|
from typing import Iterator, List, Tuple, Dict, Any, Union, Optional |
|
from _decimal import Context, getcontext |
|
from decimal import Decimal |
|
from .libs.utils import AlwaysEqualProxy, ByPassTypeTuple, cleanGPUUsedForce, compare_revision |
|
from .libs.cache import cache, update_cache, remove_cache |
|
from .libs.log import log_node_info, log_node_warn |
|
from nodes import PreviewImage, SaveImage, NODE_CLASS_MAPPINGS as ALL_NODE_CLASS_MAPPINGS |
|
from PIL import Image, ImageDraw, ImageFilter, ImageOps |
|
from PIL.PngImagePlugin import PngInfo |
|
import numpy as np |
|
import time |
|
import os |
|
import re |
|
import csv |
|
import json |
|
import torch |
|
import comfy.utils |
|
import folder_paths |
|
|
|
DEFAULT_FLOW_NUM = 2 |
|
MAX_FLOW_NUM = 10 |
|
lazy_options = {"lazy": True} if compare_revision(2543) else {} |
|
|
|
any_type = AlwaysEqualProxy("*") |
|
|
|
|
|
def validate_list_args(args: Dict[str, List[Any]]) -> Tuple[bool, Optional[str], Optional[str]]: |
|
""" |
|
Checks that if there are multiple arguments, they are all the same length or 1 |
|
:param args: |
|
:return: Tuple (Status, mismatched_key_1, mismatched_key_2) |
|
""" |
|
|
|
if len(args) == 1: |
|
return True, None, None |
|
|
|
len_to_match = None |
|
matched_arg_name = None |
|
for arg_name, arg in args.items(): |
|
if arg_name == 'self': |
|
|
|
continue |
|
|
|
if len(arg) != 1: |
|
if len_to_match is None: |
|
len_to_match = len(arg) |
|
matched_arg_name = arg_name |
|
elif len(arg) != len_to_match: |
|
return False, arg_name, matched_arg_name |
|
|
|
return True, None, None |
|
|
|
|
|
def error_if_mismatched_list_args(args: Dict[str, List[Any]]) -> None: |
|
is_valid, failed_key1, failed_key2 = validate_list_args(args) |
|
if not is_valid: |
|
assert failed_key1 is not None |
|
assert failed_key2 is not None |
|
raise ValueError( |
|
f"Mismatched list inputs received. {failed_key1}({len(args[failed_key1])}) !== {failed_key2}({len(args[failed_key2])})" |
|
) |
|
|
|
|
|
def zip_with_fill(*lists: Union[List[Any], None]) -> Iterator[Tuple[Any, ...]]: |
|
""" |
|
Zips lists together, but if a list has 1 element, it will be repeated for each element in the other lists. |
|
If a list is None, None will be used for that element. |
|
(Not intended for use with lists of different lengths) |
|
:param lists: |
|
:return: Iterator of tuples of length len(lists) |
|
""" |
|
max_len = max(len(lst) if lst is not None else 0 for lst in lists) |
|
for i in range(max_len): |
|
yield tuple(None if lst is None else (lst[0] if len(lst) == 1 else lst[i]) for lst in lists) |
|
|
|
|
|
|
|
|
|
|
|
class String: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": {"value": ("STRING", {"default": ""})}, |
|
} |
|
|
|
RETURN_TYPES = ("STRING",) |
|
RETURN_NAMES = ("string",) |
|
FUNCTION = "execute" |
|
CATEGORY = "EasyUse/Logic/Type" |
|
|
|
def execute(self, value): |
|
return (value,) |
|
|
|
|
|
|
|
class Int: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": {"value": ("INT", {"default": 0, "min": -999999, "max": 999999, })}, |
|
} |
|
|
|
RETURN_TYPES = ("INT",) |
|
RETURN_NAMES = ("int",) |
|
FUNCTION = "execute" |
|
CATEGORY = "EasyUse/Logic/Type" |
|
|
|
def execute(self, value): |
|
return (value,) |
|
|
|
|
|
|
|
class RangeInt: |
|
def __init__(self) -> None: |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(s) -> Dict[str, Dict[str, Any]]: |
|
return { |
|
"required": { |
|
"range_mode": (["step", "num_steps"], {"default": "step"}), |
|
"start": ("INT", {"default": 0, "min": -4096, "max": 4096, "step": 1}), |
|
"stop": ("INT", {"default": 0, "min": -4096, "max": 4096, "step": 1}), |
|
"step": ("INT", {"default": 0, "min": -4096, "max": 4096, "step": 1}), |
|
"num_steps": ("INT", {"default": 0, "min": -4096, "max": 4096, "step": 1}), |
|
"end_mode": (["Inclusive", "Exclusive"], {"default": "Inclusive"}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("INT", "INT") |
|
RETURN_NAMES = ("range", "range_sizes") |
|
INPUT_IS_LIST = True |
|
OUTPUT_IS_LIST = (True, True) |
|
FUNCTION = "build_range" |
|
|
|
CATEGORY = "EasyUse/Logic/Type" |
|
|
|
def build_range( |
|
self, range_mode, start, stop, step, num_steps, end_mode |
|
) -> Tuple[List[int], List[int]]: |
|
error_if_mismatched_list_args(locals()) |
|
|
|
ranges = [] |
|
range_sizes = [] |
|
for range_mode, e_start, e_stop, e_num_steps, e_step, e_end_mode in zip_with_fill( |
|
range_mode, start, stop, num_steps, step, end_mode |
|
): |
|
if range_mode == 'step': |
|
if e_end_mode == "Inclusive": |
|
e_stop += 1 |
|
vals = list(range(e_start, e_stop, e_step)) |
|
ranges.extend(vals) |
|
range_sizes.append(len(vals)) |
|
elif range_mode == 'num_steps': |
|
direction = 1 if e_stop > e_start else -1 |
|
if e_end_mode == "Exclusive": |
|
e_stop -= direction |
|
vals = (np.rint(np.linspace(e_start, e_stop, e_num_steps)).astype(int).tolist()) |
|
ranges.extend(vals) |
|
range_sizes.append(len(vals)) |
|
return ranges, range_sizes |
|
|
|
|
|
|
|
class Float: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": {"value": ("FLOAT", {"default": 0, "step": 0.01, "min": -999999, "max": 999999, })}, |
|
} |
|
|
|
RETURN_TYPES = ("FLOAT",) |
|
RETURN_NAMES = ("float",) |
|
FUNCTION = "execute" |
|
CATEGORY = "EasyUse/Logic/Type" |
|
|
|
def execute(self, value): |
|
return (value,) |
|
|
|
|
|
|
|
class RangeFloat: |
|
def __init__(self) -> None: |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(s) -> Dict[str, Dict[str, Any]]: |
|
return { |
|
"required": { |
|
"range_mode": (["step", "num_steps"], {"default": "step"}), |
|
"start": ("FLOAT", {"default": 0, "min": -4096, "max": 4096, "step": 0.1}), |
|
"stop": ("FLOAT", {"default": 0, "min": -4096, "max": 4096, "step": 0.1}), |
|
"step": ("FLOAT", {"default": 0, "min": -4096, "max": 4096, "step": 0.1}), |
|
"num_steps": ("INT", {"default": 0, "min": -4096, "max": 4096, "step": 1}), |
|
"end_mode": (["Inclusive", "Exclusive"], {"default": "Inclusive"}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("FLOAT", "INT") |
|
RETURN_NAMES = ("range", "range_sizes") |
|
INPUT_IS_LIST = True |
|
OUTPUT_IS_LIST = (True, True) |
|
FUNCTION = "build_range" |
|
|
|
CATEGORY = "EasyUse/Logic/Type" |
|
|
|
@staticmethod |
|
def _decimal_range( |
|
range_mode: String, start: Decimal, stop: Decimal, step: Decimal, num_steps: Int, inclusive: bool |
