jaxmetaverse's picture
Upload folder using huggingface_hub
82ea528 verified
from typing import Iterator, List, Tuple, Dict, Any, Union, Optional
from _decimal import Context, getcontext
from decimal import Decimal
from .libs.utils import AlwaysEqualProxy, ByPassTypeTuple, cleanGPUUsedForce, compare_revision
from .libs.cache import cache, update_cache, remove_cache
from .libs.log import log_node_info, log_node_warn
from nodes import PreviewImage, SaveImage, NODE_CLASS_MAPPINGS as ALL_NODE_CLASS_MAPPINGS
from PIL import Image, ImageDraw, ImageFilter, ImageOps
from PIL.PngImagePlugin import PngInfo
import numpy as np
import time
import os
import re
import csv
import json
import torch
import comfy.utils
import folder_paths
DEFAULT_FLOW_NUM = 2
MAX_FLOW_NUM = 10
lazy_options = {"lazy": True} if compare_revision(2543) else {}
any_type = AlwaysEqualProxy("*")
def validate_list_args(args: Dict[str, List[Any]]) -> Tuple[bool, Optional[str], Optional[str]]:
"""
Checks that if there are multiple arguments, they are all the same length or 1
:param args:
:return: Tuple (Status, mismatched_key_1, mismatched_key_2)
"""
# Only have 1 arg
if len(args) == 1:
return True, None, None
len_to_match = None
matched_arg_name = None
for arg_name, arg in args.items():
if arg_name == 'self':
# self is in locals()
continue
if len(arg) != 1:
if len_to_match is None:
len_to_match = len(arg)
matched_arg_name = arg_name
elif len(arg) != len_to_match:
return False, arg_name, matched_arg_name
return True, None, None
def error_if_mismatched_list_args(args: Dict[str, List[Any]]) -> None:
is_valid, failed_key1, failed_key2 = validate_list_args(args)
if not is_valid:
assert failed_key1 is not None
assert failed_key2 is not None
raise ValueError(
f"Mismatched list inputs received. {failed_key1}({len(args[failed_key1])}) !== {failed_key2}({len(args[failed_key2])})"
)
def zip_with_fill(*lists: Union[List[Any], None]) -> Iterator[Tuple[Any, ...]]:
"""
Zips lists together, but if a list has 1 element, it will be repeated for each element in the other lists.
If a list is None, None will be used for that element.
(Not intended for use with lists of different lengths)
:param lists:
:return: Iterator of tuples of length len(lists)
"""
max_len = max(len(lst) if lst is not None else 0 for lst in lists)
for i in range(max_len):
yield tuple(None if lst is None else (lst[0] if len(lst) == 1 else lst[i]) for lst in lists)
# ---------------------------------------------------------------类型 开始----------------------------------------------------------------------#
# 字符串
class String:
@classmethod
def INPUT_TYPES(s):
return {
"required": {"value": ("STRING", {"default": ""})},
}
RETURN_TYPES = ("STRING",)
RETURN_NAMES = ("string",)
FUNCTION = "execute"
CATEGORY = "EasyUse/Logic/Type"
def execute(self, value):
return (value,)
# 整数
class Int:
@classmethod
def INPUT_TYPES(s):
return {
"required": {"value": ("INT", {"default": 0, "min": -999999, "max": 999999, })},
}
RETURN_TYPES = ("INT",)
RETURN_NAMES = ("int",)
FUNCTION = "execute"
CATEGORY = "EasyUse/Logic/Type"
def execute(self, value):
return (value,)
# 整数范围
class RangeInt:
def __init__(self) -> None:
pass
@classmethod
def INPUT_TYPES(s) -> Dict[str, Dict[str, Any]]:
return {
"required": {
"range_mode": (["step", "num_steps"], {"default": "step"}),
"start": ("INT", {"default": 0, "min": -4096, "max": 4096, "step": 1}),
"stop": ("INT", {"default": 0, "min": -4096, "max": 4096, "step": 1}),
"step": ("INT", {"default": 0, "min": -4096, "max": 4096, "step": 1}),
"num_steps": ("INT", {"default": 0, "min": -4096, "max": 4096, "step": 1}),
"end_mode": (["Inclusive", "Exclusive"], {"default": "Inclusive"}),
},
}
RETURN_TYPES = ("INT", "INT")
RETURN_NAMES = ("range", "range_sizes")
INPUT_IS_LIST = True
OUTPUT_IS_LIST = (True, True)
FUNCTION = "build_range"
CATEGORY = "EasyUse/Logic/Type"
def build_range(
self, range_mode, start, stop, step, num_steps, end_mode
) -> Tuple[List[int], List[int]]:
error_if_mismatched_list_args(locals())
ranges = []
range_sizes = []
for range_mode, e_start, e_stop, e_num_steps, e_step, e_end_mode in zip_with_fill(
range_mode, start, stop, num_steps, step, end_mode
):
if range_mode == 'step':
if e_end_mode == "Inclusive":
e_stop += 1
vals = list(range(e_start, e_stop, e_step))
ranges.extend(vals)
range_sizes.append(len(vals))
elif range_mode == 'num_steps':
direction = 1 if e_stop > e_start else -1
if e_end_mode == "Exclusive":
e_stop -= direction
vals = (np.rint(np.linspace(e_start, e_stop, e_num_steps)).astype(int).tolist())
ranges.extend(vals)
range_sizes.append(len(vals))
return ranges, range_sizes
# 浮点数
class Float:
@classmethod
def INPUT_TYPES(s):
return {
"required": {"value": ("FLOAT", {"default": 0, "step": 0.01, "min": -999999, "max": 999999, })},
}
RETURN_TYPES = ("FLOAT",)
RETURN_NAMES = ("float",)
FUNCTION = "execute"
CATEGORY = "EasyUse/Logic/Type"
def execute(self, value):
return (value,)
# 浮点数范围
class RangeFloat:
def __init__(self) -> None:
pass
@classmethod
def INPUT_TYPES(s) -> Dict[str, Dict[str, Any]]:
return {
"required": {
"range_mode": (["step", "num_steps"], {"default": "step"}),
"start": ("FLOAT", {"default": 0, "min": -4096, "max": 4096, "step": 0.1}),
"stop": ("FLOAT", {"default": 0, "min": -4096, "max": 4096, "step": 0.1}),
"step": ("FLOAT", {"default": 0, "min": -4096, "max": 4096, "step": 0.1}),
"num_steps": ("INT", {"default": 0, "min": -4096, "max": 4096, "step": 1}),
"end_mode": (["Inclusive", "Exclusive"], {"default": "Inclusive"}),
},
}
RETURN_TYPES = ("FLOAT", "INT")
RETURN_NAMES = ("range", "range_sizes")
INPUT_IS_LIST = True
OUTPUT_IS_LIST = (True, True)
FUNCTION = "build_range"
CATEGORY = "EasyUse/Logic/Type"
