jaxmetaverse's picture
Upload folder using huggingface_hub
82ea528 verified
import comfy
import comfy.model_management
import comfy.samplers
import torch
import numpy as np
import latent_preview
from nodes import MAX_RESOLUTION
from PIL import Image
from typing import Dict, List, Optional, Tuple, Union, Any
from ..brushnet.model_patch import add_model_patch
class easySampler:
def __init__(self):
self.last_helds: dict[str, list] = {
"results": [],
"pipe_line": [],
}
self.device = comfy.model_management.intermediate_device()
@staticmethod
def tensor2pil(image: torch.Tensor) -> Image.Image:
"""Convert a torch tensor to a PIL image."""
return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))
@staticmethod
def pil2tensor(image: Image.Image) -> torch.Tensor:
"""Convert a PIL image to a torch tensor."""
return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)
@staticmethod
def enforce_mul_of_64(d):
d = int(d)
if d <= 7:
d = 8
leftover = d % 8 # 8 is the number of pixels per byte
if leftover != 0: # if the number of pixels is not a multiple of 8
if (leftover < 4): # if the number of pixels is less than 4
d -= leftover # remove the leftover pixels
else: # if the number of pixels is more than 4
d += 8 - leftover # add the leftover pixels
return int(d)
@staticmethod
def safe_split(to_split: str, delimiter: str) -> List[str]:
"""Split the input string and return a list of non-empty parts."""
parts = to_split.split(delimiter)
parts = [part for part in parts if part not in ('', ' ', ' ')]
while len(parts) < 2:
parts.append('None')
return parts
def emptyLatent(self, resolution, empty_latent_width, empty_latent_height, batch_size=1, compression=0, model_type='sd', video_length=25):
if resolution not in ["自定义 x 自定义", 'width x height (custom)']:
try:
width, height = map(int, resolution.split(' x '))
empty_latent_width = width
empty_latent_height = height
except ValueError:
raise ValueError("Invalid base_resolution format.")
if model_type == 'sd3':
latent = torch.ones([batch_size, 16, empty_latent_height // 8, empty_latent_width // 8], device=self.device) * 0.0609
samples = {"samples": latent}
elif model_type == 'mochi':
latent = torch.zeros([batch_size, 12, ((video_length - 1) // 6) + 1, empty_latent_height // 8, empty_latent_width // 8], device=self.device)
samples = {"samples": latent}
elif compression == 0:
latent = torch.zeros([batch_size, 4, empty_latent_height // 8, empty_latent_width // 8], device=self.device)
samples = {"samples": latent}
else:
latent_c = torch.zeros(
[batch_size, 16, empty_latent_height // compression, empty_latent_width // compression])
latent_b = torch.zeros([batch_size, 4, empty_latent_height // 4, empty_latent_width // 4])
samples = ({"samples": latent_c}, {"samples": latent_b})
return samples
def prepare_noise(self, latent_image, seed, noise_inds=None, noise_device="cpu", incremental_seed_mode="comfy",
variation_seed=None, variation_strength=None):
"""
creates random noise given a latent image and a seed.
optional arg skip can be used to skip and discard x number of noise generations for a given seed
"""
latent_size = latent_image.size()
latent_size_1batch = [1, latent_size[1], latent_size[2], latent_size[3]]
if variation_strength is not None and variation_strength > 0 or incremental_seed_mode.startswith(
"variation str inc"):
if noise_device == "cpu":
variation_generator = torch.manual_seed(variation_seed)
else:
torch.cuda.manual_seed(variation_seed)
variation_generator = None
variation_latent = torch.randn(latent_size_1batch, dtype=latent_image.dtype, layout=latent_image.layout,
generator=variation_generator, device=noise_device)
else:
variation_latent = None
def apply_variation(input_latent, strength_up=None):
if variation_latent is None:
return input_latent
else:
strength = variation_strength
if strength_up is not None:
strength += strength_up
variation_noise = variation_latent.expand(input_latent.size()[0], -1, -1, -1)
result = (1 - strength) * input_latent + strength * variation_noise
return result
# method: incremental seed batch noise
if noise_inds is None and incremental_seed_mode == "incremental":
batch_cnt = latent_size[0]
latents = None
for i in range(batch_cnt):
if noise_device == "cpu":
generator = torch.manual_seed(seed + i)
else:
torch.cuda.manual_seed(seed + i)
generator = None
latent = torch.randn(latent_size_1batch, dtype=latent_image.dtype, layout=latent_image.layout,
generator=generator, device=noise_device)
latent = apply_variation(latent)
if latents is None:
latents = latent
else:
latents = torch.cat((latents, latent), dim=0)
return latents
# method: incremental variation batch noise
elif noise_inds is None and incremental_seed_mode.startswith("variation str inc"):
batch_cnt = latent_size[0]
latents = None
for i in range(batch_cnt):
if noise_device == "cpu":
generator = torch.manual_seed(seed)
else:
torch.cuda.manual_seed(seed)
generator = None
latent = torch.randn(latent_size_1batch, dtype=latent_image.dtype, layout=latent_image.layout,
generator=generator, device=noise_device)
step = float(incremental_seed_mode[18:])
latent = apply_variation(latent, step * i)
if latents is None:
latents = latent
else:
latents = torch.cat((latents, latent), dim=0)
return latents
# method: comfy batch noise
if noise_device == "cpu":
generator = torch.manual_seed(seed)
else:
torch.cuda.manual_seed(seed)
generator = None
if noise_inds is None:
latents = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout,
generator=generator, device=noise_device)
latents = apply_variation(latents)
return latents
unique_inds, inverse = np.unique(noise_inds, return_inverse=True)
noises = []
for i in range(unique_inds[-1] + 1):
noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype,
layout=latent_image.layout,
generator=generator, device=noise_device)
if i in unique_inds:
noises.append(noise)
noises = [noises[i] for i in inverse]
noises = torch.cat(noises, axis=0)
return noises
def common_ksampler(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0,
disable_noise=False, start_step=None, last_step=None, force_full_denoise=False,
preview_latent=True, disable_pbar=False, noise_device='CPU'):
device = comfy.model_management.get_torch_device()
noise_device = 'cpu' if noise_device == 'CPU' else device
latent_image = latent["samples"]
latent_image = comfy.sample.fix_empty_latent_channels(model, latent_image)
noise_mask = None
if "noise_mask" in latent:
noise_mask = latent["noise_mask"]
preview_format = "JPEG"
if preview_format not in ["JPEG", "PNG"]:
preview_format = "JPEG"
previewer = False
if preview_latent:
previewer = latent_preview.get_previewer(device, model.model.latent_format)
pbar = comfy.utils.ProgressBar(steps)
def callback(step, x0, x, total_steps):
preview_bytes = None
if previewer:
preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0)
pbar.update_absolute(step + 1, total_steps, preview_bytes)
if disable_noise:
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout,
device=noise_device)
else:
batch_inds = latent["batch_index"] if "batch_index" in latent else None
noise = self.prepare_noise(latent_image, seed, batch_inds, noise_device=noise_device)
#######################################################################################
# add model patch
# brushnet
add_model_patch(model)
#######################################################################################
samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative,
latent_image,
denoise=denoise, disable_noise=disable_noise, start_step=start_step,
last_step=last_step,
force_full_denoise=force_full_denoise, noise_mask=noise_mask,
callback=callback,
disable_pbar=disable_pbar, seed=seed)
out = latent.copy()
out["samples"] = samples
return out
def custom_ksampler(self, model, seed, steps, cfg, _sampler, sigmas, positive, negative, latent,
disable_noise=False, preview_latent=True, disable_pbar=False, noise_device='CPU'):
device = comfy.model_management.get_torch_device()
noise_device = 'cpu' if noise_device == 'CPU' else device
latent_image = latent["samples"]
if disable_noise:
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device=noise_device)
else:
batch_inds = latent["batch_index"] if "batch_index" in latent else None
noise = self.prepare_noise(latent_image, seed, batch_inds, noise_device=noise_device)
noise_mask = None
if "noise_mask" in latent:
noise_mask = latent["noise_mask"]
preview_format = "JPEG"
if preview_format not in ["JPEG", "PNG"]:
preview_format = "JPEG"
previewer = False
if preview_latent:
previewer = latent_preview.get_previewer(device, model.model.latent_format)
pbar = comfy.utils.ProgressBar(steps)
def callback(step, x0, x, total_steps):
preview_bytes = None
if previewer:
preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0)
pbar.update_absolute(step + 1, total_steps, preview_bytes)
samples = comfy.samplers.sample(model, noise, positive, negative, cfg, device, _sampler, sigmas, latent_image=latent_image, model_options=model.model_options,
denoise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
out = latent.copy()
out["samples"] = samples
return out
def custom_advanced_ksampler(self, noise, guider, sampler, sigmas, latent_image, preview_latent=False):
latent = latent_image
latent_image = latent["samples"]
latent = latent.copy()
latent_image = comfy.sample.fix_empty_latent_channels(guider.model_patcher, latent_image)
latent["samples"] = latent_image
noise_mask = None
if "noise_mask" in latent:
noise_mask = latent["noise_mask"]
x0_output = {}
previewer = False
model = guider.model_patcher
steps = sigmas.shape[-1] - 1
if preview_latent:
previewer = latent_preview.get_previewer(model.load_device, model.model.latent_format)
pbar = comfy.utils.ProgressBar(steps)
preview_format = "JPEG"
if preview_format not in ["JPEG", "PNG"]:
preview_format = "JPEG"
def callback(step, x0, x, total_steps):
if x0_output is not None:
x0_output["x0"] = x0
preview_bytes = None
if previewer:
preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0)
pbar.update_absolute(step + 1, total_steps, preview_bytes)
disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
samples = guider.sample(noise.generate_noise(latent), latent_image, sampler, sigmas, denoise_mask=noise_mask,
callback=callback, disable_pbar=disable_pbar, seed=noise.seed)
samples = samples.to(comfy.model_management.intermediate_device())
out = latent.copy()
out["samples"] = samples
if "x0" in x0_output:
out_denoised = latent.copy()
out_denoised["samples"] = guider.model_patcher.model.process_latent_out(x0_output["x0"].cpu())
else:
out_denoised = out
return (out, out_denoised)
def get_value_by_id(self, key: str, my_unique_id: Any) -> Optional[Any]:
"""Retrieve value by its associated ID."""