|
) -> Iterator[float]: |
|
if range_mode == 'step': |
|
ret_val = start |
|
if inclusive: |
|
stop = stop + step |
|
direction = 1 if step > 0 else -1 |
|
while (ret_val - stop) * direction < 0: |
|
yield float(ret_val) |
|
ret_val += step |
|
elif range_mode == 'num_steps': |
|
step = (stop - start) / (num_steps - 1) |
|
direction = 1 if step > 0 else -1 |
|
|
|
ret_val = start |
|
for _ in range(num_steps): |
|
if (ret_val - stop) * direction > 0: |
|
break |
|
yield float(ret_val) |
|
ret_val += step |
|
|
|
def build_range( |
|
self, |
|
range_mode, |
|
start, |
|
stop, |
|
step, |
|
num_steps, |
|
end_mode, |
|
) -> Tuple[List[float], List[int]]: |
|
error_if_mismatched_list_args(locals()) |
|
getcontext().prec = 12 |
|
|
|
start = [Decimal(s) for s in start] |
|
stop = [Decimal(s) for s in stop] |
|
step = [Decimal(s) for s in step] |
|
|
|
ranges = [] |
|
range_sizes = [] |
|
for range_mode, e_start, e_stop, e_step, e_num_steps, e_end_mode in zip_with_fill( |
|
range_mode, start, stop, step, num_steps, end_mode |
|
): |
|
vals = list( |
|
self._decimal_range(range_mode, e_start, e_stop, e_step, e_num_steps, e_end_mode == 'Inclusive') |
|
) |
|
ranges.extend(vals) |
|
range_sizes.append(len(vals)) |
|
|
|
return ranges, range_sizes |
|
|
|
|
|
|
|
class Boolean: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": {"value": ("BOOLEAN", {"default": False})}, |
|
} |
|
|
|
RETURN_TYPES = ("BOOLEAN",) |
|
RETURN_NAMES = ("boolean",) |
|
FUNCTION = "execute" |
|
CATEGORY = "EasyUse/Logic/Type" |
|
|
|
def execute(self, value): |
|
return (value,) |
|
|
|
|
|
|
|
class imageSwitch: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"image_a": ("IMAGE",), |
|
"image_b": ("IMAGE",), |
|
"boolean": ("BOOLEAN", {"default": False}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "image_switch" |
|
|
|
CATEGORY = "EasyUse/Logic/Switch" |
|
|
|
def image_switch(self, image_a, image_b, boolean): |
|
|
|
if boolean: |
|
return (image_a,) |
|
else: |
|
return (image_b,) |
|
|
|
|
|
class textSwitch: |
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"input": ("INT", {"default": 1, "min": 1, "max": 2}), |
|
}, |
|
"optional": { |
|
"text1": ("STRING", {"forceInput": True}), |
|
"text2": ("STRING", {"forceInput": True}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("STRING",) |
|
RETURN_NAMES = ("STRING",) |
|
CATEGORY = "EasyUse/Logic/Switch" |
|
FUNCTION = "switch" |
|
|
|
def switch(self, input, text1=None, text2=None, ): |
|
if input == 1: |
|
return (text1,) |
|
else: |
|
return (text2,) |
|
|
|
|
|
|
|
|
|
class ab: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"A or B": ("BOOLEAN", {"default": True, "label_on": "A", "label_off": "B"}), |
|
"in": (any_type,), |
|
}, |
|
"hidden": {"unique_id": "UNIQUE_ID"}, |
|
} |
|
|
|
RETURN_TYPES = (any_type, any_type,) |
|
RETURN_NAMES = ("A", "B",) |
|
FUNCTION = "switch" |
|
|
|
CATEGORY = "EasyUse/Logic" |
|
|
|
def blocker(self, value, block=False): |
|
from comfy_execution.graph import ExecutionBlocker |
|
return ExecutionBlocker(None) if block else value |
|
|
|
def switch(self, unique_id, **kwargs): |
|
is_a = kwargs['A or B'] |
|
a = self.blocker(kwargs['in'], not is_a) |
|
b = self.blocker(kwargs['in'], is_a) |
|
return (a, b) |
|
|
|
|
|
class anythingInversedSwitch: |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"index": ("INT", {"default": 0, "min": 0, "max": 9, "step": 1}), |
|
"in": (any_type,), |
|
}, |
|
"hidden": {"unique_id": "UNIQUE_ID"}, |
|
} |
|
|
|
RETURN_TYPES = ByPassTypeTuple(tuple([any_type])) |
|
RETURN_NAMES = ByPassTypeTuple(tuple(["out0"])) |
|
FUNCTION = "switch" |
|
|
|
CATEGORY = "EasyUse/Logic" |
|
|
|
def switch(self, index, unique_id, **kwargs): |
|
from comfy_execution.graph import ExecutionBlocker |
|
res = [] |
|
|
|
for i in range(0, MAX_FLOW_NUM): |
|
if index == i: |
|
res.append(kwargs['in']) |
|
else: |
|
res.append(ExecutionBlocker(None)) |
|
return res |
|
|
|
|
|
class anythingIndexSwitch: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
inputs = { |
|
"required": { |
|
"index": ("INT", {"default": 0, "min": 0, "max": 9, "step": 1}), |
|
}, |
|
"optional": { |
|
} |
|
} |
|
for i in range(MAX_FLOW_NUM): |
|
inputs["optional"]["value%d" % i] = (any_type, lazy_options) |
|
return inputs |
|
|
|
RETURN_TYPES = (any_type,) |
|
RETURN_NAMES = ("value",) |
|
FUNCTION = "index_switch" |
|
|
|
CATEGORY = "EasyUse/Logic/Index Switch" |
|
|
|
def check_lazy_status(self, index, **kwargs): |
|
key = "value%d" % index |
|
if kwargs.get(key, None) is None: |
|
return [key] |
|
|
|
def index_switch(self, index, **kwargs): |
|
key = "value%d" % index |
|
return (kwargs[key],) |
|
|
|
|
|
class imageIndexSwitch: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
inputs = { |
|
"required": { |
|
"index": ("INT", {"default": 0, "min": 0, "max": 9, "step": 1}), |
|
}, |
|
"optional": { |
|
} |
|
} |
|
for i in range(MAX_FLOW_NUM): |
|
inputs["optional"]["image%d" % i] = ("IMAGE", lazy_options) |
|
return inputs |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
RETURN_NAMES = ("image",) |
|
FUNCTION = "index_switch" |
|
|
|
CATEGORY = "EasyUse/Logic/Index Switch" |
|
|
|
def check_lazy_status(self, index, **kwargs): |
|
key = "image%d" % index |
|
if kwargs.get(key, None) is None: |
|
return [key] |
|
|
|
def index_switch(self, index, **kwargs): |
|
key = "image%d" % index |
|
return (kwargs[key],) |
|
|
|
|
|
class textIndexSwitch: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
inputs = { |
|
"required": { |
|
"index": ("INT", {"default": 0, "min": 0, "max": 9, "step": 1}), |
|
}, |
|
"optional": { |
|
} |
|
} |
|
for i in range(MAX_FLOW_NUM): |
|
inputs["optional"]["text%d" % i] = ("STRING", {**lazy_options, "forceInput": True}) |
|
return inputs |
|
|
|
RETURN_TYPES = ("STRING",) |
|
RETURN_NAMES = ("text",) |
|
FUNCTION = "index_switch" |
|
|
|
CATEGORY = "EasyUse/Logic/Index Switch" |
|
|
|
def check_lazy_status(self, index, **kwargs): |
|
key = "text%d" % index |
|
if kwargs.get(key, None) is None: |
|
return [key] |
|
|
|
def index_switch(self, index, **kwargs): |
|
key = "text%d" % index |
|
return (kwargs[key],) |
|
|
|
|
|
class conditioningIndexSwitch: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
inputs = { |
|
"required": { |
|
