all_models / custom_nodes /ComfyUI-Easy-Use /py /libs /gradual_latent_hires_fix.py
jaxmetaverse's picture
Upload folder using huggingface_hub
82ea528 verified
import torch
from torchvision.transforms.functional import gaussian_blur
from comfy.k_diffusion.sampling import default_noise_sampler, get_ancestral_step, to_d, BrownianTreeNoiseSampler
from tqdm.auto import trange
@torch.no_grad()
def sample_euler_ancestral(
model,
x,
sigmas,
extra_args=None,
callback=None,
disable=None,
eta=1.0,
s_noise=1.0,
noise_sampler=None,
upscale_ratio=2.0,
start_step=5,
end_step=15,
upscale_n_step=3,
unsharp_kernel_size=3,
unsharp_sigma=0.5,
unsharp_strength=0.0,
):
"""Ancestral sampling with Euler method steps."""
extra_args = {} if extra_args is None else extra_args
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
# make upscale info
upscale_steps = []
step = start_step - 1
while step < end_step - 1:
upscale_steps.append(step)
step += upscale_n_step
height, width = x.shape[2:]
upscale_shapes = [
(int(height * (((upscale_ratio - 1) / i) + 1)), int(width * (((upscale_ratio - 1) / i) + 1)))
for i in reversed(range(1, len(upscale_steps) + 1))
]
upscale_info = {k: v for k, v in zip(upscale_steps, upscale_shapes)}
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
if callback is not None:
callback({"x": x, "i": i, "sigma": sigmas[i], "sigma_hat": sigmas[i], "denoised": denoised})
d = to_d(x, sigmas[i], denoised)
# Euler method
dt = sigma_down - sigmas[i]
x = x + d * dt
if sigmas[i + 1] > 0:
# Resize
if i in upscale_info:
x = torch.nn.functional.interpolate(x, size=upscale_info[i], mode="bicubic", align_corners=False)
if unsharp_strength > 0:
blurred = gaussian_blur(x, kernel_size=unsharp_kernel_size, sigma=unsharp_sigma)
x = x + unsharp_strength * (x - blurred)
noise_sampler = default_noise_sampler(x)
noise = noise_sampler(sigmas[i], sigmas[i + 1])
x = x + noise * sigma_up * s_noise
return x
@torch.no_grad()
def sample_dpmpp_2s_ancestral(
model,
x,
sigmas,
extra_args=None,
callback=None,
disable=None,
eta=1.0,
s_noise=1.0,
noise_sampler=None,
upscale_ratio=2.0,
start_step=5,
end_step=15,
upscale_n_step=3,
unsharp_kernel_size=3,
unsharp_sigma=0.5,
unsharp_strength=0.0,
):
"""Ancestral sampling with DPM-Solver++(2S) second-order steps."""
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
sigma_fn = lambda t: t.neg().exp()
t_fn = lambda sigma: sigma.log().neg()
# make upscale info
upscale_steps = []
step = start_step - 1
while step < end_step - 1:
upscale_steps.append(step)
step += upscale_n_step
height, width = x.shape[2:]
upscale_shapes = [
(int(height * (((upscale_ratio - 1) / i) + 1)), int(width * (((upscale_ratio - 1) / i) + 1)))
for i in reversed(range(1, len(upscale_steps) + 1))
]
upscale_info = {k: v for k, v in zip(upscale_steps, upscale_shapes)}
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
if callback is not None:
callback({"x": x, "i": i, "sigma": sigmas[i], "sigma_hat": sigmas[i], "denoised": denoised})
if sigma_down == 0:
# Euler method
d = to_d(x, sigmas[i], denoised)
dt = sigma_down - sigmas[i]
x = x + d * dt
else:
# DPM-Solver++(2S)
t, t_next = t_fn(sigmas[i]), t_fn(sigma_down)
r = 1 / 2
h = t_next - t
s = t + r * h
x_2 = (sigma_fn(s) / sigma_fn(t)) * x - (-h * r).expm1() * denoised
denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_2
# Noise addition
if sigmas[i + 1] > 0:
# Resize
if i in upscale_info:
x = torch.nn.functional.interpolate(x, size=upscale_info[i], mode="bicubic", align_corners=False)
if unsharp_strength > 0:
blurred = gaussian_blur(x, kernel_size=unsharp_kernel_size, sigma=unsharp_sigma)
x = x + unsharp_strength * (x - blurred)
noise_sampler = default_noise_sampler(x)
noise = noise_sampler(sigmas[i], sigmas[i + 1])
x = x + noise * sigma_up * s_noise
return x
@torch.no_grad()
def sample_dpmpp_2m_sde(
model,
x,
sigmas,
extra_args=None,
callback=None,
disable=None,
eta=1.0,
s_noise=1.0,
noise_sampler=None,
solver_type="midpoint",
upscale_ratio=2.0,
start_step=5,
end_step=15,
upscale_n_step=3,
unsharp_kernel_size=3,
unsharp_sigma=0.5,
unsharp_strength=0.0,
):
"""DPM-Solver++(2M) SDE."""