@staticmethod
def _decimal_range(
range_mode: String, start: Decimal, stop: Decimal, step: Decimal, num_steps: Int, inclusive: bool
) -> Iterator[float]:
if range_mode == 'step':
ret_val = start
if inclusive:
stop = stop + step
direction = 1 if step > 0 else -1
while (ret_val - stop) * direction < 0:
yield float(ret_val)
ret_val += step
elif range_mode == 'num_steps':
step = (stop - start) / (num_steps - 1)
direction = 1 if step > 0 else -1
ret_val = start
for _ in range(num_steps):
if (ret_val - stop) * direction > 0: # Ensure we don't exceed the 'stop' value
break
yield float(ret_val)
ret_val += step
def build_range(
self,
range_mode,
start,
stop,
step,
num_steps,
end_mode,
) -> Tuple[List[float], List[int]]:
error_if_mismatched_list_args(locals())
getcontext().prec = 12
start = [Decimal(s) for s in start]
stop = [Decimal(s) for s in stop]
step = [Decimal(s) for s in step]
ranges = []
range_sizes = []
for range_mode, e_start, e_stop, e_step, e_num_steps, e_end_mode in zip_with_fill(
range_mode, start, stop, step, num_steps, end_mode
):
vals = list(
self._decimal_range(range_mode, e_start, e_stop, e_step, e_num_steps, e_end_mode == 'Inclusive')
)
ranges.extend(vals)
range_sizes.append(len(vals))
return ranges, range_sizes
# 布尔
class Boolean:
@classmethod
def INPUT_TYPES(s):
return {
"required": {"value": ("BOOLEAN", {"default": False})},
}
RETURN_TYPES = ("BOOLEAN",)
RETURN_NAMES = ("boolean",)
FUNCTION = "execute"
CATEGORY = "EasyUse/Logic/Type"
def execute(self, value):
return (value,)
# ---------------------------------------------------------------开关 开始----------------------------------------------------------------------#
class imageSwitch:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image_a": ("IMAGE",),
"image_b": ("IMAGE",),
"boolean": ("BOOLEAN", {"default": False}),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "image_switch"
CATEGORY = "EasyUse/Logic/Switch"
def image_switch(self, image_a, image_b, boolean):
if boolean:
return (image_a,)
else:
return (image_b,)
class textSwitch:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"input": ("INT", {"default": 1, "min": 1, "max": 2}),
},
"optional": {
"text1": ("STRING", {"forceInput": True}),
"text2": ("STRING", {"forceInput": True}),
}
}
RETURN_TYPES = ("STRING",)
RETURN_NAMES = ("STRING",)
CATEGORY = "EasyUse/Logic/Switch"
FUNCTION = "switch"
def switch(self, input, text1=None, text2=None, ):
if input == 1:
return (text1,)
else:
return (text2,)
# ---------------------------------------------------------------Index Switch----------------------------------------------------------------------#
class ab:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"A or B": ("BOOLEAN", {"default": True, "label_on": "A", "label_off": "B"}),
"in": (any_type,),
},
"hidden": {"unique_id": "UNIQUE_ID"},
}
RETURN_TYPES = (any_type, any_type,)
RETURN_NAMES = ("A", "B",)
FUNCTION = "switch"
CATEGORY = "EasyUse/Logic"
def blocker(self, value, block=False):
from comfy_execution.graph import ExecutionBlocker
return ExecutionBlocker(None) if block else value
def switch(self, unique_id, **kwargs):
is_a = kwargs['A or B']
a = self.blocker(kwargs['in'], not is_a)
b = self.blocker(kwargs['in'], is_a)
return (a, b)
class anythingInversedSwitch:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"index": ("INT", {"default": 0, "min": 0, "max": 9, "step": 1}),
"in": (any_type,),
},
"hidden": {"unique_id": "UNIQUE_ID"},
}
RETURN_TYPES = ByPassTypeTuple(tuple([any_type]))
RETURN_NAMES = ByPassTypeTuple(tuple(["out0"]))
FUNCTION = "switch"
CATEGORY = "EasyUse/Logic"
def switch(self, index, unique_id, **kwargs):
from comfy_execution.graph import ExecutionBlocker
res = []
for i in range(0, MAX_FLOW_NUM):
if index == i:
res.append(kwargs['in'])
else:
res.append(ExecutionBlocker(None))
return res
class anythingIndexSwitch:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
inputs = {
"required": {
"index": ("INT", {"default": 0, "min": 0, "max": 9, "step": 1}),
},
"optional": {
}
}
for i in range(MAX_FLOW_NUM):
inputs["optional"]["value%d" % i] = (any_type, lazy_options)
return inputs
RETURN_TYPES = (any_type,)
RETURN_NAMES = ("value",)
FUNCTION = "index_switch"
CATEGORY = "EasyUse/Logic/Index Switch"
def check_lazy_status(self, index, **kwargs):
key = "value%d" % index
if kwargs.get(key, None) is None:
return [key]
def index_switch(self, index, **kwargs):
key = "value%d" % index
return (kwargs[key],)
class imageIndexSwitch:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
inputs = {
"required": {
"index": ("INT", {"default": 0, "min": 0, "max": 9, "step": 1}),
},
"optional": {
}
}
for i in range(MAX_FLOW_NUM):
inputs["optional"]["image%d" % i] = ("IMAGE", lazy_options)
return inputs
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = "index_switch"
CATEGORY = "EasyUse/Logic/Index Switch"
def check_lazy_status(self, index, **kwargs):
key = "image%d" % index
if kwargs.get(key, None) is None:
return [key]
def index_switch(self, index, **kwargs):
key = "image%d" % index
return (kwargs[key],)
class textIndexSwitch:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
inputs = {
"required": {
"index": ("INT", {"default": 0, "min": 0, "max": 9, "step": 1}),
},
"optional": {
}
}
for i in range(MAX_FLOW_NUM):
inputs["optional"]["text%d" % i] = ("STRING", {**lazy_options, "forceInput": True})
return inputs
RETURN_TYPES = ("STRING",)
RETURN_NAMES = ("text",)
FUNCTION = "index_switch"
CATEGORY = "EasyUse/Logic/Index Switch"
def check_lazy_status(self, index, **kwargs):
key = "text%d" % index
if kwargs.get(key, None) is None:
return [key]
def index_switch(self, index, **kwargs):
key = "text%d" % index
return (kwargs[key],)
