|
""" |
|
https://github.com/feinanshan/M2M_VFI/blob/main/Test/model/py |
|
https://raw.githubusercontent.com/feinanshan/M2M_VFI/main/Test/model/py |
|
https://github.com/feinanshan/M2M_VFI/blob/main/Test/model/py |
|
https://github.com/feinanshan/M2M_VFI/blob/main/Test/model/py |
|
https://github.com/feinanshan/M2M_VFI/blob/main/Test/model/m2m.py |
|
""" |
|
|
|
import collections |
|
import math |
|
import os |
|
import re |
|
import torch |
|
import typing |
|
from vfi_models.ops import softsplat_func |
|
from vfi_models.ops import costvol_func |
|
|
|
|
|
|
|
|
|
objBackwarpcache = {} |
|
|
|
|
|
def backwarp(tenIn: torch.Tensor, tenFlow: torch.Tensor): |
|
if ( |
|
"grid" |
|
+ str(tenFlow.dtype) |
|
+ str(tenFlow.device) |
|
+ str(tenFlow.shape[2]) |
|
+ str(tenFlow.shape[3]) |
|
not in objBackwarpcache |
|
): |
|
tenHor = ( |
|
torch.linspace( |
|
start=-1.0, |
|
end=1.0, |
|
steps=tenFlow.shape[3], |
|
dtype=tenFlow.dtype, |
|
device=tenFlow.device, |
|
) |
|
.view(1, 1, 1, -1) |
|
.repeat(1, 1, tenFlow.shape[2], 1) |
|
) |
|
tenVer = ( |
|
torch.linspace( |
|
start=-1.0, |
|
end=1.0, |
|
steps=tenFlow.shape[2], |
|
dtype=tenFlow.dtype, |
|
device=tenFlow.device, |
|
) |
|
.view(1, 1, -1, 1) |
|
.repeat(1, 1, 1, tenFlow.shape[3]) |
|
) |
|
|
|
objBackwarpcache[ |
|
"grid" |
|
+ str(tenFlow.dtype) |
|
+ str(tenFlow.device) |
|
+ str(tenFlow.shape[2]) |
|
+ str(tenFlow.shape[3]) |
|
] = torch.cat([tenHor, tenVer], 1) |
|
|
|
|
|
if tenFlow.shape[3] == tenFlow.shape[2]: |
|
tenFlow = tenFlow * (2.0 / ((tenFlow.shape[3] and tenFlow.shape[2]) - 1.0)) |
|
|
|
elif tenFlow.shape[3] != tenFlow.shape[2]: |
|
tenFlow = tenFlow * torch.tensor( |
|
data=[2.0 / (tenFlow.shape[3] - 1.0), 2.0 / (tenFlow.shape[2] - 1.0)], |
|
dtype=tenFlow.dtype, |
|
device=tenFlow.device, |
|
).view(1, 2, 1, 1) |
|
|
|
|
|
|
|
return torch.nn.functional.grid_sample( |
|
input=tenIn, |
|
grid=( |
|
objBackwarpcache[ |
|
"grid" |
|
+ str(tenFlow.dtype) |
|
+ str(tenFlow.device) |
|
+ str(tenFlow.shape[2]) |
|
+ str(tenFlow.shape[3]) |
|
] |
|
+ tenFlow |
|
).permute(0, 2, 3, 1), |
|
mode="bilinear", |
|
padding_mode="zeros", |
|
align_corners=True, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Basic(torch.nn.Module): |
|
def __init__( |
|
self, |
|
strType: str, |
|
intChans: typing.List[int], |
|
objScratch: typing.Optional[typing.Dict] = None, |
|
): |
|
super().__init__() |
|
|
|
self.strType = strType |
|
self.netEvenize = None |
|
self.netMain = None |
|
self.netShortcut = None |
|
|
|
intIn = intChans[0] |
|
intOut = intChans[-1] |
|
netMain = [] |
|
intChans = intChans.copy() |
|
fltStride = 1.0 |
|
|
|
for intPart, strPart in enumerate(self.strType.split("+")[0].split("-")): |
|
if strPart.startswith("evenize") == True and intPart == 0: |
|
|
|
class Evenize(torch.nn.Module): |
|
def __init__(self, strPad): |
|
super().__init__() |
|
|
|
self.strPad = strPad |
|
|
|
|
|
|
|
def forward(self, tenIn: torch.Tensor) -> torch.Tensor: |
|
intPad = [0, 0, 0, 0] |
|
|
|
if tenIn.shape[3] % 2 != 0: |
|
intPad[1] = 1 |
|
if tenIn.shape[2] % 2 != 0: |
|
intPad[3] = 1 |
|
|
|
if min(intPad) != 0 or max(intPad) != 0: |
|