"index": ("INT", {"default": 0, "min": 0, "max": 9, "step": 1}), |
|
}, |
|
"optional": { |
|
} |
|
} |
|
for i in range(MAX_FLOW_NUM): |
|
inputs["optional"]["cond%d" % i] = ("CONDITIONING", lazy_options) |
|
return inputs |
|
|
|
RETURN_TYPES = ("CONDITIONING",) |
|
RETURN_NAMES = ("conditioning",) |
|
FUNCTION = "index_switch" |
|
|
|
CATEGORY = "EasyUse/Logic/Index Switch" |
|
|
|
def check_lazy_status(self, index, **kwargs): |
|
key = "cond%d" % index |
|
if kwargs.get(key, None) is None: |
|
return [key] |
|
|
|
def index_switch(self, index, **kwargs): |
|
key = "cond%d" % index |
|
return (kwargs[key],) |
|
|
|
|
|
|
|
class mathIntOperation: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"a": ("INT", {"default": 0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 1}), |
|
"b": ("INT", {"default": 0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 1}), |
|
"operation": (["add", "subtract", "multiply", "divide", "modulo", "power"],), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("INT",) |
|
FUNCTION = "int_math_operation" |
|
|
|
CATEGORY = "EasyUse/Logic/Math" |
|
|
|
def int_math_operation(self, a, b, operation): |
|
if operation == "add": |
|
return (a + b,) |
|
elif operation == "subtract": |
|
return (a - b,) |
|
elif operation == "multiply": |
|
return (a * b,) |
|
elif operation == "divide": |
|
return (a // b,) |
|
elif operation == "modulo": |
|
return (a % b,) |
|
elif operation == "power": |
|
return (a ** b,) |
|
|
|
|
|
class mathFloatOperation: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"a": ("FLOAT", {"default": 0, "min": -999999999999.0, "max": 999999999999.0, "step": 0.01}), |
|
"b": ("FLOAT", {"default": 0, "min": -999999999999.0, "max": 999999999999.0, "step": 0.01}), |
|
"operation": (["add", "subtract", "multiply", "divide", "modulo", "power"],), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("FLOAT",) |
|
FUNCTION = "float_math_operation" |
|
|
|
CATEGORY = "EasyUse/Logic/Math" |
|
|
|
def float_math_operation(self, a, b, operation): |
|
if operation == "add": |
|
return (a + b,) |
|
elif operation == "subtract": |
|
return (a - b,) |
|
elif operation == "multiply": |
|
return (a * b,) |
|
elif operation == "divide": |
|
return (a / b,) |
|
elif operation == "modulo": |
|
return (a % b,) |
|
elif operation == "power": |
|
return (a ** b,) |
|
|
|
|
|
class mathStringOperation: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"a": ("STRING", {"multiline": False}), |
|
"b": ("STRING", {"multiline": False}), |
|
"operation": (["a == b", "a != b", "a IN b", "a MATCH REGEX(b)", "a BEGINSWITH b", "a ENDSWITH b"],), |
|
"case_sensitive": ("BOOLEAN", {"default": True}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("BOOLEAN",) |
|
FUNCTION = "string_math_operation" |
|
|
|
CATEGORY = "EasyUse/Logic/Math" |
|
|
|
def string_math_operation(self, a, b, operation, case_sensitive): |
|
if not case_sensitive: |
|
a = a.lower() |
|
b = b.lower() |
|
|
|
if operation == "a == b": |
|
return (a == b,) |
|
elif operation == "a != b": |
|
return (a != b,) |
|
elif operation == "a IN b": |
|
return (a in b,) |
|
elif operation == "a MATCH REGEX(b)": |
|
try: |
|
return (re.match(b, a) is not None,) |
|
except: |
|
return (False,) |
|
elif operation == "a BEGINSWITH b": |
|
return (a.startswith(b),) |
|
elif operation == "a ENDSWITH b": |
|
return (a.endswith(b),) |
|
|
|
|
|
|
|
try: |
|
from comfy_execution.graph_utils import GraphBuilder, is_link |
|
except: |
|
GraphBuilder = None |
|
|
|
|
|
class whileLoopStart: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
inputs = { |
|
"required": { |
|
"condition": ("BOOLEAN", {"default": True}), |
|
}, |
|
"optional": { |
|
}, |
|
} |
|
for i in range(MAX_FLOW_NUM): |
|
inputs["optional"]["initial_value%d" % i] = (any_type,) |
|
return inputs |
|
|
|
RETURN_TYPES = ByPassTypeTuple(tuple(["FLOW_CONTROL"] + [any_type] * MAX_FLOW_NUM)) |
|
RETURN_NAMES = ByPassTypeTuple(tuple(["flow"] + ["value%d" % i for i in range(MAX_FLOW_NUM)])) |
|
FUNCTION = "while_loop_open" |
|
|
|
CATEGORY = "EasyUse/Logic/While Loop" |
|
|
|
def while_loop_open(self, condition, **kwargs): |
|
values = [] |
|
for i in range(MAX_FLOW_NUM): |
|
values.append(kwargs.get("initial_value%d" % i, None)) |
|
return tuple(["stub"] + values) |
|
|
|
|
|
class whileLoopEnd: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
inputs = { |
|
"required": { |
|
"flow": ("FLOW_CONTROL", {"rawLink": True}), |
|
"condition": ("BOOLEAN", {}), |
|
}, |
|
"optional": { |
|
}, |
|
"hidden": { |
|
"dynprompt": "DYNPROMPT", |
|
"unique_id": "UNIQUE_ID", |
|
"extra_pnginfo": "EXTRA_PNGINFO", |
|
} |
|
} |
|
for i in range(MAX_FLOW_NUM): |
|
inputs["optional"]["initial_value%d" % i] = (any_type,) |
|
return inputs |
|
|
|
RETURN_TYPES = ByPassTypeTuple(tuple([any_type] * MAX_FLOW_NUM)) |
|
RETURN_NAMES = ByPassTypeTuple(tuple(["value%d" % i for i in range(MAX_FLOW_NUM)])) |
|
FUNCTION = "while_loop_close" |
|
|
|
CATEGORY = "EasyUse/Logic/While Loop" |
|
|
|
def explore_dependencies(self, node_id, dynprompt, upstream, parent_ids): |
|
node_info = dynprompt.get_node(node_id) |
|
if "inputs" not in node_info: |
|
return |
|
|
|
for k, v in node_info["inputs"].items(): |
|
if is_link(v): |
|
parent_id = v[0] |
|
display_id = dynprompt.get_display_node_id(parent_id) |
|
display_node = dynprompt.get_node(display_id) |
|
class_type = display_node["class_type"] |
|
if class_type not in ['easy forLoopEnd', 'easy whileLoopEnd']: |
|
parent_ids.append(display_id) |
|
if parent_id not in upstream: |
|
upstream[parent_id] = [] |
|
self.explore_dependencies(parent_id, dynprompt, upstream, parent_ids) |
|
|
|
upstream[parent_id].append(node_id) |
|
|
|
def explore_output_nodes(self, dynprompt, upstream, output_nodes, parent_ids): |
|
for parent_id in upstream: |
|
display_id = dynprompt.get_display_node_id(parent_id) |
|
for output_id in output_nodes: |
|
id = output_nodes[output_id][0] |
|
if id in parent_ids and display_id == id and output_id not in upstream[parent_id]: |
|
if '.' in parent_id: |
|
arr = parent_id.split('.') |
|
arr[len(arr)-1] = output_id |
|
upstream[parent_id].append('.'.join(arr)) |
|
else: |
|
upstream[parent_id].append(output_id) |
|
|
|
def collect_contained(self, node_id, upstream, contained): |
|
if node_id not in upstream: |
|
return |
|
for child_id in upstream[node_id]: |
|