class conditioningIndexSwitch:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
inputs = {
"required": {
"index": ("INT", {"default": 0, "min": 0, "max": 9, "step": 1}),
},
"optional": {
}
}
for i in range(MAX_FLOW_NUM):
inputs["optional"]["cond%d" % i] = ("CONDITIONING", lazy_options)
return inputs
RETURN_TYPES = ("CONDITIONING",)
RETURN_NAMES = ("conditioning",)
FUNCTION = "index_switch"
CATEGORY = "EasyUse/Logic/Index Switch"
def check_lazy_status(self, index, **kwargs):
key = "cond%d" % index
if kwargs.get(key, None) is None:
return [key]
def index_switch(self, index, **kwargs):
key = "cond%d" % index
return (kwargs[key],)
# ---------------------------------------------------------------Math----------------------------------------------------------------------#
class mathIntOperation:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"a": ("INT", {"default": 0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 1}),
"b": ("INT", {"default": 0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 1}),
"operation": (["add", "subtract", "multiply", "divide", "modulo", "power"],),
},
}
RETURN_TYPES = ("INT",)
FUNCTION = "int_math_operation"
CATEGORY = "EasyUse/Logic/Math"
def int_math_operation(self, a, b, operation):
if operation == "add":
return (a + b,)
elif operation == "subtract":
return (a - b,)
elif operation == "multiply":
return (a * b,)
elif operation == "divide":
return (a // b,)
elif operation == "modulo":
return (a % b,)
elif operation == "power":
return (a ** b,)
class mathFloatOperation:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"a": ("FLOAT", {"default": 0, "min": -999999999999.0, "max": 999999999999.0, "step": 0.01}),
"b": ("FLOAT", {"default": 0, "min": -999999999999.0, "max": 999999999999.0, "step": 0.01}),
"operation": (["add", "subtract", "multiply", "divide", "modulo", "power"],),
},
}
RETURN_TYPES = ("FLOAT",)
FUNCTION = "float_math_operation"
CATEGORY = "EasyUse/Logic/Math"
def float_math_operation(self, a, b, operation):
if operation == "add":
return (a + b,)
elif operation == "subtract":
return (a - b,)
elif operation == "multiply":
return (a * b,)
elif operation == "divide":
return (a / b,)
elif operation == "modulo":
return (a % b,)
elif operation == "power":
return (a ** b,)
class mathStringOperation:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"a": ("STRING", {"multiline": False}),
"b": ("STRING", {"multiline": False}),
"operation": (["a == b", "a != b", "a IN b", "a MATCH REGEX(b)", "a BEGINSWITH b", "a ENDSWITH b"],),
"case_sensitive": ("BOOLEAN", {"default": True}),
},
}
RETURN_TYPES = ("BOOLEAN",)
FUNCTION = "string_math_operation"
CATEGORY = "EasyUse/Logic/Math"
def string_math_operation(self, a, b, operation, case_sensitive):
if not case_sensitive:
a = a.lower()
b = b.lower()
if operation == "a == b":
return (a == b,)
elif operation == "a != b":
return (a != b,)
elif operation == "a IN b":
return (a in b,)
elif operation == "a MATCH REGEX(b)":
try:
return (re.match(b, a) is not None,)
except:
return (False,)
elif operation == "a BEGINSWITH b":
return (a.startswith(b),)
elif operation == "a ENDSWITH b":
return (a.endswith(b),)
# ---------------------------------------------------------------Flow----------------------------------------------------------------------#
try:
from comfy_execution.graph_utils import GraphBuilder, is_link
except:
GraphBuilder = None
class whileLoopStart:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
inputs = {
"required": {
"condition": ("BOOLEAN", {"default": True}),
},
"optional": {
},
}
for i in range(MAX_FLOW_NUM):
inputs["optional"]["initial_value%d" % i] = (any_type,)
return inputs
RETURN_TYPES = ByPassTypeTuple(tuple(["FLOW_CONTROL"] + [any_type] * MAX_FLOW_NUM))
RETURN_NAMES = ByPassTypeTuple(tuple(["flow"] + ["value%d" % i for i in range(MAX_FLOW_NUM)]))
FUNCTION = "while_loop_open"
CATEGORY = "EasyUse/Logic/While Loop"
def while_loop_open(self, condition, **kwargs):
values = []
for i in range(MAX_FLOW_NUM):
values.append(kwargs.get("initial_value%d" % i, None))
return tuple(["stub"] + values)
class whileLoopEnd:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
inputs = {
"required": {
"flow": ("FLOW_CONTROL", {"rawLink": True}),
"condition": ("BOOLEAN", {}),
},
"optional": {
},
"hidden": {
"dynprompt": "DYNPROMPT",
"unique_id": "UNIQUE_ID",
"extra_pnginfo": "EXTRA_PNGINFO",
}
}
for i in range(MAX_FLOW_NUM):
inputs["optional"]["initial_value%d" % i] = (any_type,)
return inputs
RETURN_TYPES = ByPassTypeTuple(tuple([any_type] * MAX_FLOW_NUM))
RETURN_NAMES = ByPassTypeTuple(tuple(["value%d" % i for i in range(MAX_FLOW_NUM)]))
FUNCTION = "while_loop_close"
CATEGORY = "EasyUse/Logic/While Loop"
def explore_dependencies(self, node_id, dynprompt, upstream, parent_ids):
node_info = dynprompt.get_node(node_id)
if "inputs" not in node_info:
return
for k, v in node_info["inputs"].items():
if is_link(v):
parent_id = v[0]
display_id = dynprompt.get_display_node_id(parent_id)
display_node = dynprompt.get_node(display_id)
class_type = display_node["class_type"]
if class_type not in ['easy forLoopEnd', 'easy whileLoopEnd']:
parent_ids.append(display_id)
if parent_id not in upstream:
upstream[parent_id] = []
self.explore_dependencies(parent_id, dynprompt, upstream, parent_ids)
upstream[parent_id].append(node_id)
def explore_output_nodes(self, dynprompt, upstream, output_nodes, parent_ids):
for parent_id in upstream:
display_id = dynprompt.get_display_node_id(parent_id)
for output_id in output_nodes:
id = output_nodes[output_id][0]
if id in parent_ids and display_id == id and output_id not in upstream[parent_id]:
if '.' in parent_id:
arr = parent_id.split('.')