tenIn = torch.nn.functional.pad( |
|
input=tenIn, |
|
pad=intPad, |
|
mode=self.strPad |
|
if self.strPad != "zeros" |
|
else "constant", |
|
value=0.0, |
|
) |
|
|
|
|
|
return tenIn |
|
|
|
|
|
|
|
|
|
|
|
strPad = "zeros" |
|
|
|
if "(" in strPart: |
|
if "replpad" in strPart.split("(")[1].split(")")[0].split(","): |
|
strPad = "replicate" |
|
if "reflpad" in strPart.split("(")[1].split(")")[0].split(","): |
|
strPad = "reflect" |
|
|
|
|
|
self.netEvenize = Evenize(strPad) |
|
|
|
elif strPart.startswith("conv") == True: |
|
intKsize = 3 |
|
intPad = 1 |
|
strPad = "zeros" |
|
|
|
if "(" in strPart: |
|
intKsize = int(strPart.split("(")[1].split(")")[0].split(",")[0]) |
|
intPad = int(math.floor(0.5 * (intKsize - 1))) |
|
|
|
if "replpad" in strPart.split("(")[1].split(")")[0].split(","): |
|
strPad = "replicate" |
|
if "reflpad" in strPart.split("(")[1].split(")")[0].split(","): |
|
strPad = "reflect" |
|
|
|
|
|
if "nopad" in self.strType.split("+"): |
|
intPad = 0 |
|
|
|
|
|
netMain += [ |
|
torch.nn.Conv2d( |
|
in_channels=intChans[0], |
|
out_channels=intChans[1], |
|
kernel_size=intKsize, |
|
stride=1, |
|
padding=intPad, |
|
padding_mode=strPad, |
|
bias="nobias" not in self.strType.split("+"), |
|
) |
|
] |
|
intChans = intChans[1:] |
|
fltStride *= 1.0 |
|
|
|
elif strPart.startswith("sconv") == True: |
|
intKsize = 3 |
|
intPad = 1 |
|
strPad = "zeros" |
|
|
|
if "(" in strPart: |
|
intKsize = int(strPart.split("(")[1].split(")")[0].split(",")[0]) |
|
intPad = int(math.floor(0.5 * (intKsize - 1))) |
|
|
|
if "replpad" in strPart.split("(")[1].split(")")[0].split(","): |
|
strPad = "replicate" |
|
if "reflpad" in strPart.split("(")[1].split(")")[0].split(","): |
|
strPad = "reflect" |
|
|
|
|
|
if "nopad" in self.strType.split("+"): |
|
intPad = 0 |
|
|
|
|
|
netMain += [ |
|
torch.nn.Conv2d( |
|
in_channels=intChans[0], |
|
out_channels=intChans[1], |
|
kernel_size=intKsize, |
|
stride=2, |
|
padding=intPad, |
|
padding_mode=strPad, |
|
bias="nobias" not in self.strType.split("+"), |
|
) |
|
] |
|
intChans = intChans[1:] |
|
fltStride *= 2.0 |
|
|
|
elif strPart.startswith("up") == True: |
|
|
|
class Up(torch.nn.Module): |
|
def __init__(self, strType): |
|
super().__init__() |
|
|
|
self.strType = strType |
|
|
|
|
|
|
|
def forward(self, tenIn: torch.Tensor) -> torch.Tensor: |
|
if self.strType == "nearest": |
|
return torch.nn.functional.interpolate( |
|
input=tenIn, |
|
scale_factor=2.0, |
|
mode="nearest-exact", |
|
align_corners=False, |
|
) |
|
|
|
elif self.strType == "bilinear": |
|
return torch.nn.functional.interpolate( |
|
input=tenIn, |
|
scale_factor=2.0, |
|
mode="bilinear", |
|
align_corners=False, |
|
) |
|
|
|
elif self.strType == "pyramid": |
|
return pyramid(tenIn, None, "up") |
|
|
|
elif self.strType == "shuffle": |
|
return torch.nn.functional.pixel_shuffle( |
|
tenIn, upscale_factor=2 |
|
) |
|
|
|
|
|
|
|
assert False |
|
|
|
|
|
|
|
|
|
|
|
strType = "bilinear" |
|
|
|
if "(" in strPart: |
|
if "nearest" in strPart.split("(")[1].split(")")[0].split(","): |
|
strType = "nearest" |
|
if "pyramid" in strPart.split("(")[1].split(")")[0].split(","): |
|
strType = "pyramid" |