if child_id not in contained: |
|
contained[child_id] = True |
|
self.collect_contained(child_id, upstream, contained) |
|
|
|
def while_loop_close(self, flow, condition, dynprompt=None, unique_id=None,**kwargs): |
|
if not condition: |
|
|
|
values = [] |
|
for i in range(MAX_FLOW_NUM): |
|
values.append(kwargs.get("initial_value%d" % i, None)) |
|
return tuple(values) |
|
|
|
|
|
this_node = dynprompt.get_node(unique_id) |
|
upstream = {} |
|
|
|
parent_ids = [] |
|
self.explore_dependencies(unique_id, dynprompt, upstream, parent_ids) |
|
parent_ids = list(set(parent_ids)) |
|
|
|
prompts = dynprompt.get_original_prompt() |
|
output_nodes = {} |
|
for id in prompts: |
|
node = prompts[id] |
|
if "inputs" not in node: |
|
continue |
|
class_type = node["class_type"] |
|
class_def = ALL_NODE_CLASS_MAPPINGS[class_type] |
|
if hasattr(class_def, 'OUTPUT_NODE') and class_def.OUTPUT_NODE == True: |
|
for k, v in node['inputs'].items(): |
|
if is_link(v): |
|
output_nodes[id] = v |
|
|
|
graph = GraphBuilder() |
|
self.explore_output_nodes(dynprompt, upstream, output_nodes, parent_ids) |
|
contained = {} |
|
open_node = flow[0] |
|
self.collect_contained(open_node, upstream, contained) |
|
contained[unique_id] = True |
|
contained[open_node] = True |
|
|
|
for node_id in contained: |
|
original_node = dynprompt.get_node(node_id) |
|
node = graph.node(original_node["class_type"], "Recurse" if node_id == unique_id else node_id) |
|
node.set_override_display_id(node_id) |
|
for node_id in contained: |
|
original_node = dynprompt.get_node(node_id) |
|
node = graph.lookup_node("Recurse" if node_id == unique_id else node_id) |
|
for k, v in original_node["inputs"].items(): |
|
if is_link(v) and v[0] in contained: |
|
parent = graph.lookup_node(v[0]) |
|
node.set_input(k, parent.out(v[1])) |
|
else: |
|
node.set_input(k, v) |
|
|
|
new_open = graph.lookup_node(open_node) |
|
for i in range(MAX_FLOW_NUM): |
|
key = "initial_value%d" % i |
|
new_open.set_input(key, kwargs.get(key, None)) |
|
my_clone = graph.lookup_node("Recurse") |
|
result = map(lambda x: my_clone.out(x), range(MAX_FLOW_NUM)) |
|
return { |
|
"result": tuple(result), |
|
"expand": graph.finalize(), |
|
} |
|
|
|
|
|
class forLoopStart: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"total": ("INT", {"default": 1, "min": 1, "max": 100000, "step": 1}), |
|
}, |
|
"optional": { |
|
"initial_value%d" % i: (any_type,) for i in range(1, MAX_FLOW_NUM) |
|
}, |
|
"hidden": { |
|
"initial_value0": (any_type,), |
|
"prompt": "PROMPT", |
|
"extra_pnginfo": "EXTRA_PNGINFO", |
|
"unique_id": "UNIQUE_ID" |
|
} |
|
} |
|
|
|
RETURN_TYPES = ByPassTypeTuple(tuple(["FLOW_CONTROL", "INT"] + [any_type] * (MAX_FLOW_NUM - 1))) |
|
RETURN_NAMES = ByPassTypeTuple(tuple(["flow", "index"] + ["value%d" % i for i in range(1, MAX_FLOW_NUM)])) |
|
FUNCTION = "for_loop_start" |
|
|
|
CATEGORY = "EasyUse/Logic/For Loop" |
|
|
|
def for_loop_start(self, total, prompt=None, extra_pnginfo=None, unique_id=None, **kwargs): |
|
graph = GraphBuilder() |
|
i = 0 |
|
if "initial_value0" in kwargs: |
|
i = kwargs["initial_value0"] |
|
|
|
initial_values = {("initial_value%d" % num): kwargs.get("initial_value%d" % num, None) for num in |
|
range(1, MAX_FLOW_NUM)} |
|
while_open = graph.node("easy whileLoopStart", condition=total, initial_value0=i, **initial_values) |
|
outputs = [kwargs.get("initial_value%d" % num, None) for num in range(1, MAX_FLOW_NUM)] |
|
return { |
|
"result": tuple(["stub", i] + outputs), |
|
"expand": graph.finalize(), |
|
} |
|
|
|
|
|
class forLoopEnd: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"flow": ("FLOW_CONTROL", {"rawLink": True}), |
|
}, |
|
"optional": { |
|
"initial_value%d" % i: (any_type, {"rawLink": True}) for i in range(1, MAX_FLOW_NUM) |
|
}, |
|
"hidden": { |
|
"dynprompt": "DYNPROMPT", |
|
"extra_pnginfo": "EXTRA_PNGINFO", |
|
"unique_id": "UNIQUE_ID" |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ByPassTypeTuple(tuple([any_type] * (MAX_FLOW_NUM - 1))) |
|
RETURN_NAMES = ByPassTypeTuple(tuple(["value%d" % i for i in range(1, MAX_FLOW_NUM)])) |
|
FUNCTION = "for_loop_end" |
|
|
|
CATEGORY = "EasyUse/Logic/For Loop" |
|
|
|
|
|
|
|
def for_loop_end(self, flow, dynprompt=None, extra_pnginfo=None, unique_id=None, **kwargs): |
|
graph = GraphBuilder() |
|
while_open = flow[0] |
|
total = None |
|
|
|
|
|
forstart_node = dynprompt.get_node(while_open) |
|
if forstart_node['class_type'] == 'easy forLoopStart': |
|
inputs = forstart_node['inputs'] |
|
total = inputs['total'] |
|
elif forstart_node['class_type'] == 'easy loadImagesForLoop': |
|
inputs = forstart_node['inputs'] |
|
limit = inputs['limit'] |
|
start_index = inputs['start_index'] |
|
|
|
directory = inputs['directory'] |
|
dir_files = os.listdir(directory) |
|
valid_extensions = ['.jpg', '.jpeg', '.png', '.webp'] |
|
dir_files = [f for f in dir_files if any(f.lower().endswith(ext) for ext in valid_extensions)] |
|
if limit == -1: |
|
files_length = len(dir_files) |
|
total = files_length - start_index if start_index > 0 else files_length |
|
else: |
|
total = limit |
|
|
|
sub = graph.node("easy mathInt", operation="add", a=[while_open, 1], b=1) |
|
cond = graph.node("easy compare", a=sub.out(0), b=total, comparison='a < b') |
|
input_values = {("initial_value%d" % i): kwargs.get("initial_value%d" % i, None) for i in |
|
range(1, MAX_FLOW_NUM)} |
|
while_close = graph.node("easy whileLoopEnd", |
|
flow=flow, |
|
condition=cond.out(0), |
|
initial_value0=sub.out(0), |
|
**input_values) |
|
return { |
|
"result": tuple([while_close.out(i) for i in range(1, MAX_FLOW_NUM)]), |
|
"expand": graph.finalize(), |
|
} |
|
|
|
|
|
COMPARE_FUNCTIONS = { |
|
"a == b": lambda a, b: a == b, |
|
"a != b": lambda a, b: a != b, |
|
"a < b": lambda a, b: a < b, |
|
"a > b": lambda a, b: a > b, |
|
"a <= b": lambda a, b: a <= b, |
|
"a >= b": lambda a, b: a >= b, |
|
} |
|
|
|
|
|
|
|
class Compare: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
compare_functions = list(COMPARE_FUNCTIONS.keys()) |
|
return { |
|
"required": { |
|
"a": (any_type, {"default": 0}), |
|
"b": (any_type, {"default": 0}), |
|
"comparison": (compare_functions, {"default": "a == b"}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("BOOLEAN",) |
|
RETURN_NAMES = ("boolean",) |
|
FUNCTION = "compare" |
|