arr[len(arr)-1] = output_id
upstream[parent_id].append('.'.join(arr))
else:
upstream[parent_id].append(output_id)
def collect_contained(self, node_id, upstream, contained):
if node_id not in upstream:
return
for child_id in upstream[node_id]:
if child_id not in contained:
contained[child_id] = True
self.collect_contained(child_id, upstream, contained)
def while_loop_close(self, flow, condition, dynprompt=None, unique_id=None,**kwargs):
if not condition:
# We're done with the loop
values = []
for i in range(MAX_FLOW_NUM):
values.append(kwargs.get("initial_value%d" % i, None))
return tuple(values)
# We want to loop
this_node = dynprompt.get_node(unique_id)
upstream = {}
# Get the list of all nodes between the open and close nodes
parent_ids = []
self.explore_dependencies(unique_id, dynprompt, upstream, parent_ids)
parent_ids = list(set(parent_ids))
# Get the list of all output nodes between the open and close nodes
prompts = dynprompt.get_original_prompt()
output_nodes = {}
for id in prompts:
node = prompts[id]
if "inputs" not in node:
continue
class_type = node["class_type"]
class_def = ALL_NODE_CLASS_MAPPINGS[class_type]
if hasattr(class_def, 'OUTPUT_NODE') and class_def.OUTPUT_NODE == True:
for k, v in node['inputs'].items():
if is_link(v):
output_nodes[id] = v
graph = GraphBuilder()
self.explore_output_nodes(dynprompt, upstream, output_nodes, parent_ids)
contained = {}
open_node = flow[0]
self.collect_contained(open_node, upstream, contained)
contained[unique_id] = True
contained[open_node] = True
for node_id in contained:
original_node = dynprompt.get_node(node_id)
node = graph.node(original_node["class_type"], "Recurse" if node_id == unique_id else node_id)
node.set_override_display_id(node_id)
for node_id in contained:
original_node = dynprompt.get_node(node_id)
node = graph.lookup_node("Recurse" if node_id == unique_id else node_id)
for k, v in original_node["inputs"].items():
if is_link(v) and v[0] in contained:
parent = graph.lookup_node(v[0])
node.set_input(k, parent.out(v[1]))
else:
node.set_input(k, v)
new_open = graph.lookup_node(open_node)
for i in range(MAX_FLOW_NUM):
key = "initial_value%d" % i
new_open.set_input(key, kwargs.get(key, None))
my_clone = graph.lookup_node("Recurse")
result = map(lambda x: my_clone.out(x), range(MAX_FLOW_NUM))
return {
"result": tuple(result),
"expand": graph.finalize(),
}
class forLoopStart:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"total": ("INT", {"default": 1, "min": 1, "max": 100000, "step": 1}),
},
"optional": {
"initial_value%d" % i: (any_type,) for i in range(1, MAX_FLOW_NUM)
},
"hidden": {
"initial_value0": (any_type,),
"prompt": "PROMPT",
"extra_pnginfo": "EXTRA_PNGINFO",
"unique_id": "UNIQUE_ID"
}
}
RETURN_TYPES = ByPassTypeTuple(tuple(["FLOW_CONTROL", "INT"] + [any_type] * (MAX_FLOW_NUM - 1)))
RETURN_NAMES = ByPassTypeTuple(tuple(["flow", "index"] + ["value%d" % i for i in range(1, MAX_FLOW_NUM)]))
FUNCTION = "for_loop_start"
CATEGORY = "EasyUse/Logic/For Loop"
def for_loop_start(self, total, prompt=None, extra_pnginfo=None, unique_id=None, **kwargs):
graph = GraphBuilder()
i = 0
if "initial_value0" in kwargs:
i = kwargs["initial_value0"]
initial_values = {("initial_value%d" % num): kwargs.get("initial_value%d" % num, None) for num in
range(1, MAX_FLOW_NUM)}
while_open = graph.node("easy whileLoopStart", condition=total, initial_value0=i, **initial_values)
outputs = [kwargs.get("initial_value%d" % num, None) for num in range(1, MAX_FLOW_NUM)]
return {
"result": tuple(["stub", i] + outputs),
"expand": graph.finalize(),
}
class forLoopEnd:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"flow": ("FLOW_CONTROL", {"rawLink": True}),
},
"optional": {
"initial_value%d" % i: (any_type, {"rawLink": True}) for i in range(1, MAX_FLOW_NUM)
},
"hidden": {
"dynprompt": "DYNPROMPT",
"extra_pnginfo": "EXTRA_PNGINFO",
"unique_id": "UNIQUE_ID"
},
}
RETURN_TYPES = ByPassTypeTuple(tuple([any_type] * (MAX_FLOW_NUM - 1)))
RETURN_NAMES = ByPassTypeTuple(tuple(["value%d" % i for i in range(1, MAX_FLOW_NUM)]))
FUNCTION = "for_loop_end"
CATEGORY = "EasyUse/Logic/For Loop"
def for_loop_end(self, flow, dynprompt=None, extra_pnginfo=None, unique_id=None, **kwargs):
graph = GraphBuilder()
while_open = flow[0]
total = None
# Using dynprompt to get the original node
forstart_node = dynprompt.get_node(while_open)
if forstart_node['class_type'] == 'easy forLoopStart':
inputs = forstart_node['inputs']
total = inputs['total']
elif forstart_node['class_type'] == 'easy loadImagesForLoop':
inputs = forstart_node['inputs']
limit = inputs['limit']
start_index = inputs['start_index']
# Filter files by extension
directory = inputs['directory']
dir_files = os.listdir(directory)
valid_extensions = ['.jpg', '.jpeg', '.png', '.webp']
dir_files = [f for f in dir_files if any(f.lower().endswith(ext) for ext in valid_extensions)]
if limit == -1:
files_length = len(dir_files)