|
if "shuffle" in strPart.split("(")[1].split(")")[0].split(","): |
|
strType = "shuffle" |
|
|
|
|
|
netMain += [Up(strType)] |
|
fltStride *= 0.5 |
|
|
|
elif strPart.startswith("prelu") == True: |
|
netMain += [ |
|
torch.nn.PReLU( |
|
num_parameters=1, |
|
init=float(strPart.split("(")[1].split(")")[0].split(",")[0]), |
|
) |
|
] |
|
fltStride *= 1.0 |
|
|
|
elif True: |
|
assert False |
|
|
|
|
|
|
|
|
|
self.netMain = torch.nn.Sequential(*netMain) |
|
|
|
for strPart in self.strType.split("+")[1:]: |
|
if strPart.startswith("skip") == True: |
|
if intIn == intOut and fltStride == 1.0: |
|
self.netShortcut = torch.nn.Identity() |
|
|
|
elif intIn != intOut and fltStride == 1.0: |
|
self.netShortcut = torch.nn.Conv2d( |
|
in_channels=intIn, |
|
out_channels=intOut, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
bias="nobias" not in self.strType.split("+"), |
|
) |
|
|
|
elif intIn == intOut and fltStride != 1.0: |
|
|
|
class Down(torch.nn.Module): |
|
def __init__(self, fltScale): |
|
super().__init__() |
|
|
|
self.fltScale = fltScale |
|
|
|
|
|
|
|
def forward(self, tenIn: torch.Tensor) -> torch.Tensor: |
|
return torch.nn.functional.interpolate( |
|
input=tenIn, |
|
scale_factor=self.fltScale, |
|
mode="bilinear", |
|
align_corners=False, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
self.netShortcut = Down(1.0 / fltStride) |
|
|
|
elif intIn != intOut and fltStride != 1.0: |
|
|
|
class Down(torch.nn.Module): |
|
def __init__(self, fltScale): |
|
super().__init__() |
|
|
|
self.fltScale = fltScale |
|
|
|
|
|
|
|
def forward(self, tenIn: torch.Tensor) -> torch.Tensor: |
|
return torch.nn.functional.interpolate( |
|
input=tenIn, |
|
scale_factor=self.fltScale, |
|
mode="bilinear", |
|
align_corners=False, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
self.netShortcut = torch.nn.Sequential( |
|
Down(1.0 / fltStride), |
|
torch.nn.Conv2d( |
|
in_channels=intIn, |
|
out_channels=intOut, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
bias="nobias" not in self.strType.split("+"), |
|
), |
|
) |
|
|
|
|
|
|
|
elif strPart.startswith("...") == True: |
|
pass |
|
|
|
|
|
|
|
|
|
assert len(intChans) == 1 |
|
|
|
|
|
|
|
def forward(self, tenIn: torch.Tensor) -> torch.Tensor: |
|
if self.netEvenize is not None: |
|
tenIn = self.netEvenize(tenIn) |
|
|
|
|
|
tenOut = self.netMain(tenIn) |
|
|
|
if self.netShortcut is not None: |
|
tenOut = tenOut + self.netShortcut(tenIn) |
|
|
|
|
|
return tenOut |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Network(torch.nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
class Extractor(torch.nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
self.netOne = Basic( |
|
"evenize(replpad)-sconv(2)-prelu(0.25)-conv(3,replpad)-prelu(0.25)-conv(3,replpad)-prelu(0.25)", |
|
[3, 32, 32, 32], |
|
None, |
|
) |
|
self.netTwo = Basic( |
|
"evenize(replpad)-sconv(2)-prelu(0.25)-conv(3,replpad)-prelu(0.25)-conv(3,replpad)-prelu(0.25)", |
|
[32, 32, 32, 32], |
|
None, |
|
) |
|
self.netThr = Basic( |
|
"evenize(replpad)-sconv(2)-prelu(0.25)-conv(3,replpad)-prelu(0.25)-conv(3,replpad)-prelu(0.25)", |
|
[32, 32, 32, 32], |
|
None, |