try:
for value, id_ in self.last_helds[key]:
if id_ == my_unique_id:
return value
except KeyError:
return None
def update_value_by_id(self, key: str, my_unique_id: Any, new_value: Any) -> Union[bool, None]:
"""Update the value associated with a given ID. Return True if updated, False if appended, None if key doesn't exist."""
try:
for i, (value, id_) in enumerate(self.last_helds[key]):
if id_ == my_unique_id:
self.last_helds[key][i] = (new_value, id_)
return True
self.last_helds[key].append((new_value, my_unique_id))
return False
except KeyError:
return False
def upscale(self, samples, upscale_method, scale_by, crop):
s = samples.copy()
width = self.enforce_mul_of_64(round(samples["samples"].shape[3] * scale_by))
height = self.enforce_mul_of_64(round(samples["samples"].shape[2] * scale_by))
if (width > MAX_RESOLUTION):
width = MAX_RESOLUTION
if (height > MAX_RESOLUTION):
height = MAX_RESOLUTION
s["samples"] = comfy.utils.common_upscale(samples["samples"], width, height, upscale_method, crop)
return (s,)
def handle_upscale(self, samples: dict, upscale_method: str, factor: float, crop: bool) -> dict:
"""Upscale the samples if the upscale_method is not set to 'None'."""
if upscale_method != "None":
samples = self.upscale(samples, upscale_method, factor, crop)[0]
return samples
def init_state(self, my_unique_id: Any, key: str, default: Any) -> Any:
"""Initialize the state by either fetching the stored value or setting a default."""
value = self.get_value_by_id(key, my_unique_id)
if value is not None:
return value
return default
def get_output(self, pipe: dict,) -> Tuple:
"""Return a tuple of various elements fetched from the input pipe dictionary."""
return (
pipe,
pipe.get("images"),
pipe.get("model"),
pipe.get("positive"),
pipe.get("negative"),
pipe.get("samples"),
pipe.get("vae"),
pipe.get("clip"),
pipe.get("seed"),
)
def get_output_sdxl(self, sdxl_pipe: dict) -> Tuple:
"""Return a tuple of various elements fetched from the input sdxl_pipe dictionary."""
return (
sdxl_pipe,
sdxl_pipe.get("model"),
sdxl_pipe.get("positive"),
sdxl_pipe.get("negative"),
sdxl_pipe.get("vae"),
sdxl_pipe.get("refiner_model"),
sdxl_pipe.get("refiner_positive"),
sdxl_pipe.get("refiner_negative"),
sdxl_pipe.get("refiner_vae"),
sdxl_pipe.get("samples"),
sdxl_pipe.get("clip"),
sdxl_pipe.get("images"),
sdxl_pipe.get("seed")
)
def loglinear_interp(t_steps, num_steps):
"""
Performs log-linear interpolation of a given array of decreasing numbers.
"""
xs = np.linspace(0, 1, len(t_steps))
ys = np.log(t_steps[::-1])
new_xs = np.linspace(0, 1, num_steps)
new_ys = np.interp(new_xs, xs, ys)
interped_ys = np.exp(new_ys)[::-1].copy()
return interped_ys
class alignYourStepsScheduler:
NOISE_LEVELS = {
"SD1": [14.6146412293, 6.4745760956, 3.8636745985, 2.6946151520, 1.8841921177, 1.3943805092, 0.9642583904,
0.6523686016, 0.3977456272, 0.1515232662, 0.0291671582],
"SDXL": [14.6146412293, 6.3184485287, 3.7681790315, 2.1811480769, 1.3405244945, 0.8620721141, 0.5550693289,
0.3798540708, 0.2332364134, 0.1114188177, 0.0291671582],
"SVD": [700.00, 54.5, 15.886, 7.977, 4.248, 1.789, 0.981, 0.403, 0.173, 0.034, 0.002]}
def get_sigmas(self, model_type, steps, denoise):
total_steps = steps
if denoise < 1.0:
if denoise <= 0.0:
return (torch.FloatTensor([]),)
total_steps = round(steps * denoise)
sigmas = self.NOISE_LEVELS[model_type][:]
if (steps + 1) != len(sigmas):
sigmas = loglinear_interp(sigmas, steps + 1)
sigmas = sigmas[-(total_steps + 1):]
sigmas[-1] = 0
return (torch.FloatTensor(sigmas),)
class gitsScheduler:
NOISE_LEVELS = {
0.80: [
[14.61464119, 7.49001646, 0.02916753],
[14.61464119, 11.54541874, 6.77309084, 0.02916753],
[14.61464119, 11.54541874, 7.49001646, 3.07277966, 0.02916753],
[14.61464119, 11.54541874, 7.49001646, 5.85520077, 2.05039096, 0.02916753],
[14.61464119, 12.2308979, 8.75849152, 7.49001646, 5.85520077, 2.05039096, 0.02916753],
[14.61464119, 12.2308979, 8.75849152, 7.49001646, 5.85520077, 3.07277966, 1.56271636, 0.02916753],
[14.61464119, 12.96784878, 11.54541874, 8.75849152, 7.49001646, 5.85520077, 3.07277966, 1.56271636,
0.02916753],
[14.61464119, 13.76078796, 12.2308979, 10.90732002, 8.75849152, 7.49001646, 5.85520077, 3.07277966,
1.56271636, 0.02916753],
[14.61464119, 13.76078796, 12.96784878, 12.2308979, 10.90732002, 8.75849152, 7.49001646, 5.85520077,
3.07277966, 1.56271636, 0.02916753],
[14.61464119, 13.76078796, 12.96784878, 12.2308979, 10.90732002, 9.24142551, 8.30717278, 7.49001646,
5.85520077, 3.07277966, 1.56271636, 0.02916753],
[14.61464119, 13.76078796, 12.96784878, 12.2308979, 10.90732002, 9.24142551, 8.30717278, 7.49001646,
6.14220476, 4.86714602, 3.07277966, 1.56271636, 0.02916753],
[14.61464119, 13.76078796, 12.96784878, 12.2308979, 11.54541874, 10.31284904, 9.24142551, 8.30717278,
7.49001646, 6.14220476, 4.86714602, 3.07277966, 1.56271636, 0.02916753],
[14.61464119, 13.76078796, 12.96784878, 12.2308979, 11.54541874, 10.90732002, 10.31284904, 9.24142551,
8.30717278, 7.49001646, 6.14220476, 4.86714602, 3.07277966, 1.56271636, 0.02916753],
[14.61464119, 13.76078796, 12.96784878, 12.2308979, 11.54541874, 10.90732002, 10.31284904, 9.24142551,
8.75849152, 8.30717278, 7.49001646, 6.14220476, 4.86714602, 3.07277966, 1.56271636, 0.02916753],
[14.61464119, 13.76078796, 12.96784878, 12.2308979, 11.54541874, 10.90732002, 10.31284904, 9.24142551,
8.75849152, 8.30717278, 7.49001646, 6.14220476, 4.86714602, 3.1956799, 1.98035145, 0.86115354, 0.02916753],
[14.61464119, 13.76078796, 12.96784878, 12.2308979, 11.54541874, 10.90732002, 10.31284904, 9.75859547,
9.24142551, 8.75849152, 8.30717278, 7.49001646, 6.14220476, 4.86714602, 3.1956799, 1.98035145, 0.86115354,
0.02916753],
[14.61464119, 13.76078796, 12.96784878, 12.2308979, 11.54541874, 10.90732002, 10.31284904, 9.75859547,
9.24142551, 8.75849152, 8.30717278, 7.49001646, 6.77309084, 5.85520077, 4.65472794, 3.07277966, 1.84880662,
0.83188516, 0.02916753],
[14.61464119, 13.76078796, 12.96784878, 12.2308979, 11.54541874, 10.90732002, 10.31284904, 9.75859547,
9.24142551, 8.75849152, 8.30717278, 7.88507891, 7.49001646, 6.77309084, 5.85520077, 4.65472794, 3.07277966,
1.84880662, 0.83188516, 0.02916753],
[14.61464119, 13.76078796, 12.96784878, 12.2308979, 11.54541874, 10.90732002, 10.31284904, 9.75859547,
9.24142551, 8.75849152, 8.30717278, 7.88507891, 7.49001646, 6.77309084, 5.85520077, 4.86714602, 3.75677586,
2.84484982, 1.78698075, 0.803307, 0.02916753],
],
0.85: [
[14.61464119, 7.49001646, 0.02916753],
[14.61464119, 7.49001646, 1.84880662, 0.02916753],
[14.61464119, 11.54541874, 6.77309084, 1.56271636, 0.02916753],