total = files_length - start_index if start_index > 0 else files_length
else:
total = limit
sub = graph.node("easy mathInt", operation="add", a=[while_open, 1], b=1)
cond = graph.node("easy compare", a=sub.out(0), b=total, comparison='a < b')
input_values = {("initial_value%d" % i): kwargs.get("initial_value%d" % i, None) for i in
range(1, MAX_FLOW_NUM)}
while_close = graph.node("easy whileLoopEnd",
flow=flow,
condition=cond.out(0),
initial_value0=sub.out(0),
**input_values)
return {
"result": tuple([while_close.out(i) for i in range(1, MAX_FLOW_NUM)]),
"expand": graph.finalize(),
}
COMPARE_FUNCTIONS = {
"a == b": lambda a, b: a == b,
"a != b": lambda a, b: a != b,
"a < b": lambda a, b: a < b,
"a > b": lambda a, b: a > b,
"a <= b": lambda a, b: a <= b,
"a >= b": lambda a, b: a >= b,
}
# 比较
class Compare:
@classmethod
def INPUT_TYPES(s):
compare_functions = list(COMPARE_FUNCTIONS.keys())
return {
"required": {
"a": (any_type, {"default": 0}),
"b": (any_type, {"default": 0}),
"comparison": (compare_functions, {"default": "a == b"}),
},
}
RETURN_TYPES = ("BOOLEAN",)
RETURN_NAMES = ("boolean",)
FUNCTION = "compare"
CATEGORY = "EasyUse/Logic/Math"
def compare(self, a, b, comparison):
return (COMPARE_FUNCTIONS[comparison](a, b),)
# 判断
class IfElse:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"boolean": ("BOOLEAN",),
"on_true": (any_type, lazy_options),
"on_false": (any_type, lazy_options),
},
}
RETURN_TYPES = (any_type,)
RETURN_NAMES = ("*",)
FUNCTION = "execute"
CATEGORY = "EasyUse/Logic"
def check_lazy_status(self, boolean, on_true=None, on_false=None):
if boolean and on_true is None:
return ["on_true"]
if not boolean and on_false is None:
return ["on_false"]
def execute(self, *args, **kwargs):
return (kwargs['on_true'] if kwargs['boolean'] else kwargs['on_false'],)
class Blocker:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"continue": ("BOOLEAN", {"default": False}),
"in": (any_type, {"default": None}),
},
}
RETURN_TYPES = (any_type,)
RETURN_NAMES = ("out",)
CATEGORY = "EasyUse/Logic"
FUNCTION = "execute"
def execute(self, **kwargs):
from comfy_execution.graph import ExecutionBlocker
return (kwargs['in'] if kwargs['continue'] else ExecutionBlocker(None),)
# 是否为SDXL
from comfy.sdxl_clip import SDXLClipModel, SDXLRefinerClipModel, SDXLClipG
class isNone:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"any": (any_type,)
},
"optional": {
}
}
RETURN_TYPES = ("BOOLEAN",)
RETURN_NAMES = ("boolean",)
FUNCTION = "execute"
CATEGORY = "EasyUse/Logic"
def execute(self, any):
return (True if any is None else False,)
class isSDXL:
@classmethod
def INPUT_TYPES(s):
return {
"required": {},
"optional": {
"optional_pipe": ("PIPE_LINE",),
"optional_clip": ("CLIP",),
}
}
RETURN_TYPES = ("BOOLEAN",)
RETURN_NAMES = ("boolean",)
FUNCTION = "execute"
CATEGORY = "EasyUse/Logic"
def execute(self, optional_pipe=None, optional_clip=None):
if optional_pipe is None and optional_clip is None:
raise Exception(f"[ERROR] optional_pipe or optional_clip is missing")
clip = optional_clip if optional_clip is not None else optional_pipe['clip']
if isinstance(clip.cond_stage_model, (SDXLClipModel, SDXLRefinerClipModel, SDXLClipG)):
return (True,)
else:
return (False,)
class isFileExist:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"file_path": ("STRING", {"default": ""}),
"file_name": ("STRING", {"default": ""}),
"file_extension": ("STRING", {"default": ""}),
},
"optional": {
}
}
RETURN_TYPES = ("BOOLEAN",)
RETURN_NAMES = ("boolean",)
FUNCTION = "execute"
CATEGORY = "EasyUse/Logic"
def execute(self, file_path, file_name, file_extension):
if not file_path:
raise Exception("file_path is missing")
if file_name:
file_path = os.path.join(file_path, file_name)
if file_extension:
file_path = file_path + "." + file_extension
if os.path.exists(file_path) and os.path.isfile(file_path):
return (True,)
else:
return (False,)
from nodes import MAX_RESOLUTION
from .config import BASE_RESOLUTIONS
class pixels:
@classmethod
def INPUT_TYPES(s):
resolution_strings = [
f"{width} x {height} (custom)" if width == 'width' and height == 'height' else f"{width} x {height}" for
width, height in BASE_RESOLUTIONS]
return {
"required": {
"resolution": (resolution_strings,),
"width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"scale": ("FLOAT", {"default": 2.000, "min": 0.001, "max": 10, "step": 0.001}),
"flip_w/h": ("BOOLEAN", {"default": False}),
}
}
RETURN_TYPES = ("INT", "INT", any_type, any_type, any_type)
RETURN_NAMES = ("width_norm", "height_norm", "width", "height", "scale_factor")
CATEGORY = "EasyUse/Logic"
FUNCTION = "create"
def create(self, resolution, width, height, scale, **kwargs):
if resolution not in ["自定义 x 自定义", 'width x height (custom)']:
try:
_width, _height = map(int, resolution.split(' x '))
width = _width
height = _height
except ValueError:
raise ValueError("Invalid base_resolution format.")