|
) |
|
|
|
|
|
|
|
def forward(self, tenIn): |
|
tenOne = self.netOne(tenIn) |
|
tenTwo = self.netTwo(tenOne) |
|
tenThr = self.netThr(tenTwo) |
|
tenFou = torch.nn.functional.avg_pool2d( |
|
input=tenThr, kernel_size=2, stride=2, count_include_pad=False |
|
) |
|
tenFiv = torch.nn.functional.avg_pool2d( |
|
input=tenFou, kernel_size=2, stride=2, count_include_pad=False |
|
) |
|
|
|
return [tenOne, tenTwo, tenThr, tenFou, tenFiv] |
|
|
|
|
|
|
|
|
|
|
|
class Decoder(torch.nn.Module): |
|
def __init__(self, intChannels): |
|
super().__init__() |
|
|
|
self.netCostacti = torch.nn.PReLU(num_parameters=1, init=0.25) |
|
self.netMain = Basic( |
|
"conv(3,replpad)-prelu(0.25)-conv(3,replpad)-prelu(0.25)-conv(3,replpad)-prelu(0.25)-conv(3,replpad)-prelu(0.25)-conv(3,replpad)-prelu(0.25)-conv(3,replpad)", |
|
[intChannels, 128, 128, 96, 64, 32, 2], |
|
None, |
|
) |
|
|
|
|
|
|
|
def forward(self, tenOne, tenTwo, tenFlow): |
|
if tenFlow is not None: |
|
tenFlow = 2.0 * torch.nn.functional.interpolate( |
|
input=tenFlow, |
|
scale_factor=2.0, |
|
mode="bilinear", |
|
align_corners=False, |
|
) |
|
|
|
|
|
tenMain = [] |
|
|
|
if tenFlow is None: |
|
tenMain.append(tenOne) |
|
tenMain.append(self.netCostacti(costvol_func.apply(tenOne, tenTwo))) |
|
|
|
elif tenFlow is not None: |
|
tenMain.append(tenOne) |
|
tenMain.append( |
|
self.netCostacti( |
|
costvol_func.apply( |
|
tenOne, backwarp(tenTwo, tenFlow.detach()) |
|
) |
|
) |
|
) |
|
tenMain.append(tenFlow) |
|
|
|
|
|
|
|
return (tenFlow if tenFlow is not None else 0.0) + self.netMain( |
|
torch.cat(tenMain, 1) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
self.netExtractor = Extractor() |
|
|
|
self.netFiv = Decoder(32 + 81 + 0) |
|
self.netFou = Decoder(32 + 81 + 2) |
|
self.netThr = Decoder(32 + 81 + 2) |
|
self.netTwo = Decoder(32 + 81 + 2) |
|
self.netOne = Decoder(32 + 81 + 2) |
|
|
|
|
|
|
|
def bidir(self, tenOne, tenTwo): |
|
tenOne, tenTwo = list( |
|
zip( |
|
*[ |
|
torch.split(tenFeat, [tenOne.shape[0], tenTwo.shape[0]], 0) |
|
for tenFeat in self.netExtractor(torch.cat([tenOne, tenTwo], 0)) |
|
] |
|
) |
|
) |
|
|
|
tenFwd = None |
|
tenFwd = self.netFiv(tenOne[-1], tenTwo[-1], tenFwd) |
|
tenFwd = self.netFou(tenOne[-2], tenTwo[-2], tenFwd) |
|
tenFwd = self.netThr(tenOne[-3], tenTwo[-3], tenFwd) |
|
tenFwd = self.netTwo(tenOne[-4], tenTwo[-4], tenFwd) |
|
tenFwd = self.netOne(tenOne[-5], tenTwo[-5], tenFwd) |
|
|
|
tenBwd = None |
|
tenBwd = self.netFiv(tenTwo[-1], tenOne[-1], tenBwd) |
|
tenBwd = self.netFou(tenTwo[-2], tenOne[-2], tenBwd) |
|
tenBwd = self.netThr(tenTwo[-3], tenOne[-3], tenBwd) |
|
tenBwd = self.netTwo(tenTwo[-4], tenOne[-4], tenBwd) |
|
tenBwd = self.netOne(tenTwo[-5], tenOne[-5], tenBwd) |
|
|
|
return tenFwd, tenBwd |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def forwarp_mframe_mask( |
|
tenIn1, tenFlow1, t1, tenIn2, tenFlow2, t2, tenMetric1=None, tenMetric2=None |
|
): |
|
def one_fdir(tenIn, tenFlow, td, tenMetric): |
|
tenIn = torch.cat( |
|
[ |
|
tenIn * td * (tenMetric).clip(-20.0, 20.0).exp(), |
|
td * (tenMetric).clip(-20.0, 20.0).exp(), |
|
], |
|
1, |
|
) |
|
|
|
tenOut = softsplat_func.apply(tenIn, tenFlow) |