[14.61464119, 11.54541874, 7.11996698, 3.07277966, 1.24153244, 0.02916753],
[14.61464119, 11.54541874, 7.49001646, 5.09240818, 2.84484982, 0.95350921, 0.02916753],
[14.61464119, 12.2308979, 8.75849152, 7.49001646, 5.09240818, 2.84484982, 0.95350921, 0.02916753],
[14.61464119, 12.2308979, 8.75849152, 7.49001646, 5.58536053, 3.1956799, 1.84880662, 0.803307, 0.02916753],
[14.61464119, 12.96784878, 11.54541874, 8.75849152, 7.49001646, 5.58536053, 3.1956799, 1.84880662, 0.803307,
0.02916753],
[14.61464119, 12.96784878, 11.54541874, 8.75849152, 7.49001646, 6.14220476, 4.65472794, 3.07277966,
1.84880662, 0.803307, 0.02916753],
[14.61464119, 13.76078796, 12.2308979, 10.90732002, 8.75849152, 7.49001646, 6.14220476, 4.65472794,
3.07277966, 1.84880662, 0.803307, 0.02916753],
[14.61464119, 13.76078796, 12.2308979, 10.90732002, 9.24142551, 8.30717278, 7.49001646, 6.14220476,
4.65472794, 3.07277966, 1.84880662, 0.803307, 0.02916753],
[14.61464119, 13.76078796, 12.96784878, 12.2308979, 10.90732002, 9.24142551, 8.30717278, 7.49001646,
6.14220476, 4.65472794, 3.07277966, 1.84880662, 0.803307, 0.02916753],
[14.61464119, 13.76078796, 12.96784878, 12.2308979, 11.54541874, 10.31284904, 9.24142551, 8.30717278,
7.49001646, 6.14220476, 4.65472794, 3.07277966, 1.84880662, 0.803307, 0.02916753],
[14.61464119, 13.76078796, 12.96784878, 12.2308979, 11.54541874, 10.31284904, 9.24142551, 8.30717278,
7.49001646, 6.14220476, 4.86714602, 3.60512662, 2.6383388, 1.56271636, 0.72133851, 0.02916753],
[14.61464119, 13.76078796, 12.96784878, 12.2308979, 11.54541874, 10.31284904, 9.24142551, 8.30717278,
7.49001646, 6.77309084, 5.85520077, 4.65472794, 3.46139455, 2.45070267, 1.56271636, 0.72133851,
0.02916753],
[14.61464119, 13.76078796, 12.96784878, 12.2308979, 11.54541874, 10.31284904, 9.24142551, 8.75849152,
8.30717278, 7.49001646, 6.77309084, 5.85520077, 4.65472794, 3.46139455, 2.45070267, 1.56271636, 0.72133851,
0.02916753],
[14.61464119, 13.76078796, 12.96784878, 12.2308979, 11.54541874, 10.90732002, 10.31284904, 9.24142551,
8.75849152, 8.30717278, 7.49001646, 6.77309084, 5.85520077, 4.65472794, 3.46139455, 2.45070267, 1.56271636,
0.72133851, 0.02916753],
[14.61464119, 13.76078796, 12.96784878, 12.2308979, 11.54541874, 10.90732002, 10.31284904, 9.75859547,
9.24142551, 8.75849152, 8.30717278, 7.49001646, 6.77309084, 5.85520077, 4.65472794, 3.46139455, 2.45070267,
1.56271636, 0.72133851, 0.02916753],
[14.61464119, 13.76078796, 12.96784878, 12.2308979, 11.54541874, 10.90732002, 10.31284904, 9.75859547,
9.24142551, 8.75849152, 8.30717278, 7.88507891, 7.49001646, 6.77309084, 5.85520077, 4.65472794, 3.46139455,
2.45070267, 1.56271636, 0.72133851, 0.02916753],
],
0.90: [
[14.61464119, 6.77309084, 0.02916753],
[14.61464119, 7.49001646, 1.56271636, 0.02916753],
[14.61464119, 7.49001646, 3.07277966, 0.95350921, 0.02916753],
[14.61464119, 7.49001646, 4.86714602, 2.54230714, 0.89115214, 0.02916753],
[14.61464119, 11.54541874, 7.49001646, 4.86714602, 2.54230714, 0.89115214, 0.02916753],
[14.61464119, 11.54541874, 7.49001646, 5.09240818, 3.07277966, 1.61558151, 0.69515091, 0.02916753],
[14.61464119, 12.2308979, 8.75849152, 7.11996698, 4.86714602, 3.07277966, 1.61558151, 0.69515091,
0.02916753],
[14.61464119, 12.2308979, 8.75849152, 7.49001646, 5.85520077, 4.45427561, 2.95596409, 1.61558151,
0.69515091, 0.02916753],
[14.61464119, 12.2308979, 8.75849152, 7.49001646, 5.85520077, 4.45427561, 3.1956799, 2.19988537, 1.24153244,
0.57119018, 0.02916753],
[14.61464119, 12.96784878, 10.90732002, 8.75849152, 7.49001646, 5.85520077, 4.45427561, 3.1956799,
2.19988537, 1.24153244, 0.57119018, 0.02916753],
[14.61464119, 12.96784878, 11.54541874, 9.24142551, 8.30717278, 7.49001646, 5.85520077, 4.45427561,
3.1956799, 2.19988537, 1.24153244, 0.57119018, 0.02916753],
[14.61464119, 12.96784878, 11.54541874, 9.24142551, 8.30717278, 7.49001646, 6.14220476, 4.86714602,
3.75677586, 2.84484982, 1.84880662, 1.08895338, 0.52423614, 0.02916753],
[14.61464119, 13.76078796, 12.2308979, 10.90732002, 9.24142551, 8.30717278, 7.49001646, 6.14220476,
4.86714602, 3.75677586, 2.84484982, 1.84880662, 1.08895338, 0.52423614, 0.02916753],
[14.61464119, 13.76078796, 12.2308979, 10.90732002, 9.24142551, 8.30717278, 7.49001646, 6.44769001,
5.58536053, 4.45427561, 3.32507086, 2.45070267, 1.61558151, 0.95350921, 0.45573691, 0.02916753],
[14.61464119, 13.76078796, 12.96784878, 12.2308979, 10.90732002, 9.24142551, 8.30717278, 7.49001646,
6.44769001, 5.58536053, 4.45427561, 3.32507086, 2.45070267, 1.61558151, 0.95350921, 0.45573691,
0.02916753],
[14.61464119, 13.76078796, 12.96784878, 12.2308979, 10.90732002, 9.24142551, 8.30717278, 7.49001646,
6.77309084, 5.85520077, 4.86714602, 3.91689563, 3.07277966, 2.27973175, 1.56271636, 0.95350921, 0.45573691,
0.02916753],
[14.61464119, 13.76078796, 12.96784878, 12.2308979, 11.54541874, 10.31284904, 9.24142551, 8.30717278,
7.49001646, 6.77309084, 5.85520077, 4.86714602, 3.91689563, 3.07277966, 2.27973175, 1.56271636, 0.95350921,
0.45573691, 0.02916753],
[14.61464119, 13.76078796, 12.96784878, 12.2308979, 11.54541874, 10.31284904, 9.24142551, 8.75849152,
8.30717278, 7.49001646, 6.77309084, 5.85520077, 4.86714602, 3.91689563, 3.07277966, 2.27973175, 1.56271636,
0.95350921, 0.45573691, 0.02916753],
[14.61464119, 13.76078796, 12.96784878, 12.2308979, 11.54541874, 10.31284904, 9.24142551, 8.75849152,
8.30717278, 7.49001646, 6.77309084, 5.85520077, 5.09240818, 4.45427561, 3.60512662, 2.95596409, 2.19988537,
1.51179266, 0.89115214, 0.43325692, 0.02916753],
],
0.95: [
[14.61464119, 6.77309084, 0.02916753],
[14.61464119, 6.77309084, 1.56271636, 0.02916753],
[14.61464119, 7.49001646, 2.84484982, 0.89115214, 0.02916753],
[14.61464119, 7.49001646, 4.86714602, 2.36326075, 0.803307, 0.02916753],
[14.61464119, 7.49001646, 4.86714602, 2.95596409, 1.56271636, 0.64427125, 0.02916753],
[14.61464119, 11.54541874, 7.49001646, 4.86714602, 2.95596409, 1.56271636, 0.64427125, 0.02916753],
[14.61464119, 11.54541874, 7.49001646, 4.86714602, 3.07277966, 1.91321158, 1.08895338, 0.50118381,
0.02916753],
[14.61464119, 11.54541874, 7.49001646, 5.85520077, 4.45427561, 3.07277966, 1.91321158, 1.08895338,
0.50118381, 0.02916753],
[14.61464119, 12.2308979, 8.75849152, 7.49001646, 5.85520077, 4.45427561, 3.07277966, 1.91321158,
1.08895338, 0.50118381, 0.02916753],
[14.61464119, 12.2308979, 8.75849152, 7.49001646, 5.85520077, 4.45427561, 3.1956799, 2.19988537, 1.41535246,
0.803307, 0.38853383, 0.02916753],
[14.61464119, 12.2308979, 8.75849152, 7.49001646, 5.85520077, 4.65472794, 3.46139455, 2.6383388, 1.84880662,
1.24153244, 0.72133851, 0.34370604, 0.02916753],