CATEGORY = "EasyUse/Logic/Math" |
|
|
|
def compare(self, a, b, comparison): |
|
return (COMPARE_FUNCTIONS[comparison](a, b),) |
|
|
|
|
|
|
|
class IfElse: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"boolean": ("BOOLEAN",), |
|
"on_true": (any_type, lazy_options), |
|
"on_false": (any_type, lazy_options), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = (any_type,) |
|
RETURN_NAMES = ("*",) |
|
FUNCTION = "execute" |
|
CATEGORY = "EasyUse/Logic" |
|
|
|
def check_lazy_status(self, boolean, on_true=None, on_false=None): |
|
if boolean and on_true is None: |
|
return ["on_true"] |
|
if not boolean and on_false is None: |
|
return ["on_false"] |
|
|
|
def execute(self, *args, **kwargs): |
|
return (kwargs['on_true'] if kwargs['boolean'] else kwargs['on_false'],) |
|
|
|
|
|
class Blocker: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"continue": ("BOOLEAN", {"default": False}), |
|
"in": (any_type, {"default": None}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = (any_type,) |
|
RETURN_NAMES = ("out",) |
|
CATEGORY = "EasyUse/Logic" |
|
FUNCTION = "execute" |
|
|
|
def execute(self, **kwargs): |
|
from comfy_execution.graph import ExecutionBlocker |
|
return (kwargs['in'] if kwargs['continue'] else ExecutionBlocker(None),) |
|
|
|
|
|
|
|
from comfy.sdxl_clip import SDXLClipModel, SDXLRefinerClipModel, SDXLClipG |
|
|
|
|
|
class isNone: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"any": (any_type,) |
|
}, |
|
"optional": { |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("BOOLEAN",) |
|
RETURN_NAMES = ("boolean",) |
|
FUNCTION = "execute" |
|
CATEGORY = "EasyUse/Logic" |
|
|
|
def execute(self, any): |
|
return (True if any is None else False,) |
|
|
|
|
|
class isSDXL: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": {}, |
|
"optional": { |
|
"optional_pipe": ("PIPE_LINE",), |
|
"optional_clip": ("CLIP",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("BOOLEAN",) |
|
RETURN_NAMES = ("boolean",) |
|
FUNCTION = "execute" |
|
CATEGORY = "EasyUse/Logic" |
|
|
|
def execute(self, optional_pipe=None, optional_clip=None): |
|
if optional_pipe is None and optional_clip is None: |
|
raise Exception(f"[ERROR] optional_pipe or optional_clip is missing") |
|
clip = optional_clip if optional_clip is not None else optional_pipe['clip'] |
|
if isinstance(clip.cond_stage_model, (SDXLClipModel, SDXLRefinerClipModel, SDXLClipG)): |
|
return (True,) |
|
else: |
|
return (False,) |
|
|
|
|
|
class isFileExist: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"file_path": ("STRING", {"default": ""}), |
|
"file_name": ("STRING", {"default": ""}), |
|
"file_extension": ("STRING", {"default": ""}), |
|
}, |
|
"optional": { |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("BOOLEAN",) |
|
RETURN_NAMES = ("boolean",) |
|
FUNCTION = "execute" |
|
CATEGORY = "EasyUse/Logic" |
|
|
|
def execute(self, file_path, file_name, file_extension): |
|
if not file_path: |
|
raise Exception("file_path is missing") |
|
|
|
if file_name: |
|
file_path = os.path.join(file_path, file_name) |
|
if file_extension: |
|
file_path = file_path + "." + file_extension |
|
|
|
if os.path.exists(file_path) and os.path.isfile(file_path): |
|
return (True,) |
|
else: |
|
return (False,) |
|
|
|
|
|
from nodes import MAX_RESOLUTION |
|
from .config import BASE_RESOLUTIONS |
|
|
|
|
|
class pixels: |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
resolution_strings = [ |
|
f"{width} x {height} (custom)" if width == 'width' and height == 'height' else f"{width} x {height}" for |
|
width, height in BASE_RESOLUTIONS] |
|
return { |
|
"required": { |
|
"resolution": (resolution_strings,), |
|
"width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}), |
|
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}), |
|
"scale": ("FLOAT", {"default": 2.000, "min": 0.001, "max": 10, "step": 0.001}), |
|
"flip_w/h": ("BOOLEAN", {"default": False}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("INT", "INT", any_type, any_type, any_type) |
|
RETURN_NAMES = ("width_norm", "height_norm", "width", "height", "scale_factor") |
|
CATEGORY = "EasyUse/Logic" |
|
FUNCTION = "create" |
|
|
|
def create(self, resolution, width, height, scale, **kwargs): |
|
if resolution not in ["自定义 x 自定义", 'width x height (custom)']: |
|
try: |
|
_width, _height = map(int, resolution.split(' x ')) |
|
width = _width |
|
height = _height |
|
except ValueError: |
|
raise ValueError("Invalid base_resolution format.") |
|
|
|
width = width * scale |
|
height = height * scale |
|
width_norm = int(width - width % 8) |
|
height_norm = int(height - height % 8) |
|
flip_wh = kwargs['flip_w/h'] |
|
if flip_wh: |
|
width, height = height, width |
|
width_norm, height_norm = height_norm, width_norm |
|
|
|
return (width_norm, height_norm, width, height, scale) |
|
|
|
|
|
|
|
class xyAny: |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
|
|
return { |
|
"required": { |
|
"X": (any_type, {}), |
|
"Y": (any_type, {}), |
|
"direction": (["horizontal", "vertical"], {"default": "horizontal"}) |
|
} |
|
} |
|
|
|
RETURN_TYPES = (any_type, any_type) |
|
RETURN_NAMES = ("X", "Y") |
|
INPUT_IS_LIST = True |
|
OUTPUT_IS_LIST = (True, True) |
|
CATEGORY = "EasyUse/Logic" |
|
FUNCTION = "to_xy" |
|
|
|
def to_xy(self, X, Y, direction): |
|
new_x = list() |
|
new_y = list() |
|
if direction[0] == "horizontal": |
|
for y in Y: |
|
for x in X: |
|
new_x.append(x) |
|
new_y.append(y) |
|
else: |
|
for x in X: |
|
for y in Y: |
|
new_x.append(x) |
|
new_y.append(y) |
|
|
|
return (new_x, new_y) |
|
|
|
|
|
class lengthAnything: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"any": (any_type, {}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("INT",) |
|
RETURN_NAMES = ("length",) |
|
|
|
FUNCTION = "getLength" |
|
CATEGORY = "EasyUse/Logic" |
|
|
|
def getLength(self, any): |
|
if isinstance(any, tuple): |
|
return |
|
return (len(any),) |
|
|
|
class indexAnything: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"any": (any_type, {}), |
|
"index": ("INT", {"default": 0, "min": 0, "max": 1000000, "step": 1}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = (any_type,) |
|
RETURN_NAMES = ("out",) |
|
|
|
FUNCTION = "getIndex" |
|
CATEGORY = "EasyUse/Logic" |
|
|
|
def getIndex(self, any, index): |
|
if isinstance(any, torch.Tensor): |
|