|
|
|
return tenOut[:, :-1, :, :], tenOut[:, -1:, :, :] + 0.0000001 |
|
|
|
flow_num = tenFlow1.shape[0] |
|
tenOut = 0 |
|
tenNormalize = 0 |
|
for idx in range(flow_num): |
|
tenOutF, tenNormalizeF = one_fdir( |
|
tenIn1[idx], tenFlow1[idx], t1[idx], tenMetric1[idx] |
|
) |
|
tenOutB, tenNormalizeB = one_fdir( |
|
tenIn2[idx], tenFlow2[idx], t2[idx], tenMetric2[idx] |
|
) |
|
|
|
tenOut += tenOutF + tenOutB |
|
tenNormalize += tenNormalizeF + tenNormalizeB |
|
|
|
return tenOut / tenNormalize, tenNormalize < 0.00001 |
|
|
|
|
|
|
|
|
|
c = 16 |
|
|
|
|
|
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1): |
|
return torch.nn.Sequential( |
|
torch.nn.Conv2d( |
|
in_planes, |
|
out_planes, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
dilation=dilation, |
|
bias=True, |
|
), |
|
torch.nn.PReLU(out_planes), |
|
) |
|
|
|
|
|
def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1): |
|
return torch.nn.Sequential( |
|
torch.torch.nn.ConvTranspose2d( |
|
in_channels=in_planes, |
|
out_channels=out_planes, |
|
kernel_size=4, |
|
stride=2, |
|
padding=1, |
|
bias=True, |
|
), |
|
torch.nn.PReLU(out_planes), |
|
) |
|
|
|
|
|
class Conv2(torch.nn.Module): |
|
def __init__(self, in_planes, out_planes, stride=2): |
|
super(Conv2, self).__init__() |
|
self.conv1 = conv(in_planes, out_planes, 3, stride, 1) |
|
self.conv2 = conv(out_planes, out_planes, 3, 1, 1) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.conv2(x) |
|
return x |
|
|
|
|
|
class Conv2n(torch.nn.Module): |
|
def __init__(self, in_planes, out_planes, stride=2): |
|
super(Conv2n, self).__init__() |
|
self.conv1 = conv(in_planes, in_planes, 3, stride, 1) |
|
self.conv2 = conv(in_planes, in_planes, 3, 1, 1) |
|
self.conv3 = conv(in_planes, in_planes, 1, 1, 0) |
|
self.conv4 = conv(in_planes, out_planes, 1, 1, 0) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.conv2(x) |
|
x = self.conv3(x) |
|
x = self.conv4(x) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
class ImgPyramid(torch.nn.Module): |
|
def __init__(self): |
|
super(ImgPyramid, self).__init__() |
|
self.conv1 = Conv2(3, c) |
|
self.conv2 = Conv2(c, 2 * c) |
|
self.conv3 = Conv2(2 * c, 4 * c) |
|
self.conv4 = Conv2(4 * c, 8 * c) |
|
|
|
def forward(self, x): |
|
x1 = self.conv1(x) |
|
x2 = self.conv2(x1) |
|
x3 = self.conv3(x2) |
|
x4 = self.conv4(x3) |
|
return [x1, x2, x3, x4] |
|
|
|
|
|
class EncDec(torch.nn.Module): |
|
def __init__(self, branch): |
|
super(EncDec, self).__init__() |
|
self.branch = branch |
|
|
|
self.down0 = Conv2(8, 2 * c) |
|
self.down1 = Conv2(6 * c, 4 * c) |
|
self.down2 = Conv2(12 * c, 8 * c) |
|
self.down3 = Conv2(24 * c, 16 * c) |
|
|
|
self.up0 = deconv(48 * c, 8 * c) |
|
self.up1 = deconv(16 * c, 4 * c) |
|
self.up2 = deconv(8 * c, 2 * c) |
|
self.up3 = deconv(4 * c, c) |
|
self.conv = torch.nn.Conv2d(c, 2 * self.branch, 3, 1, 1) |
|
|
|
self.conv_m = torch.nn.Conv2d(c, 1, 3, 1, 1) |
|
|
|
|
|
self.conv_C = torch.nn.Sequential( |
|
torch.nn.AdaptiveAvgPool2d(1), |
|
torch.nn.Conv2d( |
|
16 * c, |
|
16 * 16 * c, |
|
kernel_size=(1, 1), |
|
stride=(1, 1), |
|
padding=(0, 0), |
|
bias=True, |
|
), |
|