[14.61464119, 12.96784878, 10.90732002, 8.75849152, 7.49001646, 5.85520077, 4.65472794, 3.46139455,
2.6383388, 1.84880662, 1.24153244, 0.72133851, 0.34370604, 0.02916753],
[14.61464119, 12.96784878, 10.90732002, 8.75849152, 7.49001646, 6.14220476, 4.86714602, 3.75677586,
2.95596409, 2.19988537, 1.56271636, 1.05362725, 0.64427125, 0.32104823, 0.02916753],
[14.61464119, 12.96784878, 10.90732002, 8.75849152, 7.49001646, 6.44769001, 5.58536053, 4.65472794,
3.60512662, 2.95596409, 2.19988537, 1.56271636, 1.05362725, 0.64427125, 0.32104823, 0.02916753],
[14.61464119, 12.96784878, 11.54541874, 9.24142551, 8.30717278, 7.49001646, 6.44769001, 5.58536053,
4.65472794, 3.60512662, 2.95596409, 2.19988537, 1.56271636, 1.05362725, 0.64427125, 0.32104823,
0.02916753],
[14.61464119, 12.96784878, 11.54541874, 9.24142551, 8.30717278, 7.49001646, 6.44769001, 5.58536053,
4.65472794, 3.75677586, 3.07277966, 2.45070267, 1.78698075, 1.24153244, 0.83188516, 0.50118381, 0.22545385,
0.02916753],
[14.61464119, 12.96784878, 11.54541874, 9.24142551, 8.30717278, 7.49001646, 6.77309084, 5.85520077,
5.09240818, 4.45427561, 3.60512662, 2.95596409, 2.36326075, 1.72759056, 1.24153244, 0.83188516, 0.50118381,
0.22545385, 0.02916753],
[14.61464119, 13.76078796, 12.2308979, 10.90732002, 9.24142551, 8.30717278, 7.49001646, 6.77309084,
5.85520077, 5.09240818, 4.45427561, 3.60512662, 2.95596409, 2.36326075, 1.72759056, 1.24153244, 0.83188516,
0.50118381, 0.22545385, 0.02916753],
[14.61464119, 13.76078796, 12.2308979, 10.90732002, 9.24142551, 8.30717278, 7.49001646, 6.77309084,
5.85520077, 5.09240818, 4.45427561, 3.75677586, 3.07277966, 2.45070267, 1.91321158, 1.46270394, 1.05362725,
0.72133851, 0.43325692, 0.19894916, 0.02916753],
],
1.00: [
[14.61464119, 1.56271636, 0.02916753],
[14.61464119, 6.77309084, 0.95350921, 0.02916753],
[14.61464119, 6.77309084, 2.36326075, 0.803307, 0.02916753],
[14.61464119, 7.11996698, 3.07277966, 1.56271636, 0.59516323, 0.02916753],
[14.61464119, 7.49001646, 4.86714602, 2.84484982, 1.41535246, 0.57119018, 0.02916753],
[14.61464119, 7.49001646, 4.86714602, 2.84484982, 1.61558151, 0.86115354, 0.38853383, 0.02916753],
[14.61464119, 11.54541874, 7.49001646, 4.86714602, 2.84484982, 1.61558151, 0.86115354, 0.38853383,
0.02916753],
[14.61464119, 11.54541874, 7.49001646, 4.86714602, 3.07277966, 1.98035145, 1.24153244, 0.72133851,
0.34370604, 0.02916753],
[14.61464119, 11.54541874, 7.49001646, 5.85520077, 4.45427561, 3.07277966, 1.98035145, 1.24153244,
0.72133851, 0.34370604, 0.02916753],
[14.61464119, 11.54541874, 7.49001646, 5.85520077, 4.45427561, 3.1956799, 2.27973175, 1.51179266,
0.95350921, 0.54755926, 0.25053367, 0.02916753],
[14.61464119, 11.54541874, 7.49001646, 5.85520077, 4.45427561, 3.1956799, 2.36326075, 1.61558151,
1.08895338, 0.72133851, 0.41087446, 0.17026083, 0.02916753],
[14.61464119, 11.54541874, 8.75849152, 7.49001646, 5.85520077, 4.45427561, 3.1956799, 2.36326075,
1.61558151, 1.08895338, 0.72133851, 0.41087446, 0.17026083, 0.02916753],
[14.61464119, 11.54541874, 8.75849152, 7.49001646, 5.85520077, 4.65472794, 3.60512662, 2.84484982,
2.12350607, 1.56271636, 1.08895338, 0.72133851, 0.41087446, 0.17026083, 0.02916753],
[14.61464119, 11.54541874, 8.75849152, 7.49001646, 5.85520077, 4.65472794, 3.60512662, 2.84484982,
2.19988537, 1.61558151, 1.162866, 0.803307, 0.50118381, 0.27464288, 0.09824532, 0.02916753],
[14.61464119, 11.54541874, 8.75849152, 7.49001646, 5.85520077, 4.65472794, 3.75677586, 3.07277966,
2.45070267, 1.84880662, 1.36964464, 1.01931262, 0.72133851, 0.45573691, 0.25053367, 0.09824532,
0.02916753],
[14.61464119, 11.54541874, 8.75849152, 7.49001646, 6.14220476, 5.09240818, 4.26497746, 3.46139455,
2.84484982, 2.19988537, 1.67050016, 1.24153244, 0.92192322, 0.64427125, 0.43325692, 0.25053367, 0.09824532,
0.02916753],
[14.61464119, 11.54541874, 8.75849152, 7.49001646, 6.14220476, 5.09240818, 4.26497746, 3.60512662,
2.95596409, 2.45070267, 1.91321158, 1.51179266, 1.12534678, 0.83188516, 0.59516323, 0.38853383, 0.22545385,
0.09824532, 0.02916753],
[14.61464119, 12.2308979, 9.24142551, 8.30717278, 7.49001646, 6.14220476, 5.09240818, 4.26497746,
3.60512662, 2.95596409, 2.45070267, 1.91321158, 1.51179266, 1.12534678, 0.83188516, 0.59516323, 0.38853383,
0.22545385, 0.09824532, 0.02916753],
[14.61464119, 12.2308979, 9.24142551, 8.30717278, 7.49001646, 6.77309084, 5.85520077, 5.09240818,
4.26497746, 3.60512662, 2.95596409, 2.45070267, 1.91321158, 1.51179266, 1.12534678, 0.83188516, 0.59516323,
0.38853383, 0.22545385, 0.09824532, 0.02916753],
],
1.05: [
[14.61464119, 0.95350921, 0.02916753],
[14.61464119, 6.77309084, 0.89115214, 0.02916753],
[14.61464119, 6.77309084, 2.05039096, 0.72133851, 0.02916753],
[14.61464119, 6.77309084, 2.84484982, 1.28281462, 0.52423614, 0.02916753],
[14.61464119, 6.77309084, 3.07277966, 1.61558151, 0.803307, 0.34370604, 0.02916753],
[14.61464119, 7.49001646, 4.86714602, 2.84484982, 1.56271636, 0.803307, 0.34370604, 0.02916753],
[14.61464119, 7.49001646, 4.86714602, 2.84484982, 1.61558151, 0.95350921, 0.52423614, 0.22545385,
0.02916753],
[14.61464119, 7.49001646, 4.86714602, 3.07277966, 1.98035145, 1.24153244, 0.74807048, 0.41087446,
0.17026083, 0.02916753],
[14.61464119, 7.49001646, 4.86714602, 3.1956799, 2.27973175, 1.51179266, 0.95350921, 0.59516323, 0.34370604,
0.13792117, 0.02916753],
[14.61464119, 7.49001646, 5.09240818, 3.46139455, 2.45070267, 1.61558151, 1.08895338, 0.72133851,
0.45573691, 0.25053367, 0.09824532, 0.02916753],
[14.61464119, 11.54541874, 7.49001646, 5.09240818, 3.46139455, 2.45070267, 1.61558151, 1.08895338,
0.72133851, 0.45573691, 0.25053367, 0.09824532, 0.02916753],
[14.61464119, 11.54541874, 7.49001646, 5.85520077, 4.45427561, 3.1956799, 2.36326075, 1.61558151,
1.08895338, 0.72133851, 0.45573691, 0.25053367, 0.09824532, 0.02916753],
[14.61464119, 11.54541874, 7.49001646, 5.85520077, 4.45427561, 3.1956799, 2.45070267, 1.72759056,
1.24153244, 0.86115354, 0.59516323, 0.38853383, 0.22545385, 0.09824532, 0.02916753],
[14.61464119, 11.54541874, 7.49001646, 5.85520077, 4.65472794, 3.60512662, 2.84484982, 2.19988537,
1.61558151, 1.162866, 0.83188516, 0.59516323, 0.38853383, 0.22545385, 0.09824532, 0.02916753],
[14.61464119, 11.54541874, 7.49001646, 5.85520077, 4.65472794, 3.60512662, 2.84484982, 2.19988537,
1.67050016, 1.28281462, 0.95350921, 0.72133851, 0.52423614, 0.34370604, 0.19894916, 0.09824532,
0.02916753],
[14.61464119, 11.54541874, 7.49001646, 5.85520077, 4.65472794, 3.60512662, 2.95596409, 2.36326075,
1.84880662, 1.41535246, 1.08895338, 0.83188516, 0.61951244, 0.45573691, 0.32104823, 0.19894916, 0.09824532,