if solver_type not in {"heun", "midpoint"}:
raise ValueError("solver_type must be 'heun' or 'midpoint'")
seed = extra_args.get("seed", None)
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
old_denoised = None
h_last = None
h = None
# make upscale info
upscale_steps = []
step = start_step - 1
while step < end_step - 1:
upscale_steps.append(step)
step += upscale_n_step
height, width = x.shape[2:]
upscale_shapes = [
(int(height * (((upscale_ratio - 1) / i) + 1)), int(width * (((upscale_ratio - 1) / i) + 1)))
for i in reversed(range(1, len(upscale_steps) + 1))
]
upscale_info = {k: v for k, v in zip(upscale_steps, upscale_shapes)}
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({"x": x, "i": i, "sigma": sigmas[i], "sigma_hat": sigmas[i], "denoised": denoised})
if sigmas[i + 1] == 0:
# Denoising step
x = denoised
else:
# DPM-Solver++(2M) SDE
t, s = -sigmas[i].log(), -sigmas[i + 1].log()
h = s - t
eta_h = eta * h
x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised
if old_denoised is not None:
r = h_last / h
if solver_type == "heun":
x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised)
elif solver_type == "midpoint":
x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)
if eta:
# Resize
if i in upscale_info:
x = torch.nn.functional.interpolate(x, size=upscale_info[i], mode="bicubic", align_corners=False)
if unsharp_strength > 0:
blurred = gaussian_blur(x, kernel_size=unsharp_kernel_size, sigma=unsharp_sigma)
x = x + unsharp_strength * (x - blurred)
denoised = None # 次ステップとサイズがあわないのでとりあえずNoneにしておく。
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True)
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise
old_denoised = denoised
h_last = h
return x
@torch.no_grad()
def sample_lcm(
model,
x,
sigmas,
extra_args=None,
callback=None,
disable=None,
noise_sampler=None,
eta=None,
s_noise=None,
upscale_ratio=2.0,
start_step=5,
end_step=15,
upscale_n_step=3,
unsharp_kernel_size=3,
unsharp_sigma=0.5,
unsharp_strength=0.0,
):
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
# make upscale info
upscale_steps = []
step = start_step - 1
while step < end_step - 1:
upscale_steps.append(step)
step += upscale_n_step
height, width = x.shape[2:]
upscale_shapes = [
(int(height * (((upscale_ratio - 1) / i) + 1)), int(width * (((upscale_ratio - 1) / i) + 1)))
for i in reversed(range(1, len(upscale_steps) + 1))
]
upscale_info = {k: v for k, v in zip(upscale_steps, upscale_shapes)}
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({"x": x, "i": i, "sigma": sigmas[i], "sigma_hat": sigmas[i], "denoised": denoised})
x = denoised
if sigmas[i + 1] > 0:
# Resize
if i in upscale_info:
x = torch.nn.functional.interpolate(x, size=upscale_info[i], mode="bicubic", align_corners=False)
if unsharp_strength > 0:
blurred = gaussian_blur(x, kernel_size=unsharp_kernel_size, sigma=unsharp_sigma)
x = x + unsharp_strength * (x - blurred)
noise_sampler = default_noise_sampler(x)
x += sigmas[i + 1] * noise_sampler(sigmas[i], sigmas[i + 1])
return x