batch_index = min(any.shape[0] - 1, index) |
|
s = any[index:index + 1].clone() |
|
return (s,) |
|
else: |
|
return (any[index],) |
|
|
|
|
|
class batchAnything: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"any_1": (any_type, {}), |
|
"any_2": (any_type, {}) |
|
} |
|
} |
|
|
|
RETURN_TYPES = (any_type,) |
|
RETURN_NAMES = ("batch",) |
|
|
|
FUNCTION = "batch" |
|
CATEGORY = "EasyUse/Logic" |
|
|
|
def latentBatch(self, any_1, any_2): |
|
samples_out = any_1.copy() |
|
s1 = any_1["samples"] |
|
s2 = any_2["samples"] |
|
|
|
if s1.shape[1:] != s2.shape[1:]: |
|
s2 = comfy.utils.common_upscale(s2, s1.shape[3], s1.shape[2], "bilinear", "center") |
|
s = torch.cat((s1, s2), dim=0) |
|
samples_out["samples"] = s |
|
samples_out["batch_index"] = any_1.get("batch_index", |
|
[x for x in range(0, s1.shape[0])]) + any_2.get( |
|
"batch_index", [x for x in range(0, s2.shape[0])]) |
|
|
|
return samples_out |
|
|
|
def batch(self, any_1, any_2): |
|
|
|
if isinstance(any_1, torch.Tensor) or isinstance(any_2, torch.Tensor): |
|
if any_1 is None: |
|
return (any_2,) |
|
elif any_2 is None: |
|
return (any_1,) |
|
if any_1.shape[1:] != any_2.shape[1:]: |
|
any_2 = comfy.utils.common_upscale(any_2.movedim(-1, 1), any_1.shape[2], any_1.shape[1], "bilinear", |
|
"center").movedim(1, -1) |
|
return (torch.cat((any_1, any_2), 0),) |
|
elif isinstance(any_1, (str, float, int)): |
|
if any_2 is None: |
|
return (any_1,) |
|
elif isinstance(any_2, tuple): |
|
return (any_2 + (any_1,),) |
|
return ((any_1, any_2),) |
|
elif isinstance(any_2, (str, float, int)): |
|
if any_1 is None: |
|
return (any_2,) |
|
elif isinstance(any_1, tuple): |
|
return (any_1 + (any_2,),) |
|
return ((any_2, any_1),) |
|
elif isinstance(any_1, dict) and 'samples' in any_1: |
|
if any_2 is None: |
|
return (any_1,) |
|
elif isinstance(any_2, dict) and 'samples' in any_2: |
|
return (self.latentBatch(any_1, any_2),) |
|
elif isinstance(any_2, dict) and 'samples' in any_2: |
|
if any_1 is None: |
|
return (any_2,) |
|
elif isinstance(any_1, dict) and 'samples' in any_1: |
|
return (self.latentBatch(any_2, any_1),) |
|
else: |
|
if any_1 is None: |
|
return (any_2,) |
|
elif any_2 is None: |
|
return (any_1,) |
|
return (any_1 + any_2,) |
|
|
|
|
|
|
|
class convertAnything: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"*": (any_type,), |
|
"output_type": (["string", "int", "float", "boolean"], {"default": "string"}), |
|
}} |
|
|
|
RETURN_TYPES = ByPassTypeTuple((any_type,)) |
|
OUTPUT_NODE = True |
|
FUNCTION = "convert" |
|
CATEGORY = "EasyUse/Logic" |
|
|
|
def convert(self, *args, **kwargs): |
|
anything = kwargs['*'] |
|
output_type = kwargs['output_type'] |
|
params = None |
|
if output_type == 'string': |
|
params = str(anything) |
|
elif output_type == 'int': |
|
params = int(anything) |
|
elif output_type == 'float': |
|
params = float(anything) |
|
elif output_type == 'boolean': |
|
params = bool(anything) |
|
return (params,) |
|
|
|
|
|
class showAnything: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": {}, "optional": {"anything": (any_type, {}), }, |
|
"hidden": {"unique_id": "UNIQUE_ID", "extra_pnginfo": "EXTRA_PNGINFO", |
|
}} |
|
|
|
RETURN_TYPES = (any_type,) |
|
RETURN_NAMES = ('output',) |
|
INPUT_IS_LIST = True |
|
OUTPUT_NODE = True |
|
FUNCTION = "log_input" |
|
CATEGORY = "EasyUse/Logic" |
|
|
|
def log_input(self, unique_id=None, extra_pnginfo=None, **kwargs): |
|
|
|
values = [] |
|
if "anything" in kwargs: |
|
for val in kwargs['anything']: |
|
try: |
|
if type(val) is str: |
|
values.append(val) |
|
else: |
|
val = json.dumps(val) |
|
values.append(str(val)) |
|
except Exception: |
|
values.append(str(val)) |
|
pass |
|
|
|
if not extra_pnginfo: |
|
print("Error: extra_pnginfo is empty") |
|
elif (not isinstance(extra_pnginfo[0], dict) or "workflow" not in extra_pnginfo[0]): |
|
print("Error: extra_pnginfo[0] is not a dict or missing 'workflow' key") |
|
else: |
|
workflow = extra_pnginfo[0]["workflow"] |
|
node = next((x for x in workflow["nodes"] if str(x["id"]) == unique_id[0]), None) |
|
if node: |
|
node["widgets_values"] = [values] |
|
if isinstance(values, list) and len(values) == 1: |
|
return {"ui": {"text": values}, "result": (values[0],), } |
|
else: |
|
return {"ui": {"text": values}, "result": (values,), } |
|
|
|
class showAnythingLazy(showAnything): |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": {}, "optional": {"anything": (any_type, {}), }, |
|
"hidden": {"unique_id": "UNIQUE_ID", "extra_pnginfo": "EXTRA_PNGINFO", |
|
}} |
|
|
|
RETURN_TYPES = (any_type,) |
|
RETURN_NAMES = ('output',) |
|
INPUT_IS_LIST = True |
|
OUTPUT_NODE = False |
|
OUTPUT_IS_LIST = (False,) |
|
FUNCTION = "log_input" |
|
CATEGORY = "EasyUse/Logic" |
|
|
|
class showTensorShape: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": {"tensor": (any_type,)}, "optional": {}, |
|
"hidden": {"unique_id": "UNIQUE_ID", "extra_pnginfo": "EXTRA_PNGINFO" |
|
}} |
|
|
|
RETURN_TYPES = () |
|
RETURN_NAMES = () |
|
OUTPUT_NODE = True |
|
FUNCTION = "log_input" |
|
CATEGORY = "EasyUse/Logic" |
|
|
|
def log_input(self, tensor, unique_id=None, extra_pnginfo=None): |
|
shapes = [] |
|
|
|
def tensorShape(tensor): |
|
if isinstance(tensor, dict): |
|
for k in tensor: |
|
tensorShape(tensor[k]) |
|
elif isinstance(tensor, list): |
|
for i in range(len(tensor)): |
|
tensorShape(tensor[i]) |
|
elif hasattr(tensor, 'shape'): |
|
shapes.append(list(tensor.shape)) |
|
|
|
tensorShape(tensor) |
|
|
|
return {"ui": {"text": shapes}} |
|
|
|
|
|
class outputToList: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"tuple": (any_type, {}), |
|
}, "optional": {}, |
|
} |
|
|
|
RETURN_TYPES = (any_type,) |
|
RETURN_NAMES = ("list",) |
|
OUTPUT_IS_LIST = (True,) |
|
FUNCTION = "output_to_List" |
|
CATEGORY = "EasyUse/Logic" |
|
|
|
def output_to_List(self, tuple): |
|
return (tuple,) |
|
|
|
|
|
|
|
class cleanGPUUsed: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": {"anything": (any_type, {})}, "optional": {}, |
|
"hidden": {"unique_id": "UNIQUE_ID", "extra_pnginfo": "EXTRA_PNGINFO", |
|
}} |
|
|
|
RETURN_TYPES = (any_type,) |
|
RETURN_NAMES = ("output",) |
|
OUTPUT_NODE = True |
|
FUNCTION = "empty_cache" |
|
CATEGORY = "EasyUse/Logic" |
|
|
|
def empty_cache(self, anything, unique_id=None, extra_pnginfo=None): |
|
