora(lora, key_map)
if model is not None:
# switch to custom model patcher when using LoRAs
if isinstance(model, EXM_PixArt_ModelPatcher):
new_modelpatcher = model.clone()
else:
new_modelpatcher = replace_model_patcher(model)
k = new_modelpatcher.add_patches(loaded, strength)
else:
k = ()
new_modelpatcher = None
k = set(k)
for x in loaded:
if (x not in k):
print("NOT LOADED", x)
return new_modelpatcher