0.02916753],
[14.61464119, 11.54541874, 7.49001646, 5.85520077, 4.65472794, 3.60512662, 2.95596409, 2.45070267,
1.91321158, 1.51179266, 1.20157266, 0.95350921, 0.74807048, 0.57119018, 0.43325692, 0.29807833, 0.19894916,
0.09824532, 0.02916753],
[14.61464119, 11.54541874, 8.30717278, 7.11996698, 5.85520077, 4.65472794, 3.60512662, 2.95596409,
2.45070267, 1.91321158, 1.51179266, 1.20157266, 0.95350921, 0.74807048, 0.57119018, 0.43325692, 0.29807833,
0.19894916, 0.09824532, 0.02916753],
[14.61464119, 11.54541874, 8.30717278, 7.11996698, 5.85520077, 4.65472794, 3.60512662, 2.95596409,
2.45070267, 1.98035145, 1.61558151, 1.32549286, 1.08895338, 0.86115354, 0.69515091, 0.54755926, 0.41087446,
0.29807833, 0.19894916, 0.09824532, 0.02916753],
],
1.10: [
[14.61464119, 0.89115214, 0.02916753],
[14.61464119, 2.36326075, 0.72133851, 0.02916753],
[14.61464119, 5.85520077, 1.61558151, 0.57119018, 0.02916753],
[14.61464119, 6.77309084, 2.45070267, 1.08895338, 0.45573691, 0.02916753],
[14.61464119, 6.77309084, 2.95596409, 1.56271636, 0.803307, 0.34370604, 0.02916753],
[14.61464119, 6.77309084, 3.07277966, 1.61558151, 0.89115214, 0.4783645, 0.19894916, 0.02916753],
[14.61464119, 6.77309084, 3.07277966, 1.84880662, 1.08895338, 0.64427125, 0.34370604, 0.13792117,
0.02916753],
[14.61464119, 7.49001646, 4.86714602, 2.84484982, 1.61558151, 0.95350921, 0.54755926, 0.27464288,
0.09824532, 0.02916753],
[14.61464119, 7.49001646, 4.86714602, 2.95596409, 1.91321158, 1.24153244, 0.803307, 0.4783645, 0.25053367,
0.09824532, 0.02916753],
[14.61464119, 7.49001646, 4.86714602, 3.07277966, 2.05039096, 1.41535246, 0.95350921, 0.64427125,
0.41087446, 0.22545385, 0.09824532, 0.02916753],
[14.61464119, 7.49001646, 4.86714602, 3.1956799, 2.27973175, 1.61558151, 1.12534678, 0.803307, 0.54755926,
0.36617002, 0.22545385, 0.09824532, 0.02916753],
[14.61464119, 7.49001646, 4.86714602, 3.32507086, 2.45070267, 1.72759056, 1.24153244, 0.89115214,
0.64427125, 0.45573691, 0.32104823, 0.19894916, 0.09824532, 0.02916753],
[14.61464119, 7.49001646, 5.09240818, 3.60512662, 2.84484982, 2.05039096, 1.51179266, 1.08895338, 0.803307,
0.59516323, 0.43325692, 0.29807833, 0.19894916, 0.09824532, 0.02916753],
[14.61464119, 7.49001646, 5.09240818, 3.60512662, 2.84484982, 2.12350607, 1.61558151, 1.24153244,
0.95350921, 0.72133851, 0.54755926, 0.41087446, 0.29807833, 0.19894916, 0.09824532, 0.02916753],
[14.61464119, 7.49001646, 5.85520077, 4.45427561, 3.1956799, 2.45070267, 1.84880662, 1.41535246, 1.08895338,
0.83188516, 0.64427125, 0.50118381, 0.36617002, 0.25053367, 0.17026083, 0.09824532, 0.02916753],
[14.61464119, 7.49001646, 5.85520077, 4.45427561, 3.1956799, 2.45070267, 1.91321158, 1.51179266, 1.20157266,
0.95350921, 0.74807048, 0.59516323, 0.45573691, 0.34370604, 0.25053367, 0.17026083, 0.09824532,
0.02916753],
[14.61464119, 7.49001646, 5.85520077, 4.45427561, 3.46139455, 2.84484982, 2.19988537, 1.72759056,
1.36964464, 1.08895338, 0.86115354, 0.69515091, 0.54755926, 0.43325692, 0.34370604, 0.25053367, 0.17026083,
0.09824532, 0.02916753],
[14.61464119, 11.54541874, 7.49001646, 5.85520077, 4.45427561, 3.46139455, 2.84484982, 2.19988537,
1.72759056, 1.36964464, 1.08895338, 0.86115354, 0.69515091, 0.54755926, 0.43325692, 0.34370604, 0.25053367,
0.17026083, 0.09824532, 0.02916753],
[14.61464119, 11.54541874, 7.49001646, 5.85520077, 4.45427561, 3.46139455, 2.84484982, 2.19988537,
1.72759056, 1.36964464, 1.08895338, 0.89115214, 0.72133851, 0.59516323, 0.4783645, 0.38853383, 0.29807833,
0.22545385, 0.17026083, 0.09824532, 0.02916753],
],
1.15: [
[14.61464119, 0.83188516, 0.02916753],
[14.61464119, 1.84880662, 0.59516323, 0.02916753],
[14.61464119, 5.85520077, 1.56271636, 0.52423614, 0.02916753],
[14.61464119, 5.85520077, 1.91321158, 0.83188516, 0.34370604, 0.02916753],
[14.61464119, 5.85520077, 2.45070267, 1.24153244, 0.59516323, 0.25053367, 0.02916753],
[14.61464119, 5.85520077, 2.84484982, 1.51179266, 0.803307, 0.41087446, 0.17026083, 0.02916753],
[14.61464119, 5.85520077, 2.84484982, 1.56271636, 0.89115214, 0.50118381, 0.25053367, 0.09824532,
0.02916753],
[14.61464119, 6.77309084, 3.07277966, 1.84880662, 1.12534678, 0.72133851, 0.43325692, 0.22545385,
0.09824532, 0.02916753],
[14.61464119, 6.77309084, 3.07277966, 1.91321158, 1.24153244, 0.803307, 0.52423614, 0.34370604, 0.19894916,
0.09824532, 0.02916753],
[14.61464119, 7.49001646, 4.86714602, 2.95596409, 1.91321158, 1.24153244, 0.803307, 0.52423614, 0.34370604,
0.19894916, 0.09824532, 0.02916753],
[14.61464119, 7.49001646, 4.86714602, 3.07277966, 2.05039096, 1.36964464, 0.95350921, 0.69515091, 0.4783645,
0.32104823, 0.19894916, 0.09824532, 0.02916753],
[14.61464119, 7.49001646, 4.86714602, 3.07277966, 2.12350607, 1.51179266, 1.08895338, 0.803307, 0.59516323,
0.43325692, 0.29807833, 0.19894916, 0.09824532, 0.02916753],
[14.61464119, 7.49001646, 4.86714602, 3.07277966, 2.12350607, 1.51179266, 1.08895338, 0.803307, 0.59516323,
0.45573691, 0.34370604, 0.25053367, 0.17026083, 0.09824532, 0.02916753],
[14.61464119, 7.49001646, 4.86714602, 3.07277966, 2.19988537, 1.61558151, 1.24153244, 0.95350921,
0.74807048, 0.59516323, 0.45573691, 0.34370604, 0.25053367, 0.17026083, 0.09824532, 0.02916753],
[14.61464119, 7.49001646, 4.86714602, 3.1956799, 2.45070267, 1.78698075, 1.32549286, 1.01931262, 0.803307,
0.64427125, 0.50118381, 0.38853383, 0.29807833, 0.22545385, 0.17026083, 0.09824532, 0.02916753],
[14.61464119, 7.49001646, 4.86714602, 3.1956799, 2.45070267, 1.78698075, 1.32549286, 1.01931262, 0.803307,
0.64427125, 0.52423614, 0.41087446, 0.32104823, 0.25053367, 0.19894916, 0.13792117, 0.09824532,
0.02916753],
[14.61464119, 7.49001646, 4.86714602, 3.1956799, 2.45070267, 1.84880662, 1.41535246, 1.12534678, 0.89115214,
0.72133851, 0.59516323, 0.4783645, 0.38853383, 0.32104823, 0.25053367, 0.19894916, 0.13792117, 0.09824532,
0.02916753],
[14.61464119, 7.49001646, 4.86714602, 3.1956799, 2.45070267, 1.84880662, 1.41535246, 1.12534678, 0.89115214,
0.72133851, 0.59516323, 0.50118381, 0.41087446, 0.34370604, 0.27464288, 0.22545385, 0.17026083, 0.13792117,
0.09824532, 0.02916753],
[14.61464119, 7.49001646, 4.86714602, 3.1956799, 2.45070267, 1.84880662, 1.41535246, 1.12534678, 0.89115214,
0.72133851, 0.59516323, 0.50118381, 0.41087446, 0.34370604, 0.29807833, 0.25053367, 0.19894916, 0.17026083,
0.13792117, 0.09824532, 0.02916753],
],
1.20: [
[14.61464119, 0.803307, 0.02916753],
[14.61464119, 1.56271636, 0.52423614, 0.02916753],
[14.61464119, 2.36326075, 0.92192322, 0.36617002, 0.02916753],
[14.61464119, 2.84484982, 1.24153244, 0.59516323, 0.25053367, 0.02916753],