width = width * scale
height = height * scale
width_norm = int(width - width % 8)
height_norm = int(height - height % 8)
flip_wh = kwargs['flip_w/h']
if flip_wh:
width, height = height, width
width_norm, height_norm = height_norm, width_norm
return (width_norm, height_norm, width, height, scale)
# xy矩阵
class xyAny:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"X": (any_type, {}),
"Y": (any_type, {}),
"direction": (["horizontal", "vertical"], {"default": "horizontal"})
}
}
RETURN_TYPES = (any_type, any_type)
RETURN_NAMES = ("X", "Y")
INPUT_IS_LIST = True
OUTPUT_IS_LIST = (True, True)
CATEGORY = "EasyUse/Logic"
FUNCTION = "to_xy"
def to_xy(self, X, Y, direction):
new_x = list()
new_y = list()
if direction[0] == "horizontal":
for y in Y:
for x in X:
new_x.append(x)
new_y.append(y)
else:
for x in X:
for y in Y:
new_x.append(x)
new_y.append(y)
return (new_x, new_y)
class lengthAnything:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"any": (any_type, {}),
}
}
RETURN_TYPES = ("INT",)
RETURN_NAMES = ("length",)
FUNCTION = "getLength"
CATEGORY = "EasyUse/Logic"
def getLength(self, any):
if isinstance(any, tuple):
return
return (len(any),)
class indexAnything:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"any": (any_type, {}),
"index": ("INT", {"default": 0, "min": 0, "max": 1000000, "step": 1}),
}
}
RETURN_TYPES = (any_type,)
RETURN_NAMES = ("out",)
FUNCTION = "getIndex"
CATEGORY = "EasyUse/Logic"
def getIndex(self, any, index):
if isinstance(any, torch.Tensor):
batch_index = min(any.shape[0] - 1, index)
s = any[index:index + 1].clone()
return (s,)
else:
return (any[index],)
class batchAnything:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"any_1": (any_type, {}),
"any_2": (any_type, {})
}
}
RETURN_TYPES = (any_type,)
RETURN_NAMES = ("batch",)
FUNCTION = "batch"
CATEGORY = "EasyUse/Logic"
def latentBatch(self, any_1, any_2):
samples_out = any_1.copy()
s1 = any_1["samples"]
s2 = any_2["samples"]
if s1.shape[1:] != s2.shape[1:]:
s2 = comfy.utils.common_upscale(s2, s1.shape[3], s1.shape[2], "bilinear", "center")
s = torch.cat((s1, s2), dim=0)
samples_out["samples"] = s
samples_out["batch_index"] = any_1.get("batch_index",
[x for x in range(0, s1.shape[0])]) + any_2.get(
"batch_index", [x for x in range(0, s2.shape[0])])
return samples_out
def batch(self, any_1, any_2):
if isinstance(any_1, torch.Tensor) or isinstance(any_2, torch.Tensor):
if any_1 is None:
return (any_2,)
elif any_2 is None:
return (any_1,)
if any_1.shape[1:] != any_2.shape[1:]:
any_2 = comfy.utils.common_upscale(any_2.movedim(-1, 1), any_1.shape[2], any_1.shape[1], "bilinear",
"center").movedim(1, -1)
return (torch.cat((any_1, any_2), 0),)
elif isinstance(any_1, (str, float, int)):
if any_2 is None:
return (any_1,)
elif isinstance(any_2, tuple):
return (any_2 + (any_1,),)
return ((any_1, any_2),)
elif isinstance(any_2, (str, float, int)):
if any_1 is None:
return (any_2,)
elif isinstance(any_1, tuple):
return (any_1 + (any_2,),)
return ((any_2, any_1),)
elif isinstance(any_1, dict) and 'samples' in any_1:
if any_2 is None:
return (any_1,)
elif isinstance(any_2, dict) and 'samples' in any_2:
return (self.latentBatch(any_1, any_2),)
elif isinstance(any_2, dict) and 'samples' in any_2:
if any_1 is None:
return (any_2,)
elif isinstance(any_1, dict) and 'samples' in any_1:
return (self.latentBatch(any_2, any_1),)
else:
if any_1 is None:
return (any_2,)
elif any_2 is None:
return (any_1,)
return (any_1 + any_2,)
# 转换所有类型
class convertAnything:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"*": (any_type,),
"output_type": (["string", "int", "float", "boolean"], {"default": "string"}),
}}
RETURN_TYPES = ByPassTypeTuple((any_type,))
OUTPUT_NODE = True
FUNCTION = "convert"
CATEGORY = "EasyUse/Logic"
def convert(self, *args, **kwargs):
anything = kwargs['*']
output_type = kwargs['output_type']
params = None
if output_type == 'string':
params = str(anything)
elif output_type == 'int':
params = int(anything)
elif output_type == 'float':
params = float(anything)
elif output_type == 'boolean':
params = bool(anything)
return (params,)
# 将所有类型的内容都转成字符串输出
class showAnything:
@classmethod
def INPUT_TYPES(s):
return {"required": {}, "optional": {"anything": (any_type, {}), },
"hidden": {"unique_id": "UNIQUE_ID", "extra_pnginfo": "EXTRA_PNGINFO",
}}
RETURN_TYPES = (any_type,)
RETURN_NAMES = ('output',)
INPUT_IS_LIST = True
OUTPUT_NODE = True
FUNCTION = "log_input"
CATEGORY = "EasyUse/Logic"
def log_input(self, unique_id=None, extra_pnginfo=None, **kwargs):
values = []
if "anything" in kwargs:
for val in kwargs['anything']:
try:
if type(val) is str:
values.append(val)
else:
val = json.dumps(val)
values.append(str(val))
except Exception:
values.append(str(val))
pass
if not extra_pnginfo:
print("Error: extra_pnginfo is empty")
elif (not isinstance(extra_pnginfo[0], dict) or "workflow" not in extra_pnginfo[0]):
print("Error: extra_pnginfo[0] is not a dict or missing 'workflow' key")
else:
workflow = extra_pnginfo[0]["workflow"]
node = next((x for x in workflow["nodes"] if str(x["id"]) == unique_id[0]), None)
if node:
node["widgets_values"] = [values]
if isinstance(values, list) and len(values) == 1:
return {"ui": {"text": values}, "result": (values[0],), }
else:
return {"ui": {"text": values}, "result": (values,), }
class showAnythingLazy(showAnything):
@classmethod
def INPUT_TYPES(s):
return {"required": {}, "optional": {"anything": (any_type, {}), },
"hidden": {"unique_id": "UNIQUE_ID", "extra_pnginfo": "EXTRA_PNGINFO",
}}
RETURN_TYPES = (any_type,)
RETURN_NAMES = ('output',)
INPUT_IS_LIST = True
OUTPUT_NODE = False
OUTPUT_IS_LIST = (False,)
FUNCTION = "log_input"
CATEGORY = "EasyUse/Logic"
class showTensorShape:
@classmethod
def INPUT_TYPES(s):
return {"required": {"tensor": (any_type,)}, "optional": {},
"hidden": {"unique_id": "UNIQUE_ID", "extra_pnginfo": "EXTRA_PNGINFO"
}}
RETURN_TYPES = ()
RETURN_NAMES = ()
OUTPUT_NODE = True
FUNCTION = "log_input"
CATEGORY = "EasyUse/Logic"
def log_input(self, tensor, unique_id=None, extra_pnginfo=None):
shapes = []
def tensorShape(tensor):
if isinstance(tensor, dict):
for k in tensor:
tensorShape(tensor[k])
elif isinstance(tensor, list):
for i in range(len(tensor)):
tensorShape(tensor[i])
elif hasattr(tensor, 'shape'):
shapes.append(list(tensor.shape))