torch.nn.Sigmoid(), |
|
) |
|
|
|
|
|
self.conv_H = torch.nn.Sequential( |
|
torch.nn.AdaptiveAvgPool2d((None, 1)), |
|
torch.nn.Conv2d( |
|
16 * c, 16, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), bias=True |
|
), |
|
torch.nn.Sigmoid(), |
|
) |
|
|
|
|
|
self.conv_W = torch.nn.Sequential( |
|
torch.nn.AdaptiveAvgPool2d((1, None)), |
|
torch.nn.Conv2d( |
|
16 * c, 16, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), bias=True |
|
), |
|
torch.nn.Sigmoid(), |
|
) |
|
|
|
self.sigmoid = torch.nn.Sigmoid() |
|
|
|
def forward(self, flow0, flow1, im0, im1, c0, c1): |
|
N_, C_, H_, W_ = im0.shape |
|
|
|
wim1 = backwarp(im1, flow0) |
|
wim0 = backwarp(im0, flow1) |
|
s0_0 = self.down0(torch.cat((flow0, im0, wim1), 1)) |
|
s1_0 = self.down0(torch.cat((flow1, im1, wim0), 1)) |
|
|
|
|
|
flow0 = ( |
|
torch.nn.functional.interpolate( |
|
flow0, scale_factor=0.5, mode="bilinear", align_corners=False |
|
) |
|
* 0.5 |
|
) |
|
flow1 = ( |
|
torch.nn.functional.interpolate( |
|
flow1, scale_factor=0.5, mode="bilinear", align_corners=False |
|
) |
|
* 0.5 |
|
) |
|
|
|
wf0 = backwarp(torch.cat((s0_0, c0[0]), 1), flow1) |
|
wf1 = backwarp(torch.cat((s1_0, c1[0]), 1), flow0) |
|
|
|
s0_1 = self.down1(torch.cat((s0_0, c0[0], wf1), 1)) |
|
s1_1 = self.down1(torch.cat((s1_0, c1[0], wf0), 1)) |
|
|
|
|
|
flow0 = ( |
|
torch.nn.functional.interpolate( |
|
flow0, scale_factor=0.5, mode="bilinear", align_corners=False |
|
) |
|
* 0.5 |
|
) |
|
flow1 = ( |
|
torch.nn.functional.interpolate( |
|
flow1, scale_factor=0.5, mode="bilinear", align_corners=False |
|
) |
|
* 0.5 |
|
) |
|
|
|
wf0 = backwarp(torch.cat((s0_1, c0[1]), 1), flow1) |
|
wf1 = backwarp(torch.cat((s1_1, c1[1]), 1), flow0) |
|
|
|
s0_2 = self.down2(torch.cat((s0_1, c0[1], wf1), 1)) |
|
s1_2 = self.down2(torch.cat((s1_1, c1[1], wf0), 1)) |
|
|
|
|
|
flow0 = ( |
|
torch.nn.functional.interpolate( |
|
flow0, scale_factor=0.5, mode="bilinear", align_corners=False |
|
) |
|
* 0.5 |
|
) |
|
flow1 = ( |
|
torch.nn.functional.interpolate( |
|
flow1, scale_factor=0.5, mode="bilinear", align_corners=False |
|
) |
|
* 0.5 |
|
) |
|
|
|
wf0 = backwarp(torch.cat((s0_2, c0[2]), 1), flow1) |
|
wf1 = backwarp(torch.cat((s1_2, c1[2]), 1), flow0) |
|
|
|
s0_3 = self.down3(torch.cat((s0_2, c0[2], wf1), 1)) |
|
s1_3 = self.down3(torch.cat((s1_2, c1[2], wf0), 1)) |
|
|
|
|
|
|
|
s0_3_c = self.conv_C(s0_3) |
|
s0_3_c = s0_3_c.view(N_, 16, -1, 1, 1) |
|
|
|
s0_3_h = self.conv_H(s0_3) |
|
s0_3_h = s0_3_h.view(N_, 16, 1, -1, 1) |
|
|
|
s0_3_w = self.conv_W(s0_3) |
|
s0_3_w = s0_3_w.view(N_, 16, 1, 1, -1) |
|
|
|
cube0 = (s0_3_c * s0_3_h * s0_3_w).mean(1) |
|
|
|
s0_3 = s0_3 * cube0 |
|
|
|
s1_3_c = self.conv_C(s1_3) |
|
s1_3_c = s1_3_c.view(N_, 16, -1, 1, 1) |
|
|
|
s1_3_h = self.conv_H(s1_3) |
|
s1_3_h = s1_3_h.view(N_, 16, 1, -1, 1) |
|
|
|
s1_3_w = self.conv_W(s1_3) |
|
s1_3_w = s1_3_w.view(N_, 16, 1, 1, -1) |
|
|
|
cube1 = (s1_3_c * s1_3_h * s1_3_w).mean(1) |
|
|
|
s1_3 = s1_3 * cube1 |
|
|
|
|
|
flow0 = ( |
|
torch.nn.functional.interpolate( |
|
flow0, scale_factor=0.5, mode="bilinear", align_corners=False |
|
) |
|
* 0.5 |
|
) |
|
flow1 = ( |
|
torch.nn.functional.interpolate( |