[14.61464119, 5.85520077, 2.05039096, 0.95350921, 0.45573691, 0.17026083, 0.02916753],
[14.61464119, 5.85520077, 2.45070267, 1.24153244, 0.64427125, 0.29807833, 0.09824532, 0.02916753],
[14.61464119, 5.85520077, 2.45070267, 1.36964464, 0.803307, 0.45573691, 0.25053367, 0.09824532, 0.02916753],
[14.61464119, 5.85520077, 2.84484982, 1.61558151, 0.95350921, 0.59516323, 0.36617002, 0.19894916,
0.09824532, 0.02916753],
[14.61464119, 5.85520077, 2.84484982, 1.67050016, 1.08895338, 0.74807048, 0.50118381, 0.32104823,
0.19894916, 0.09824532, 0.02916753],
[14.61464119, 5.85520077, 2.95596409, 1.84880662, 1.24153244, 0.83188516, 0.59516323, 0.41087446,
0.27464288, 0.17026083, 0.09824532, 0.02916753],
[14.61464119, 5.85520077, 3.07277966, 1.98035145, 1.36964464, 0.95350921, 0.69515091, 0.50118381,
0.36617002, 0.25053367, 0.17026083, 0.09824532, 0.02916753],
[14.61464119, 6.77309084, 3.46139455, 2.36326075, 1.56271636, 1.08895338, 0.803307, 0.59516323, 0.45573691,
0.34370604, 0.25053367, 0.17026083, 0.09824532, 0.02916753],
[14.61464119, 6.77309084, 3.46139455, 2.45070267, 1.61558151, 1.162866, 0.86115354, 0.64427125, 0.50118381,
0.38853383, 0.29807833, 0.22545385, 0.17026083, 0.09824532, 0.02916753],
[14.61464119, 7.49001646, 4.65472794, 3.07277966, 2.12350607, 1.51179266, 1.08895338, 0.83188516,
0.64427125, 0.50118381, 0.38853383, 0.29807833, 0.22545385, 0.17026083, 0.09824532, 0.02916753],
[14.61464119, 7.49001646, 4.65472794, 3.07277966, 2.12350607, 1.51179266, 1.08895338, 0.83188516,
0.64427125, 0.50118381, 0.41087446, 0.32104823, 0.25053367, 0.19894916, 0.13792117, 0.09824532,
0.02916753],
[14.61464119, 7.49001646, 4.65472794, 3.07277966, 2.12350607, 1.51179266, 1.08895338, 0.83188516,
0.64427125, 0.50118381, 0.41087446, 0.34370604, 0.27464288, 0.22545385, 0.17026083, 0.13792117, 0.09824532,
0.02916753],
[14.61464119, 7.49001646, 4.65472794, 3.07277966, 2.19988537, 1.61558151, 1.20157266, 0.92192322,
0.72133851, 0.57119018, 0.45573691, 0.36617002, 0.29807833, 0.25053367, 0.19894916, 0.17026083, 0.13792117,
0.09824532, 0.02916753],
[14.61464119, 7.49001646, 4.65472794, 3.07277966, 2.19988537, 1.61558151, 1.24153244, 0.95350921,
0.74807048, 0.59516323, 0.4783645, 0.38853383, 0.32104823, 0.27464288, 0.22545385, 0.19894916, 0.17026083,
0.13792117, 0.09824532, 0.02916753],
[14.61464119, 7.49001646, 4.65472794, 3.07277966, 2.19988537, 1.61558151, 1.24153244, 0.95350921,
0.74807048, 0.59516323, 0.50118381, 0.41087446, 0.34370604, 0.29807833, 0.25053367, 0.22545385, 0.19894916,
0.17026083, 0.13792117, 0.09824532, 0.02916753],
],
1.25: [
[14.61464119, 0.72133851, 0.02916753],
[14.61464119, 1.56271636, 0.50118381, 0.02916753],
[14.61464119, 2.05039096, 0.803307, 0.32104823, 0.02916753],
[14.61464119, 2.36326075, 0.95350921, 0.43325692, 0.17026083, 0.02916753],
[14.61464119, 2.84484982, 1.24153244, 0.59516323, 0.27464288, 0.09824532, 0.02916753],
[14.61464119, 3.07277966, 1.51179266, 0.803307, 0.43325692, 0.22545385, 0.09824532, 0.02916753],
[14.61464119, 5.85520077, 2.36326075, 1.24153244, 0.72133851, 0.41087446, 0.22545385, 0.09824532,
0.02916753],
[14.61464119, 5.85520077, 2.45070267, 1.36964464, 0.83188516, 0.52423614, 0.34370604, 0.19894916,
0.09824532, 0.02916753],
[14.61464119, 5.85520077, 2.84484982, 1.61558151, 0.98595673, 0.64427125, 0.43325692, 0.27464288,
0.17026083, 0.09824532, 0.02916753],
[14.61464119, 5.85520077, 2.84484982, 1.67050016, 1.08895338, 0.74807048, 0.52423614, 0.36617002,
0.25053367, 0.17026083, 0.09824532, 0.02916753],
[14.61464119, 5.85520077, 2.84484982, 1.72759056, 1.162866, 0.803307, 0.59516323, 0.45573691, 0.34370604,
0.25053367, 0.17026083, 0.09824532, 0.02916753],
[14.61464119, 5.85520077, 2.95596409, 1.84880662, 1.24153244, 0.86115354, 0.64427125, 0.4783645, 0.36617002,
0.27464288, 0.19894916, 0.13792117, 0.09824532, 0.02916753],
[14.61464119, 5.85520077, 2.95596409, 1.84880662, 1.28281462, 0.92192322, 0.69515091, 0.52423614,
0.41087446, 0.32104823, 0.25053367, 0.19894916, 0.13792117, 0.09824532, 0.02916753],
[14.61464119, 5.85520077, 2.95596409, 1.91321158, 1.32549286, 0.95350921, 0.72133851, 0.54755926,
0.43325692, 0.34370604, 0.27464288, 0.22545385, 0.17026083, 0.13792117, 0.09824532, 0.02916753],
[14.61464119, 5.85520077, 2.95596409, 1.91321158, 1.32549286, 0.95350921, 0.72133851, 0.57119018,
0.45573691, 0.36617002, 0.29807833, 0.25053367, 0.19894916, 0.17026083, 0.13792117, 0.09824532,
0.02916753],
[14.61464119, 5.85520077, 2.95596409, 1.91321158, 1.32549286, 0.95350921, 0.74807048, 0.59516323, 0.4783645,
0.38853383, 0.32104823, 0.27464288, 0.22545385, 0.19894916, 0.17026083, 0.13792117, 0.09824532,
0.02916753],
[14.61464119, 5.85520077, 3.07277966, 2.05039096, 1.41535246, 1.05362725, 0.803307, 0.61951244, 0.50118381,
0.41087446, 0.34370604, 0.29807833, 0.25053367, 0.22545385, 0.19894916, 0.17026083, 0.13792117, 0.09824532,
0.02916753],
[14.61464119, 5.85520077, 3.07277966, 2.05039096, 1.41535246, 1.05362725, 0.803307, 0.64427125, 0.52423614,
0.43325692, 0.36617002, 0.32104823, 0.27464288, 0.25053367, 0.22545385, 0.19894916, 0.17026083, 0.13792117,
0.09824532, 0.02916753],
[14.61464119, 5.85520077, 3.07277966, 2.05039096, 1.46270394, 1.08895338, 0.83188516, 0.66947293,
0.54755926, 0.45573691, 0.38853383, 0.34370604, 0.29807833, 0.27464288, 0.25053367, 0.22545385, 0.19894916,
0.17026083, 0.13792117, 0.09824532, 0.02916753],
],
1.30: [
[14.61464119, 0.72133851, 0.02916753],
[14.61464119, 1.24153244, 0.43325692, 0.02916753],
[14.61464119, 1.56271636, 0.59516323, 0.22545385, 0.02916753],
[14.61464119, 1.84880662, 0.803307, 0.36617002, 0.13792117, 0.02916753],
[14.61464119, 2.36326075, 1.01931262, 0.52423614, 0.25053367, 0.09824532, 0.02916753],
[14.61464119, 2.84484982, 1.36964464, 0.74807048, 0.41087446, 0.22545385, 0.09824532, 0.02916753],
[14.61464119, 3.07277966, 1.56271636, 0.89115214, 0.54755926, 0.34370604, 0.19894916, 0.09824532,
0.02916753],
[14.61464119, 3.07277966, 1.61558151, 0.95350921, 0.61951244, 0.41087446, 0.27464288, 0.17026083,
0.09824532, 0.02916753],
[14.61464119, 5.85520077, 2.45070267, 1.36964464, 0.83188516, 0.54755926, 0.36617002, 0.25053367,
0.17026083, 0.09824532, 0.02916753],
[14.61464119, 5.85520077, 2.45070267, 1.41535246, 0.92192322, 0.64427125, 0.45573691, 0.34370604,
0.25053367, 0.17026083, 0.09824532, 0.02916753],
[14.61464119, 5.85520077, 2.6383388, 1.56271636, 1.01931262, 0.72133851, 0.50118381, 0.36617002, 0.27464288,
0.19894916, 0.13792117, 0.09824532, 0.02916753],
[14.61464119, 5.85520077, 2.84484982, 1.61558151, 1.05362725, 0.74807048, 0.54755926, 0.41087446,
0.32104823, 0.25053367, 0.19894916, 0.13792117, 0.09824532, 0.02916753],