tensorShape(tensor)
return {"ui": {"text": shapes}}
class outputToList:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"tuple": (any_type, {}),
}, "optional": {},
}
RETURN_TYPES = (any_type,)
RETURN_NAMES = ("list",)
OUTPUT_IS_LIST = (True,)
FUNCTION = "output_to_List"
CATEGORY = "EasyUse/Logic"
def output_to_List(self, tuple):
return (tuple,)
# cleanGpuUsed
class cleanGPUUsed:
@classmethod
def INPUT_TYPES(s):
return {"required": {"anything": (any_type, {})}, "optional": {},
"hidden": {"unique_id": "UNIQUE_ID", "extra_pnginfo": "EXTRA_PNGINFO",
}}
RETURN_TYPES = (any_type,)
RETURN_NAMES = ("output",)
OUTPUT_NODE = True
FUNCTION = "empty_cache"
CATEGORY = "EasyUse/Logic"
def empty_cache(self, anything, unique_id=None, extra_pnginfo=None):
cleanGPUUsedForce()
remove_cache('*')
return (anything,)
class clearCacheKey:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"anything": (any_type, {}),
"cache_key": ("STRING", {"default": "*"}),
}, "optional": {},
"hidden": {"unique_id": "UNIQUE_ID", "extra_pnginfo": "EXTRA_PNGINFO", }
}
RETURN_TYPES = (any_type,)
RETURN_NAMES = ('output',)
OUTPUT_NODE = True
FUNCTION = "empty_cache"
CATEGORY = "EasyUse/Logic"
def empty_cache(self, anything, cache_name, unique_id=None, extra_pnginfo=None):
remove_cache(cache_name)
return (anything,)
class clearCacheAll:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"anything": (any_type, {}),
}, "optional": {},
"hidden": {"unique_id": "UNIQUE_ID", "extra_pnginfo": "EXTRA_PNGINFO", }
}
RETURN_TYPES = (any_type,)
RETURN_NAMES = ("output",)
OUTPUT_NODE = True
FUNCTION = "empty_cache"
CATEGORY = "EasyUse/Logic"
def empty_cache(self, anything, unique_id=None, extra_pnginfo=None):
remove_cache('*')
return (anything,)
# Deprecated
class If:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"any": (any_type,),
"if": (any_type,),
"else": (any_type,),
},
}
RETURN_TYPES = (any_type,)
RETURN_NAMES = ("?",)
FUNCTION = "execute"
CATEGORY = "EasyUse/🚫 Deprecated"
DEPRECATED = True
def execute(self, *args, **kwargs):
return (kwargs['if'] if kwargs['any'] else kwargs['else'],)
class poseEditor:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"image": ("STRING", {"default": ""})
}}
FUNCTION = "output_pose"
CATEGORY = "EasyUse/🚫 Deprecated"
DEPRECATED = True
RETURN_TYPES = ()
RETURN_NAMES = ()
def output_pose(self, image):
return ()
class imageToMask:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"image": ("IMAGE",),
"channel": (['red', 'green', 'blue'],),
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "convert"
CATEGORY = "EasyUse/🚫 Deprecated"
DEPRECATED = True
def convert_to_single_channel(self, image, channel='red'):
from PIL import Image
# Convert to RGB mode to access individual channels
image = image.convert('RGB')
# Extract the desired channel and convert to greyscale
if channel == 'red':
channel_img = image.split()[0].convert('L')
elif channel == 'green':
channel_img = image.split()[1].convert('L')
elif channel == 'blue':
channel_img = image.split()[2].convert('L')
else:
raise ValueError(
"Invalid channel option. Please choose 'red', 'green', or 'blue'.")
# Convert the greyscale channel back to RGB mode
channel_img = Image.merge(
'RGB', (channel_img, channel_img, channel_img))
return channel_img
def convert(self, image, channel='red'):
from .libs.image import pil2tensor, tensor2pil
image = self.convert_to_single_channel(tensor2pil(image), channel)
image = pil2tensor(image)
return (image.squeeze().mean(2),)
class saveText:
def __init__(self):
self.output_dir = folder_paths.output_directory
self.type = 'output'
@classmethod
def INPUT_TYPES(s):
input_types = {}
input_types['required'] = {
"text": ("STRING", {"default": "", "forceInput": True}),
"output_file_path": ("STRING", {"multiline": False, "default": ""}),
"file_name": ("STRING", {"multiline": False, "default": ""}),
"file_extension": (["txt", "csv"],),
"overwrite": ("BOOLEAN", {"default": True}),
}
input_types['optional'] = {
"image": ("IMAGE",),
}
return input_types
RETURN_TYPES = ("STRING", "IMAGE")
RETURN_NAMES = ("text", 'image',)
FUNCTION = "save_text"
OUTPUT_NODE = True
CATEGORY = "EasyUse/Logic"
def save_image(self, images, filename_prefix='', extension='png',quality=100, prompt=None,
extra_pnginfo=None, delimiter='_', filename_number_start='true', number_padding=4,
overwrite_mode='prefix_as_filename', output_path='', show_history='true', show_previews='true',
embed_workflow='true', lossless_webp=False, ):
results = list()
for image in images:
i = 255. * image.cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
# Delegate metadata/pnginfo
if extension == 'webp':
img_exif = img.getexif()
workflow_metadata = ''
prompt_str = ''
if prompt is not None:
prompt_str = json.dumps(prompt)
img_exif[0x010f] = "Prompt:" + prompt_str
if extra_pnginfo is not None:
for x in extra_pnginfo:
workflow_metadata += json.dumps(extra_pnginfo[x])
img_exif[0x010e] = "Workflow:" + workflow_metadata
exif_data = img_exif.tobytes()
else:
metadata = PngInfo()
if embed_workflow == 'true':
if prompt is not None:
metadata.add_text("prompt", json.dumps(prompt))
if extra_pnginfo is not None:
for x in extra_pnginfo:
metadata.add_text(x, json.dumps(extra_pnginfo[x]))
exif_data = metadata
file = f"{filename_prefix}.{extension}"
# Save the images
try:
output_file = os.path.abspath(os.path.join(output_path, file))
if extension in ["jpg", "jpeg"]:
img.save(output_file,
quality=quality, optimize=True)
elif extension == 'webp':
img.save(output_file,
quality=quality, lossless=lossless_webp, exif=exif_data)
elif extension == 'png':
img.save(output_file,
pnginfo=exif_data, optimize=True)
elif extension == 'bmp':
img.save(output_file)
elif extension == 'tiff':
img.save(output_file,
quality=quality, optimize=True)
else:
img.save(output_file,
pnginfo=exif_data, optimize=True)
except OSError as e:
print(e)
except Exception as e:
print(e)
def save_text(self, text, output_file_path, file_name, file_extension, overwrite, filename_number_start='true', image=None, prompt=None,
extra_pnginfo=None):
if isinstance(file_name, list):
file_name = file_name[0]
filepath = str(os.path.join(output_file_path, file_name)) + "." + file_extension
index = 1
if (output_file_path == "" or file_name == ""):
log_node_warn("Save Text", "No file details found. No file output.")
