jaxmetaverse's picture
Upload folder using huggingface_hub
82ea528 verified
#credit to huchenlei for this module
#from https://github.com/huchenlei/ComfyUI-IC-Light-Native
import torch
import numpy as np
from typing import Tuple, TypedDict, Callable
import comfy.model_management
from comfy.sd import load_unet
from comfy.ldm.models.autoencoder import AutoencoderKL
from comfy.model_base import BaseModel
from comfy.model_patcher import ModelPatcher
from PIL import Image
from nodes import VAEEncode
from ..libs.image import np2tensor, pil2tensor
class UnetParams(TypedDict):
input: torch.Tensor
timestep: torch.Tensor
c: dict
cond_or_uncond: torch.Tensor
class VAEEncodeArgMax(VAEEncode):
def encode(self, vae, pixels):
assert isinstance(
vae.first_stage_model, AutoencoderKL
), "ArgMax only supported for AutoencoderKL"
original_sample_mode = vae.first_stage_model.regularization.sample
vae.first_stage_model.regularization.sample = False
ret = super().encode(vae, pixels)
vae.first_stage_model.regularization.sample = original_sample_mode
return ret
class ICLight:
@staticmethod
def apply_c_concat(params: UnetParams, concat_conds) -> UnetParams:
"""Apply c_concat on unet call."""
sample = params["input"]
params["c"]["c_concat"] = torch.cat(
(
[concat_conds.to(sample.device)]
* (sample.shape[0] // concat_conds.shape[0])
),
dim=0,
)
return params
@staticmethod
def create_custom_conv(
original_conv: torch.nn.Module,
dtype: torch.dtype,
device=torch.device,
) -> torch.nn.Module:
with torch.no_grad():
new_conv_in = torch.nn.Conv2d(
8,
original_conv.out_channels,
original_conv.kernel_size,
original_conv.stride,
original_conv.padding,
)
new_conv_in.weight.zero_()
new_conv_in.weight[:, :4, :, :].copy_(original_conv.weight)
new_conv_in.bias = original_conv.bias
return new_conv_in.to(dtype=dtype, device=device)
def generate_lighting_image(self, original_image, direction):
_, image_height, image_width, _ = original_image.shape
if direction == 'Left Light':
gradient = np.linspace(255, 0, image_width)
image = np.tile(gradient, (image_height, 1))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
return np2tensor(input_bg)
elif direction == 'Right Light':
gradient = np.linspace(0, 255, image_width)
image = np.tile(gradient, (image_height, 1))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
return np2tensor(input_bg)
elif direction == 'Top Light':
gradient = np.linspace(255, 0, image_height)[:, None]
image = np.tile(gradient, (1, image_width))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
return np2tensor(input_bg)
elif direction == 'Bottom Light':
gradient = np.linspace(0, 255, image_height)[:, None]
image = np.tile(gradient, (1, image_width))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
return np2tensor(input_bg)
elif direction == 'Circle Light':
x = np.linspace(-1, 1, image_width)
y = np.linspace(-1, 1, image_height)
x, y = np.meshgrid(x, y)
r = np.sqrt(x ** 2 + y ** 2)
r = r / r.max()
color1 = np.array([0, 0, 0])[np.newaxis, np.newaxis, :]
color2 = np.array([255, 255, 255])[np.newaxis, np.newaxis, :]
gradient = (color1 * r[..., np.newaxis] + color2 * (1 - r)[..., np.newaxis]).astype(np.uint8)
image = pil2tensor(Image.fromarray(gradient))
return image
else:
image = pil2tensor(Image.new('RGB', (1, 1), (0, 0, 0)))
return image
def generate_source_image(self, original_image, source):
batch_size, image_height, image_width, _ = original_image.shape
if source == 'Use Flipped Background Image':
if batch_size < 2:
raise ValueError('Must be at least 2 image to use flipped background image.')
original_image = [img.unsqueeze(0) for img in original_image]
image = torch.flip(original_image[1], [2])
return image
elif source == 'Ambient':
input_bg = np.zeros(shape=(image_height, image_width, 3), dtype=np.uint8) + 64
return np2tensor(input_bg)
elif source == 'Left Light':
gradient = np.linspace(224, 32, image_width)
image = np.tile(gradient, (image_height, 1))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
return np2tensor(input_bg)
elif source == 'Right Light':
gradient = np.linspace(32, 224, image_width)
image = np.tile(gradient, (image_height, 1))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
return np2tensor(input_bg)
elif source == 'Top Light':
gradient = np.linspace(224, 32, image_height)[:, None]
image = np.tile(gradient, (1, image_width))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
return np2tensor(input_bg)
elif source == 'Bottom Light':
gradient = np.linspace(32, 224, image_height)[:, None]
image = np.tile(gradient, (1, image_width))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
return np2tensor(input_bg)
else:
image = pil2tensor(Image.new('RGB', (1, 1), (0, 0, 0)))
return image
def apply(self, ic_model_path, model, c_concat: dict, ic_model=None) -> Tuple[ModelPatcher]:
device = comfy.model_management.get_torch_device()
dtype = comfy.model_management.unet_dtype()
work_model = model.clone()
# Apply scale factor.
base_model: BaseModel = work_model.model
scale_factor = base_model.model_config.latent_format.scale_factor
# [B, 4, H, W]
concat_conds: torch.Tensor = c_concat["samples"] * scale_factor
# [1, 4 * B, H, W]
concat_conds = torch.cat([c[None, ...] for c in concat_conds], dim=1)
def unet_dummy_apply(unet_apply: Callable, params: UnetParams):
"""A dummy unet apply wrapper serving as the endpoint of wrapper
chain."""
return unet_apply(x=params["input"], t=params["timestep"], **params["c"])
existing_wrapper = work_model.model_options.get(
"model_function_wrapper", unet_dummy_apply
)
def wrapper_func(unet_apply: Callable, params: UnetParams):
return existing_wrapper(unet_apply, params=self.apply_c_concat(params, concat_conds))
work_model.set_model_unet_function_wrapper(wrapper_func)
if not ic_model:
ic_model = load_unet(ic_model_path)
ic_model_state_dict = ic_model.model.diffusion_model.state_dict()
work_model.add_patches(
patches={
("diffusion_model." + key): (
'diff',
[
value.to(dtype=dtype, device=device),
{"pad_weight": key == 'input_blocks.0.0.weight'}
]
)
for key, value in ic_model_state_dict.items()
}
)
return (work_model, ic_model)