|
flow1, scale_factor=0.5, mode="bilinear", align_corners=False |
|
) |
|
* 0.5 |
|
) |
|
|
|
wf0 = backwarp(torch.cat((s0_3, c0[3]), 1), flow1) |
|
wf1 = backwarp(torch.cat((s1_3, c1[3]), 1), flow0) |
|
|
|
x0 = self.up0(torch.cat((s0_3, c0[3], wf1), 1)) |
|
x1 = self.up0(torch.cat((s1_3, c1[3], wf0), 1)) |
|
|
|
x0 = self.up1(torch.cat((s0_2, x0), 1)) |
|
x1 = self.up1(torch.cat((s1_2, x1), 1)) |
|
|
|
x0 = self.up2(torch.cat((s0_1, x0), 1)) |
|
x1 = self.up2(torch.cat((s1_1, x1), 1)) |
|
|
|
x0 = self.up3(torch.cat((s0_0, x0), 1)) |
|
x1 = self.up3(torch.cat((s1_0, x1), 1)) |
|
|
|
m0 = self.sigmoid(self.conv_m(x0)) * 0.8 + 0.1 |
|
m1 = self.sigmoid(self.conv_m(x1)) * 0.8 + 0.1 |
|
|
|
x0 = self.conv(x0) |
|
x1 = self.conv(x1) |
|
|
|
return x0, x1, m0.repeat(1, self.branch, 1, 1), m1.repeat(1, self.branch, 1, 1) |
|
|
|
|
|
class M2M_PWC(torch.nn.Module): |
|
def __init__(self, ratio=4): |
|
super(M2M_PWC, self).__init__() |
|
self.branch = 4 |
|
self.ratio = ratio |
|
|
|
self.netFlow = Network() |
|
|
|
self.paramAlpha = torch.nn.Parameter(10.0 * torch.ones(1, 1, 1, 1)) |
|
|
|
class MotionRefineNet(torch.nn.Module): |
|
def __init__(self, branch): |
|
super(MotionRefineNet, self).__init__() |
|
self.branch = branch |
|
self.img_pyramid = ImgPyramid() |
|
self.motion_encdec = EncDec(branch) |
|
|
|
def forward(self, flow0, flow1, im0, im1, ratio): |
|
flow0 = ratio * torch.nn.functional.interpolate( |
|
input=flow0, |
|
scale_factor=ratio, |
|
mode="bilinear", |
|
align_corners=False, |
|
) |
|
flow1 = ratio * torch.nn.functional.interpolate( |
|
input=flow1, |
|
scale_factor=ratio, |
|
mode="bilinear", |
|
align_corners=False, |
|
) |
|
|
|
c0 = self.img_pyramid(im0) |
|
c1 = self.img_pyramid(im1) |
|
|
|
flow_res = self.motion_encdec(flow0, flow1, im0, im1, c0, c1) |
|
|
|
flow0 = flow0.repeat(1, self.branch, 1, 1) + flow_res[0] |
|
flow1 = flow1.repeat(1, self.branch, 1, 1) + flow_res[1] |
|
|
|
return flow0, flow1, flow_res[2], flow_res[3] |
|
|
|
self.MRN = MotionRefineNet(self.branch) |
|
|
|
def forward(self, im0, im1, fltTimes=[0.5], ratio=None): |
|
if ratio is None: |
|
ratio = self.ratio |
|
|
|
intWidth = im0.shape[3] and im1.shape[3] |
|
intHeight = im0.shape[2] and im1.shape[2] |
|
|
|
intPadr = ((ratio * 16) - (intWidth % (ratio * 16))) % (ratio * 16) |
|
intPadb = ((ratio * 16) - (intHeight % (ratio * 16))) % (ratio * 16) |
|
|
|
im0 = torch.nn.functional.pad( |
|
input=im0, pad=[0, intPadr, 0, intPadb], mode="replicate" |
|
) |
|
im1 = torch.nn.functional.pad( |
|
input=im1, pad=[0, intPadr, 0, intPadb], mode="replicate" |
|
) |
|
|
|
N_, C_, H_, W_ = im0.shape |
|
|
|
outputs = [] |
|
|
|
with torch.set_grad_enabled(False): |
|
tenStats = [im0, im1] |
|
tenMean_ = sum([tenIn.mean([1, 2, 3], True) for tenIn in tenStats]) / len( |
|
tenStats |
|
) |
|
tenStd_ = ( |
|
sum( |
|
[ |
|
tenIn.std([1, 2, 3], False, True).square() |
|
+ (tenMean_ - tenIn.mean([1, 2, 3], True)).square() |
|
for tenIn in tenStats |
|
] |
|
) |
|
/ len(tenStats) |
|
).sqrt() |
|
|
|
im0_o = (im0 - tenMean_) / (tenStd_ + 0.0000001) |
|
im1_o = (im1 - tenMean_) / (tenStd_ + 0.0000001) |
|
|