return ()
if not os.path.exists(output_file_path):
os.makedirs(output_file_path)
if not overwrite:
pass
log_node_info("Save Text", f"Saving to {filepath}")
if file_extension == "csv":
text_list = []
for i in text.split("\n"):
text_list.append(i.strip())
with open(filepath, "w", newline="", encoding='utf-8') as csv_file:
csv_writer = csv.writer(csv_file)
# Write each line as a separate row in the CSV file
for line in text_list:
csv_writer.writerow([line])
else:
with open(filepath, "w", newline="", encoding='utf-8') as text_file:
for line in text:
text_file.write(line)
result = {"result": (text, None)}
if image is not None:
imagepath = os.path.join(output_file_path, file_name)
image_index = 1
if not overwrite:
while os.path.exists(filepath):
if os.path.exists(filepath):
imagepath = str(os.path.join(output_file_path, file_name)) + "_" + str(index)
index = index + 1
else:
break
# result = self.save_images(image, imagepath, prompt, extra_pnginfo)
delimiter = '_'
number_padding = 4
lossless_webp = (False,)
original_output = self.output_dir
# Setup output path
if output_file_path in [None, '', "none", "."]:
output_path = self.output_dir
else:
output_path = ''
if not os.path.isabs(output_file_path):
output_path = os.path.join(self.output_dir, output_path)
base_output = os.path.basename(output_path)
if output_path.endswith("ComfyUI/output") or output_path.endswith("ComfyUI\output"):
base_output = ""
# Check output destination
if output_path.strip() != '':
if not os.path.isabs(output_path):
output_path = os.path.join(folder_paths.output_directory, output_path)
if not os.path.exists(output_path.strip()):
print(
f'The path `{output_path.strip()}` specified doesn\'t exist! Creating directory.')
os.makedirs(output_path, exist_ok=True)
images = []
images.append(image)
images = torch.cat(images, dim=0)
self.save_image(images, imagepath, 'png', 100, prompt, extra_pnginfo, filename_number_start=filename_number_start, output_path=output_path, delimiter=delimiter,
number_padding=number_padding, lossless_webp=lossless_webp)
log_node_info("Save Text", f"Saving Image to {imagepath}")
result['result'] = (text, image)
return result
class saveTextLazy(saveText):
RETURN_TYPES = ("STRING", "IMAGE")
RETURN_NAMES = ("text", 'image',)
FUNCTION = "save_text"
OUTPUT_NODE = False
CATEGORY = "EasyUse/Logic"
class sleep:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"any": (any_type, {}),
"delay": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1000000, "step": 0.1}),
},
}
RETURN_TYPES = (any_type,)
RETURN_NAMES = ("out",)
FUNCTION = "execute"
CATEGORY = "EasyUse/Logic"
def execute(self, any, delay):
time.sleep(delay)
return (any,)
NODE_CLASS_MAPPINGS = {
"easy string": String,
"easy int": Int,
"easy rangeInt": RangeInt,
"easy float": Float,
"easy rangeFloat": RangeFloat,
"easy boolean": Boolean,
"easy mathString": mathStringOperation,
"easy mathInt": mathIntOperation,
"easy mathFloat": mathFloatOperation,
"easy compare": Compare,
"easy imageSwitch": imageSwitch,
"easy textSwitch": textSwitch,
"easy imageIndexSwitch": imageIndexSwitch,
"easy textIndexSwitch": textIndexSwitch,
"easy conditioningIndexSwitch": conditioningIndexSwitch,
"easy anythingIndexSwitch": anythingIndexSwitch,
"easy ab": ab,
"easy anythingInversedSwitch": anythingInversedSwitch,
"easy whileLoopStart": whileLoopStart,
"easy whileLoopEnd": whileLoopEnd,
"easy forLoopStart": forLoopStart,
"easy forLoopEnd": forLoopEnd,
"easy blocker": Blocker,
"easy ifElse": IfElse,
"easy isNone": isNone,
"easy isSDXL": isSDXL,
"easy isFileExist": isFileExist,
"easy outputToList": outputToList,
"easy pixels": pixels,
"easy xyAny": xyAny,
"easy lengthAnything": lengthAnything,
"easy indexAnything": indexAnything,
"easy batchAnything": batchAnything,
"easy convertAnything": convertAnything,
"easy showAnything": showAnything,
"easy showAnythingLazy": showAnythingLazy,
"easy showTensorShape": showTensorShape,
"easy clearCacheKey": clearCacheKey,
"easy clearCacheAll": clearCacheAll,
"easy cleanGpuUsed": cleanGPUUsed,
"easy saveText": saveText,
"easy saveTextLazy": saveTextLazy,
"easy sleep": sleep,
"easy if": If,
"easy poseEditor": poseEditor,
"easy imageToMask": imageToMask,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"easy string": "String",
"easy int": "Int",
"easy rangeInt": "Range(Int)",
"easy float": "Float",
"easy rangeFloat": "Range(Float)",
"easy boolean": "Boolean",
"easy compare": "Compare",
"easy mathString": "Math String",
"easy mathInt": "Math Int",
"easy mathFloat": "Math Float",
"easy imageSwitch": "Image Switch",
"easy textSwitch": "Text Switch",
"easy imageIndexSwitch": "Image Index Switch",
"easy textIndexSwitch": "Text Index Switch",
"easy conditioningIndexSwitch": "Conditioning Index Switch",
"easy anythingIndexSwitch": "Any Index Switch",
"easy ab": "A or B",
"easy anythingInversedSwitch": "Any Inversed Switch",
"easy whileLoopStart": "While Loop Start",
"easy whileLoopEnd": "While Loop End",
"easy forLoopStart": "For Loop Start",
"easy forLoopEnd": "For Loop End",
"easy ifElse": "If else",
"easy blocker": "Blocker",
"easy isNone": "Is None",
"easy isSDXL": "Is SDXL",
"easy isFileExist": "Is File Exist",
"easy outputToList": "Output to List",
"easy pixels": "Pixels W/H Norm",
"easy xyAny": "XY Any",
"easy lengthAnything": "Length Any",
"easy indexAnything": "Index Any",
"easy batchAnything": "Batch Any",
"easy convertAnything": "Convert Any",
"easy showAnything": "Show Any",
"easy showAnythingLazy": "Show Any (Lazy)",
"easy showTensorShape": "Show Tensor Shape",
"easy clearCacheKey": "Clear Cache Key",
"easy clearCacheAll": "Clear Cache All",
"easy cleanGpuUsed": "Clean VRAM Used",
"easy saveText": "Save Text",
"easy saveTextLazy": "Save Text (Lazy)",
"easy sleep": "Sleep",
"easy if": "If (🚫Deprecated)",
"easy poseEditor": "PoseEditor (🚫Deprecated)",
"easy imageToMask": "ImageToMask (🚫Deprecated)"
}