cleanGPUUsedForce() |
|
remove_cache('*') |
|
return (anything,) |
|
|
|
|
|
class clearCacheKey: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"anything": (any_type, {}), |
|
"cache_key": ("STRING", {"default": "*"}), |
|
}, "optional": {}, |
|
"hidden": {"unique_id": "UNIQUE_ID", "extra_pnginfo": "EXTRA_PNGINFO", } |
|
} |
|
|
|
RETURN_TYPES = (any_type,) |
|
RETURN_NAMES = ('output',) |
|
OUTPUT_NODE = True |
|
FUNCTION = "empty_cache" |
|
CATEGORY = "EasyUse/Logic" |
|
|
|
def empty_cache(self, anything, cache_name, unique_id=None, extra_pnginfo=None): |
|
remove_cache(cache_name) |
|
return (anything,) |
|
|
|
|
|
class clearCacheAll: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"anything": (any_type, {}), |
|
}, "optional": {}, |
|
"hidden": {"unique_id": "UNIQUE_ID", "extra_pnginfo": "EXTRA_PNGINFO", } |
|
} |
|
|
|
RETURN_TYPES = (any_type,) |
|
RETURN_NAMES = ("output",) |
|
OUTPUT_NODE = True |
|
FUNCTION = "empty_cache" |
|
CATEGORY = "EasyUse/Logic" |
|
|
|
def empty_cache(self, anything, unique_id=None, extra_pnginfo=None): |
|
remove_cache('*') |
|
return (anything,) |
|
|
|
|
|
|
|
class If: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"any": (any_type,), |
|
"if": (any_type,), |
|
"else": (any_type,), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = (any_type,) |
|
RETURN_NAMES = ("?",) |
|
FUNCTION = "execute" |
|
CATEGORY = "EasyUse/🚫 Deprecated" |
|
DEPRECATED = True |
|
|
|
def execute(self, *args, **kwargs): |
|
return (kwargs['if'] if kwargs['any'] else kwargs['else'],) |
|
|
|
|
|
class poseEditor: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"image": ("STRING", {"default": ""}) |
|
}} |
|
|
|
FUNCTION = "output_pose" |
|
CATEGORY = "EasyUse/🚫 Deprecated" |
|
DEPRECATED = True |
|
RETURN_TYPES = () |
|
RETURN_NAMES = () |
|
|
|
def output_pose(self, image): |
|
return () |
|
|
|
|
|
class imageToMask: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"image": ("IMAGE",), |
|
"channel": (['red', 'green', 'blue'],), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("MASK",) |
|
FUNCTION = "convert" |
|
CATEGORY = "EasyUse/🚫 Deprecated" |
|
DEPRECATED = True |
|
|
|
def convert_to_single_channel(self, image, channel='red'): |
|
from PIL import Image |
|
|
|
image = image.convert('RGB') |
|
|
|
|
|
if channel == 'red': |
|
channel_img = image.split()[0].convert('L') |
|
elif channel == 'green': |
|
channel_img = image.split()[1].convert('L') |
|
elif channel == 'blue': |
|
channel_img = image.split()[2].convert('L') |
|
else: |
|
raise ValueError( |
|
"Invalid channel option. Please choose 'red', 'green', or 'blue'.") |
|
|
|
|
|
channel_img = Image.merge( |
|
'RGB', (channel_img, channel_img, channel_img)) |
|
|
|
return channel_img |
|
|
|
def convert(self, image, channel='red'): |
|
from .libs.image import pil2tensor, tensor2pil |
|
image = self.convert_to_single_channel(tensor2pil(image), channel) |
|
image = pil2tensor(image) |
|
return (image.squeeze().mean(2),) |
|
|
|
|
|
class saveText: |
|
|
|
def __init__(self): |
|
self.output_dir = folder_paths.output_directory |
|
self.type = 'output' |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
input_types = {} |
|
input_types['required'] = { |
|
"text": ("STRING", {"default": "", "forceInput": True}), |
|
"output_file_path": ("STRING", {"multiline": False, "default": ""}), |
|
"file_name": ("STRING", {"multiline": False, "default": ""}), |
|
"file_extension": (["txt", "csv"],), |
|
"overwrite": ("BOOLEAN", {"default": True}), |
|
} |
|
input_types['optional'] = { |
|
"image": ("IMAGE",), |
|
} |
|
return input_types |
|
|
|
RETURN_TYPES = ("STRING", "IMAGE") |
|
RETURN_NAMES = ("text", 'image',) |
|
|
|
FUNCTION = "save_text" |
|
OUTPUT_NODE = True |
|
CATEGORY = "EasyUse/Logic" |
|
|
|
def save_image(self, images, filename_prefix='', extension='png',quality=100, prompt=None, |
|
extra_pnginfo=None, delimiter='_', filename_number_start='true', number_padding=4, |
|
overwrite_mode='prefix_as_filename', output_path='', show_history='true', show_previews='true', |
|
embed_workflow='true', lossless_webp=False, ): |
|
results = list() |
|
for image in images: |
|
i = 255. * image.cpu().numpy() |
|
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) |
|
|
|
|
|
if extension == 'webp': |
|
img_exif = img.getexif() |
|
workflow_metadata = '' |
|
prompt_str = '' |
|
if prompt is not None: |
|
prompt_str = json.dumps(prompt) |
|
img_exif[0x010f] = "Prompt:" + prompt_str |
|
if extra_pnginfo is not None: |
|
for x in extra_pnginfo: |
|
workflow_metadata += json.dumps(extra_pnginfo[x]) |
|
img_exif[0x010e] = "Workflow:" + workflow_metadata |
|
exif_data = img_exif.tobytes() |
|
else: |
|
metadata = PngInfo() |
|
if embed_workflow == 'true': |
|
if prompt is not None: |
|
metadata.add_text("prompt", json.dumps(prompt)) |
|
if extra_pnginfo is not None: |
|
for x in extra_pnginfo: |
|
metadata.add_text(x, json.dumps(extra_pnginfo[x])) |
|
exif_data = metadata |
|
|
|
file = f"{filename_prefix}.{extension}" |
|
|
|
|
|
try: |
|
output_file = os.path.abspath(os.path.join(output_path, file)) |
|
if extension in ["jpg", "jpeg"]: |
|
img.save(output_file, |
|
quality=quality, optimize=True) |
|
elif extension == 'webp': |
|
img.save(output_file, |
|
quality=quality, lossless=lossless_webp, exif=exif_data) |
|
elif extension == 'png': |
|
img.save(output_file, |
|
pnginfo=exif_data, optimize=True) |
|
elif extension == 'bmp': |
|
img.save(output_file) |
|
elif extension == 'tiff': |
|
img.save(output_file, |
|
quality=quality, optimize=True) |
|
else: |
|
img.save(output_file, |
|
pnginfo=exif_data, optimize=True) |
|
|
|
except OSError as e: |
|
print(e) |
|
except Exception as e: |
|
print(e) |
|
|
|
def save_text(self, text, output_file_path, file_name, file_extension, overwrite, filename_number_start='true', image=None, prompt=None, |
|
extra_pnginfo=None): |
|
if isinstance(file_name, list): |
|
file_name = file_name[0] |
|
filepath = str(os.path.join(output_file_path, file_name)) + "." + file_extension |
|
index = 1 |
|
|
|
if (output_file_path == "" or file_name == ""): |
|
log_node_warn("Save Text", "No file details found. No file output.") |
|
return () |
|
|
|
if not os.path.exists(output_file_path): |
|
os.makedirs(output_file_path) |
|
|
|
if not overwrite: |
|
pass |
|
|
|
log_node_info("Save Text", f"Saving to {filepath}") |