|
im0 = (im0 - tenMean_) / (tenStd_ + 0.0000001) |
|
im1 = (im1 - tenMean_) / (tenStd_ + 0.0000001) |
|
|
|
im0_ = torch.nn.functional.interpolate( |
|
input=im0, scale_factor=2.0 / ratio, mode="bilinear", align_corners=False |
|
) |
|
im1_ = torch.nn.functional.interpolate( |
|
input=im1, scale_factor=2.0 / ratio, mode="bilinear", align_corners=False |
|
) |
|
|
|
tenFwd, tenBwd = self.netFlow.bidir(im0_, im1_) |
|
|
|
tenFwd, tenBwd, WeiMF, WeiMB = self.MRN(tenFwd, tenBwd, im0, im1, ratio) |
|
|
|
for fltTime_ in fltTimes: |
|
im0 = im0_o.repeat(1, self.branch, 1, 1) |
|
im1 = im1_o.repeat(1, self.branch, 1, 1) |
|
tenStd = tenStd_.repeat(1, self.branch, 1, 1) |
|
tenMean = tenMean_.repeat(1, self.branch, 1, 1) |
|
fltTime = fltTime_.repeat(1, self.branch, 1, 1) |
|
|
|
tenFwd = tenFwd.reshape(N_, self.branch, 2, H_, W_).view( |
|
N_ * self.branch, 2, H_, W_ |
|
) |
|
tenBwd = tenBwd.reshape(N_, self.branch, 2, H_, W_).view( |
|
N_ * self.branch, 2, H_, W_ |
|
) |
|
|
|
WeiMF = WeiMF.reshape(N_, self.branch, 1, H_, W_).view( |
|
N_ * self.branch, 1, H_, W_ |
|
) |
|
WeiMB = WeiMB.reshape(N_, self.branch, 1, H_, W_).view( |
|
N_ * self.branch, 1, H_, W_ |
|
) |
|
|
|
im0 = im0.reshape(N_, self.branch, 3, H_, W_).view( |
|
N_ * self.branch, 3, H_, W_ |
|
) |
|
im1 = im1.reshape(N_, self.branch, 3, H_, W_).view( |
|
N_ * self.branch, 3, H_, W_ |
|
) |
|
|
|
tenStd = tenStd.reshape(N_, self.branch, 1, 1, 1).view( |
|
N_ * self.branch, 1, 1, 1 |
|
) |
|
tenMean = tenMean.reshape(N_, self.branch, 1, 1, 1).view( |
|
N_ * self.branch, 1, 1, 1 |
|
) |
|
fltTime = fltTime.reshape(N_, self.branch, 1, 1, 1).view( |
|
N_ * self.branch, 1, 1, 1 |
|
) |
|
|
|
tenPhotoone = ( |
|
( |
|
1.0 |
|
- ( |
|
WeiMF |
|
* (im0 - backwarp(im1, tenFwd).detach()).abs().mean([1], True) |
|
) |
|
) |
|
.clip(0.001, None) |
|
.square() |
|
) |
|
tenPhototwo = ( |
|
( |
|
1.0 |
|
- ( |
|
WeiMB |
|
* (im1 - backwarp(im0, tenBwd).detach()).abs().mean([1], True) |
|
) |
|
) |
|
.clip(0.001, None) |
|
.square() |
|
) |
|
|
|
t0 = fltTime |
|
flow0 = tenFwd * t0 |
|
metric0 = self.paramAlpha * tenPhotoone |
|
|
|
t1 = 1.0 - fltTime |
|
flow1 = tenBwd * t1 |
|
metric1 = self.paramAlpha * tenPhototwo |
|
|
|
flow0 = flow0.reshape(N_, self.branch, 2, H_, W_).permute(1, 0, 2, 3, 4) |
|
flow1 = flow1.reshape(N_, self.branch, 2, H_, W_).permute(1, 0, 2, 3, 4) |
|
|
|
metric0 = metric0.reshape(N_, self.branch, 1, H_, W_).permute(1, 0, 2, 3, 4) |
|
metric1 = metric1.reshape(N_, self.branch, 1, H_, W_).permute(1, 0, 2, 3, 4) |
|
|
|
im0 = im0.reshape(N_, self.branch, 3, H_, W_).permute(1, 0, 2, 3, 4) |
|
im1 = im1.reshape(N_, self.branch, 3, H_, W_).permute(1, 0, 2, 3, 4) |
|
|
|
t0 = t0.reshape(N_, self.branch, 1, 1, 1).permute(1, 0, 2, 3, 4) |
|
t1 = t1.reshape(N_, self.branch, 1, 1, 1).permute(1, 0, 2, 3, 4) |
|
|
|
tenOutput, mask = forwarp_mframe_mask( |
|
im0, flow0, t1, im1, flow1, t0, metric0, metric1 |
|
) |
|
|
|
tenOutput = tenOutput + mask * (t1.mean(0) * im0_o + t0.mean(0) * im1_o) |
|
|
|
outputs.append((tenOutput * (tenStd_ + 0.0000001)) + tenMean_) |
|
|
|
return [output[:, :, :intHeight, :intWidth] for output in outputs] |
|
|