[14.61464119, 5.85520077, 2.84484982, 1.61558151, 1.08895338, 0.77538133, 0.57119018, 0.43325692,
0.34370604, 0.27464288, 0.22545385, 0.17026083, 0.13792117, 0.09824532, 0.02916753],
[14.61464119, 5.85520077, 2.84484982, 1.61558151, 1.08895338, 0.803307, 0.59516323, 0.45573691, 0.36617002,
0.29807833, 0.25053367, 0.19894916, 0.17026083, 0.13792117, 0.09824532, 0.02916753],
[14.61464119, 5.85520077, 2.84484982, 1.61558151, 1.08895338, 0.803307, 0.59516323, 0.4783645, 0.38853383,
0.32104823, 0.27464288, 0.22545385, 0.19894916, 0.17026083, 0.13792117, 0.09824532, 0.02916753],
[14.61464119, 5.85520077, 2.84484982, 1.72759056, 1.162866, 0.83188516, 0.64427125, 0.50118381, 0.41087446,
0.34370604, 0.29807833, 0.25053367, 0.22545385, 0.19894916, 0.17026083, 0.13792117, 0.09824532,
0.02916753],
[14.61464119, 5.85520077, 2.84484982, 1.72759056, 1.162866, 0.83188516, 0.64427125, 0.52423614, 0.43325692,
0.36617002, 0.32104823, 0.27464288, 0.25053367, 0.22545385, 0.19894916, 0.17026083, 0.13792117, 0.09824532,
0.02916753],
[14.61464119, 5.85520077, 2.84484982, 1.78698075, 1.24153244, 0.92192322, 0.72133851, 0.57119018,
0.45573691, 0.38853383, 0.34370604, 0.29807833, 0.27464288, 0.25053367, 0.22545385, 0.19894916, 0.17026083,
0.13792117, 0.09824532, 0.02916753],
[14.61464119, 5.85520077, 2.84484982, 1.78698075, 1.24153244, 0.92192322, 0.72133851, 0.57119018, 0.4783645,
0.41087446, 0.36617002, 0.32104823, 0.29807833, 0.27464288, 0.25053367, 0.22545385, 0.19894916, 0.17026083,
0.13792117, 0.09824532, 0.02916753],
],
1.35: [
[14.61464119, 0.69515091, 0.02916753],
[14.61464119, 0.95350921, 0.34370604, 0.02916753],
[14.61464119, 1.56271636, 0.57119018, 0.19894916, 0.02916753],
[14.61464119, 1.61558151, 0.69515091, 0.29807833, 0.09824532, 0.02916753],
[14.61464119, 1.84880662, 0.83188516, 0.43325692, 0.22545385, 0.09824532, 0.02916753],
[14.61464119, 2.45070267, 1.162866, 0.64427125, 0.36617002, 0.19894916, 0.09824532, 0.02916753],
[14.61464119, 2.84484982, 1.36964464, 0.803307, 0.50118381, 0.32104823, 0.19894916, 0.09824532, 0.02916753],
[14.61464119, 2.84484982, 1.41535246, 0.83188516, 0.54755926, 0.36617002, 0.25053367, 0.17026083,
0.09824532, 0.02916753],
[14.61464119, 2.84484982, 1.56271636, 0.95350921, 0.64427125, 0.45573691, 0.32104823, 0.22545385,
0.17026083, 0.09824532, 0.02916753],
[14.61464119, 2.84484982, 1.56271636, 0.95350921, 0.64427125, 0.45573691, 0.34370604, 0.25053367,
0.19894916, 0.13792117, 0.09824532, 0.02916753],
[14.61464119, 3.07277966, 1.61558151, 1.01931262, 0.72133851, 0.52423614, 0.38853383, 0.29807833,
0.22545385, 0.17026083, 0.13792117, 0.09824532, 0.02916753],
[14.61464119, 3.07277966, 1.61558151, 1.01931262, 0.72133851, 0.52423614, 0.41087446, 0.32104823,
0.25053367, 0.19894916, 0.17026083, 0.13792117, 0.09824532, 0.02916753],
[14.61464119, 3.07277966, 1.61558151, 1.05362725, 0.74807048, 0.54755926, 0.43325692, 0.34370604,
0.27464288, 0.22545385, 0.19894916, 0.17026083, 0.13792117, 0.09824532, 0.02916753],
[14.61464119, 3.07277966, 1.72759056, 1.12534678, 0.803307, 0.59516323, 0.45573691, 0.36617002, 0.29807833,
0.25053367, 0.22545385, 0.19894916, 0.17026083, 0.13792117, 0.09824532, 0.02916753],
[14.61464119, 3.07277966, 1.72759056, 1.12534678, 0.803307, 0.59516323, 0.4783645, 0.38853383, 0.32104823,
0.27464288, 0.25053367, 0.22545385, 0.19894916, 0.17026083, 0.13792117, 0.09824532, 0.02916753],
[14.61464119, 5.85520077, 2.45070267, 1.51179266, 1.01931262, 0.74807048, 0.57119018, 0.45573691,
0.36617002, 0.32104823, 0.27464288, 0.25053367, 0.22545385, 0.19894916, 0.17026083, 0.13792117, 0.09824532,
0.02916753],
[14.61464119, 5.85520077, 2.6383388, 1.61558151, 1.08895338, 0.803307, 0.61951244, 0.50118381, 0.41087446,
0.34370604, 0.29807833, 0.27464288, 0.25053367, 0.22545385, 0.19894916, 0.17026083, 0.13792117, 0.09824532,
0.02916753],
[14.61464119, 5.85520077, 2.6383388, 1.61558151, 1.08895338, 0.803307, 0.64427125, 0.52423614, 0.43325692,
0.36617002, 0.32104823, 0.29807833, 0.27464288, 0.25053367, 0.22545385, 0.19894916, 0.17026083, 0.13792117,
0.09824532, 0.02916753],
[14.61464119, 5.85520077, 2.6383388, 1.61558151, 1.08895338, 0.803307, 0.64427125, 0.52423614, 0.45573691,
0.38853383, 0.34370604, 0.32104823, 0.29807833, 0.27464288, 0.25053367, 0.22545385, 0.19894916, 0.17026083,
0.13792117, 0.09824532, 0.02916753],
],
1.40: [
[14.61464119, 0.59516323, 0.02916753],
[14.61464119, 0.95350921, 0.34370604, 0.02916753],
[14.61464119, 1.08895338, 0.43325692, 0.13792117, 0.02916753],
[14.61464119, 1.56271636, 0.64427125, 0.27464288, 0.09824532, 0.02916753],
[14.61464119, 1.61558151, 0.803307, 0.43325692, 0.22545385, 0.09824532, 0.02916753],
[14.61464119, 2.05039096, 0.95350921, 0.54755926, 0.34370604, 0.19894916, 0.09824532, 0.02916753],
[14.61464119, 2.45070267, 1.24153244, 0.72133851, 0.43325692, 0.27464288, 0.17026083, 0.09824532,
0.02916753],
[14.61464119, 2.45070267, 1.24153244, 0.74807048, 0.50118381, 0.34370604, 0.25053367, 0.17026083,
0.09824532, 0.02916753],
[14.61464119, 2.45070267, 1.28281462, 0.803307, 0.52423614, 0.36617002, 0.27464288, 0.19894916, 0.13792117,
0.09824532, 0.02916753],
[14.61464119, 2.45070267, 1.28281462, 0.803307, 0.54755926, 0.38853383, 0.29807833, 0.22545385, 0.17026083,
0.13792117, 0.09824532, 0.02916753],
[14.61464119, 2.84484982, 1.41535246, 0.86115354, 0.59516323, 0.43325692, 0.32104823, 0.25053367,
0.19894916, 0.17026083, 0.13792117, 0.09824532, 0.02916753],
[14.61464119, 2.84484982, 1.51179266, 0.95350921, 0.64427125, 0.45573691, 0.34370604, 0.27464288,
0.22545385, 0.19894916, 0.17026083, 0.13792117, 0.09824532, 0.02916753],
[14.61464119, 2.84484982, 1.51179266, 0.95350921, 0.64427125, 0.4783645, 0.36617002, 0.29807833, 0.25053367,
0.22545385, 0.19894916, 0.17026083, 0.13792117, 0.09824532, 0.02916753],
[14.61464119, 2.84484982, 1.56271636, 0.98595673, 0.69515091, 0.52423614, 0.41087446, 0.34370604,
0.29807833, 0.25053367, 0.22545385, 0.19894916, 0.17026083, 0.13792117, 0.09824532, 0.02916753],
[14.61464119, 2.84484982, 1.56271636, 1.01931262, 0.72133851, 0.54755926, 0.43325692, 0.36617002,
0.32104823, 0.27464288, 0.25053367, 0.22545385, 0.19894916, 0.17026083, 0.13792117, 0.09824532,
0.02916753],
[14.61464119, 2.84484982, 1.61558151, 1.05362725, 0.74807048, 0.57119018, 0.45573691, 0.38853383,
0.34370604, 0.29807833, 0.27464288, 0.25053367, 0.22545385, 0.19894916, 0.17026083, 0.13792117, 0.09824532,
0.02916753],
[14.61464119, 2.84484982, 1.61558151, 1.08895338, 0.803307, 0.61951244, 0.50118381, 0.41087446, 0.36617002,
0.32104823, 0.29807833, 0.27464288, 0.25053367, 0.22545385, 0.19894916, 0.17026083, 0.13792117, 0.09824532,