|
|
|
if file_extension == "csv": |
|
text_list = [] |
|
for i in text.split("\n"): |
|
text_list.append(i.strip()) |
|
|
|
with open(filepath, "w", newline="", encoding='utf-8') as csv_file: |
|
csv_writer = csv.writer(csv_file) |
|
|
|
for line in text_list: |
|
csv_writer.writerow([line]) |
|
else: |
|
with open(filepath, "w", newline="", encoding='utf-8') as text_file: |
|
for line in text: |
|
text_file.write(line) |
|
|
|
result = {"result": (text, None)} |
|
|
|
if image is not None: |
|
imagepath = os.path.join(output_file_path, file_name) |
|
image_index = 1 |
|
if not overwrite: |
|
while os.path.exists(filepath): |
|
if os.path.exists(filepath): |
|
imagepath = str(os.path.join(output_file_path, file_name)) + "_" + str(index) |
|
index = index + 1 |
|
else: |
|
break |
|
|
|
|
|
delimiter = '_' |
|
number_padding = 4 |
|
lossless_webp = (False,) |
|
|
|
original_output = self.output_dir |
|
|
|
|
|
if output_file_path in [None, '', "none", "."]: |
|
output_path = self.output_dir |
|
else: |
|
output_path = '' |
|
if not os.path.isabs(output_file_path): |
|
output_path = os.path.join(self.output_dir, output_path) |
|
base_output = os.path.basename(output_path) |
|
if output_path.endswith("ComfyUI/output") or output_path.endswith("ComfyUI\output"): |
|
base_output = "" |
|
|
|
|
|
if output_path.strip() != '': |
|
if not os.path.isabs(output_path): |
|
output_path = os.path.join(folder_paths.output_directory, output_path) |
|
if not os.path.exists(output_path.strip()): |
|
print( |
|
f'The path `{output_path.strip()}` specified doesn\'t exist! Creating directory.') |
|
os.makedirs(output_path, exist_ok=True) |
|
|
|
images = [] |
|
images.append(image) |
|
images = torch.cat(images, dim=0) |
|
self.save_image(images, imagepath, 'png', 100, prompt, extra_pnginfo, filename_number_start=filename_number_start, output_path=output_path, delimiter=delimiter, |
|
number_padding=number_padding, lossless_webp=lossless_webp) |
|
|
|
log_node_info("Save Text", f"Saving Image to {imagepath}") |
|
result['result'] = (text, image) |
|
|
|
return result |
|
|
|
class saveTextLazy(saveText): |
|
|
|
RETURN_TYPES = ("STRING", "IMAGE") |
|
RETURN_NAMES = ("text", 'image',) |
|
|
|
FUNCTION = "save_text" |
|
OUTPUT_NODE = False |
|
CATEGORY = "EasyUse/Logic" |
|
|
|
|
|
class sleep: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"any": (any_type, {}), |
|
"delay": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1000000, "step": 0.1}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = (any_type,) |
|
RETURN_NAMES = ("out",) |
|
FUNCTION = "execute" |
|
CATEGORY = "EasyUse/Logic" |
|
|
|
def execute(self, any, delay): |
|
time.sleep(delay) |
|
return (any,) |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"easy string": String, |
|
"easy int": Int, |
|
"easy rangeInt": RangeInt, |
|
"easy float": Float, |
|
"easy rangeFloat": RangeFloat, |
|
"easy boolean": Boolean, |
|
"easy mathString": mathStringOperation, |
|
"easy mathInt": mathIntOperation, |
|
"easy mathFloat": mathFloatOperation, |
|
"easy compare": Compare, |
|
"easy imageSwitch": imageSwitch, |
|
"easy textSwitch": textSwitch, |
|
"easy imageIndexSwitch": imageIndexSwitch, |
|
"easy textIndexSwitch": textIndexSwitch, |
|
"easy conditioningIndexSwitch": conditioningIndexSwitch, |
|
"easy anythingIndexSwitch": anythingIndexSwitch, |
|
"easy ab": ab, |
|
"easy anythingInversedSwitch": anythingInversedSwitch, |
|
"easy whileLoopStart": whileLoopStart, |
|
"easy whileLoopEnd": whileLoopEnd, |
|
"easy forLoopStart": forLoopStart, |
|
"easy forLoopEnd": forLoopEnd, |
|
"easy blocker": Blocker, |
|
"easy ifElse": IfElse, |
|
"easy isNone": isNone, |
|
"easy isSDXL": isSDXL, |
|
"easy isFileExist": isFileExist, |
|
"easy outputToList": outputToList, |
|
"easy pixels": pixels, |
|
"easy xyAny": xyAny, |
|
"easy lengthAnything": lengthAnything, |
|
"easy indexAnything": indexAnything, |
|
"easy batchAnything": batchAnything, |
|
"easy convertAnything": convertAnything, |
|
"easy showAnything": showAnything, |
|
"easy showAnythingLazy": showAnythingLazy, |
|
"easy showTensorShape": showTensorShape, |
|
"easy clearCacheKey": clearCacheKey, |
|
"easy clearCacheAll": clearCacheAll, |
|
"easy cleanGpuUsed": cleanGPUUsed, |
|
"easy saveText": saveText, |
|
"easy saveTextLazy": saveTextLazy, |
|
"easy sleep": sleep, |
|
"easy if": If, |
|
"easy poseEditor": poseEditor, |
|
"easy imageToMask": imageToMask, |
|
} |
|
NODE_DISPLAY_NAME_MAPPINGS = { |
|
"easy string": "String", |
|
"easy int": "Int", |
|
"easy rangeInt": "Range(Int)", |
|
"easy float": "Float", |
|
"easy rangeFloat": "Range(Float)", |
|
"easy boolean": "Boolean", |
|
"easy compare": "Compare", |
|
"easy mathString": "Math String", |
|
"easy mathInt": "Math Int", |
|
"easy mathFloat": "Math Float", |
|
"easy imageSwitch": "Image Switch", |
|
"easy textSwitch": "Text Switch", |
|
"easy imageIndexSwitch": "Image Index Switch", |
|
"easy textIndexSwitch": "Text Index Switch", |
|
"easy conditioningIndexSwitch": "Conditioning Index Switch", |
|
"easy anythingIndexSwitch": "Any Index Switch", |
|
"easy ab": "A or B", |
|
"easy anythingInversedSwitch": "Any Inversed Switch", |
|
"easy whileLoopStart": "While Loop Start", |
|
"easy whileLoopEnd": "While Loop End", |
|
"easy forLoopStart": "For Loop Start", |
|
"easy forLoopEnd": "For Loop End", |
|
"easy ifElse": "If else", |
|
"easy blocker": "Blocker", |
|
"easy isNone": "Is None", |
|
"easy isSDXL": "Is SDXL", |
|
"easy isFileExist": "Is File Exist", |
|
"easy outputToList": "Output to List", |
|
"easy pixels": "Pixels W/H Norm", |
|
"easy xyAny": "XY Any", |
|
"easy lengthAnything": "Length Any", |
|
"easy indexAnything": "Index Any", |
|
"easy batchAnything": "Batch Any", |
|
"easy convertAnything": "Convert Any", |
|
"easy showAnything": "Show Any", |
|
"easy showAnythingLazy": "Show Any (Lazy)", |
|
"easy showTensorShape": "Show Tensor Shape", |
|
"easy clearCacheKey": "Clear Cache Key", |
|
"easy clearCacheAll": "Clear Cache All", |
|
"easy cleanGpuUsed": "Clean VRAM Used", |
|
"easy saveText": "Save Text", |
|
"easy saveTextLazy": "Save Text (Lazy)", |
|
"easy sleep": "Sleep", |
|
"easy if": "If (🚫Deprecated)", |
|
"easy poseEditor": "PoseEditor (🚫Deprecated)", |
|
"easy imageToMask": "ImageToMask (🚫Deprecated)" |
|
} |
|
|