0.02916753],
[14.61464119, 2.84484982, 1.61558151, 1.08895338, 0.803307, 0.61951244, 0.50118381, 0.43325692, 0.38853383,
0.34370604, 0.32104823, 0.29807833, 0.27464288, 0.25053367, 0.22545385, 0.19894916, 0.17026083, 0.13792117,
0.09824532, 0.02916753],
[14.61464119, 2.84484982, 1.61558151, 1.08895338, 0.803307, 0.64427125, 0.52423614, 0.45573691, 0.41087446,
0.36617002, 0.34370604, 0.32104823, 0.29807833, 0.27464288, 0.25053367, 0.22545385, 0.19894916, 0.17026083,
0.13792117, 0.09824532, 0.02916753],
],
1.45: [
[14.61464119, 0.59516323, 0.02916753],
[14.61464119, 0.803307, 0.25053367, 0.02916753],
[14.61464119, 0.95350921, 0.34370604, 0.09824532, 0.02916753],
[14.61464119, 1.24153244, 0.54755926, 0.25053367, 0.09824532, 0.02916753],
[14.61464119, 1.56271636, 0.72133851, 0.36617002, 0.19894916, 0.09824532, 0.02916753],
[14.61464119, 1.61558151, 0.803307, 0.45573691, 0.27464288, 0.17026083, 0.09824532, 0.02916753],
[14.61464119, 1.91321158, 0.95350921, 0.57119018, 0.36617002, 0.25053367, 0.17026083, 0.09824532,
0.02916753],
[14.61464119, 2.19988537, 1.08895338, 0.64427125, 0.41087446, 0.27464288, 0.19894916, 0.13792117,
0.09824532, 0.02916753],
[14.61464119, 2.45070267, 1.24153244, 0.74807048, 0.50118381, 0.34370604, 0.25053367, 0.19894916,
0.13792117, 0.09824532, 0.02916753],
[14.61464119, 2.45070267, 1.24153244, 0.74807048, 0.50118381, 0.36617002, 0.27464288, 0.22545385,
0.17026083, 0.13792117, 0.09824532, 0.02916753],
[14.61464119, 2.45070267, 1.28281462, 0.803307, 0.54755926, 0.41087446, 0.32104823, 0.25053367, 0.19894916,
0.17026083, 0.13792117, 0.09824532, 0.02916753],
[14.61464119, 2.45070267, 1.28281462, 0.803307, 0.57119018, 0.43325692, 0.34370604, 0.27464288, 0.22545385,
0.19894916, 0.17026083, 0.13792117, 0.09824532, 0.02916753],
[14.61464119, 2.45070267, 1.28281462, 0.83188516, 0.59516323, 0.45573691, 0.36617002, 0.29807833,
0.25053367, 0.22545385, 0.19894916, 0.17026083, 0.13792117, 0.09824532, 0.02916753],
[14.61464119, 2.45070267, 1.28281462, 0.83188516, 0.59516323, 0.45573691, 0.36617002, 0.32104823,
0.27464288, 0.25053367, 0.22545385, 0.19894916, 0.17026083, 0.13792117, 0.09824532, 0.02916753],
[14.61464119, 2.84484982, 1.51179266, 0.95350921, 0.69515091, 0.52423614, 0.41087446, 0.34370604,
0.29807833, 0.27464288, 0.25053367, 0.22545385, 0.19894916, 0.17026083, 0.13792117, 0.09824532,
0.02916753],
[14.61464119, 2.84484982, 1.51179266, 0.95350921, 0.69515091, 0.52423614, 0.43325692, 0.36617002,
0.32104823, 0.29807833, 0.27464288, 0.25053367, 0.22545385, 0.19894916, 0.17026083, 0.13792117, 0.09824532,
0.02916753],
[14.61464119, 2.84484982, 1.56271636, 0.98595673, 0.72133851, 0.54755926, 0.45573691, 0.38853383,
0.34370604, 0.32104823, 0.29807833, 0.27464288, 0.25053367, 0.22545385, 0.19894916, 0.17026083, 0.13792117,
0.09824532, 0.02916753],
[14.61464119, 2.84484982, 1.56271636, 1.01931262, 0.74807048, 0.57119018, 0.4783645, 0.41087446, 0.36617002,
0.34370604, 0.32104823, 0.29807833, 0.27464288, 0.25053367, 0.22545385, 0.19894916, 0.17026083, 0.13792117,
0.09824532, 0.02916753],
[14.61464119, 2.84484982, 1.56271636, 1.01931262, 0.74807048, 0.59516323, 0.50118381, 0.43325692,
0.38853383, 0.36617002, 0.34370604, 0.32104823, 0.29807833, 0.27464288, 0.25053367, 0.22545385, 0.19894916,
0.17026083, 0.13792117, 0.09824532, 0.02916753],
],
1.50: [
[14.61464119, 0.54755926, 0.02916753],
[14.61464119, 0.803307, 0.25053367, 0.02916753],
[14.61464119, 0.86115354, 0.32104823, 0.09824532, 0.02916753],
[14.61464119, 1.24153244, 0.54755926, 0.25053367, 0.09824532, 0.02916753],
[14.61464119, 1.56271636, 0.72133851, 0.36617002, 0.19894916, 0.09824532, 0.02916753],
[14.61464119, 1.61558151, 0.803307, 0.45573691, 0.27464288, 0.17026083, 0.09824532, 0.02916753],
[14.61464119, 1.61558151, 0.83188516, 0.52423614, 0.34370604, 0.25053367, 0.17026083, 0.09824532,
0.02916753],
[14.61464119, 1.84880662, 0.95350921, 0.59516323, 0.38853383, 0.27464288, 0.19894916, 0.13792117,
0.09824532, 0.02916753],
[14.61464119, 1.84880662, 0.95350921, 0.59516323, 0.41087446, 0.29807833, 0.22545385, 0.17026083,
0.13792117, 0.09824532, 0.02916753],
[14.61464119, 1.84880662, 0.95350921, 0.61951244, 0.43325692, 0.32104823, 0.25053367, 0.19894916,
0.17026083, 0.13792117, 0.09824532, 0.02916753],
[14.61464119, 2.19988537, 1.12534678, 0.72133851, 0.50118381, 0.36617002, 0.27464288, 0.22545385,
0.19894916, 0.17026083, 0.13792117, 0.09824532, 0.02916753],
[14.61464119, 2.19988537, 1.12534678, 0.72133851, 0.50118381, 0.36617002, 0.29807833, 0.25053367,
0.22545385, 0.19894916, 0.17026083, 0.13792117, 0.09824532, 0.02916753],
[14.61464119, 2.36326075, 1.24153244, 0.803307, 0.57119018, 0.43325692, 0.34370604, 0.29807833, 0.25053367,
0.22545385, 0.19894916, 0.17026083, 0.13792117, 0.09824532, 0.02916753],
[14.61464119, 2.36326075, 1.24153244, 0.803307, 0.57119018, 0.43325692, 0.34370604, 0.29807833, 0.27464288,
0.25053367, 0.22545385, 0.19894916, 0.17026083, 0.13792117, 0.09824532, 0.02916753],
[14.61464119, 2.36326075, 1.24153244, 0.803307, 0.59516323, 0.45573691, 0.36617002, 0.32104823, 0.29807833,
0.27464288, 0.25053367, 0.22545385, 0.19894916, 0.17026083, 0.13792117, 0.09824532, 0.02916753],
[14.61464119, 2.36326075, 1.24153244, 0.803307, 0.59516323, 0.45573691, 0.38853383, 0.34370604, 0.32104823,
0.29807833, 0.27464288, 0.25053367, 0.22545385, 0.19894916, 0.17026083, 0.13792117, 0.09824532,
0.02916753],
[14.61464119, 2.45070267, 1.32549286, 0.86115354, 0.64427125, 0.50118381, 0.41087446, 0.36617002,
0.34370604, 0.32104823, 0.29807833, 0.27464288, 0.25053367, 0.22545385, 0.19894916, 0.17026083, 0.13792117,
0.09824532, 0.02916753],
[14.61464119, 2.45070267, 1.36964464, 0.92192322, 0.69515091, 0.54755926, 0.45573691, 0.41087446,
0.36617002, 0.34370604, 0.32104823, 0.29807833, 0.27464288, 0.25053367, 0.22545385, 0.19894916, 0.17026083,
0.13792117, 0.09824532, 0.02916753],
[14.61464119, 2.45070267, 1.41535246, 0.95350921, 0.72133851, 0.57119018, 0.4783645, 0.43325692, 0.38853383,
0.36617002, 0.34370604, 0.32104823, 0.29807833, 0.27464288, 0.25053367, 0.22545385, 0.19894916, 0.17026083,
0.13792117, 0.09824532, 0.02916753],
],
}
def get_sigmas(self, coeff, steps, denoise):
total_steps = steps
if denoise < 1.0:
if denoise <= 0.0:
return (torch.FloatTensor([]),)
total_steps = round(steps * denoise)
if steps <= 20:
sigmas = self.NOISE_LEVELS[round(coeff, 2)][steps-2][:]
else:
sigmas = self.NOISE_LEVELS[round(coeff, 2)][-1][:]
sigmas = loglinear_interp(sigmas, steps + 1)
sigmas = sigmas[-(total_steps + 1):]
sigmas[-1] = 0
return (torch.FloatTensor(sigmas), )