jaxmetaverse's picture
Upload folder using huggingface_hub
82ea528 verified
import pathlib
import torch
from torch.utils.data import DataLoader
import pathlib
from vfi_utils import load_file_from_github_release, preprocess_frames, postprocess_frames
import typing
from comfy.model_management import get_torch_device
from vfi_utils import InterpolationStateList, generic_frame_loop
MODEL_TYPE = pathlib.Path(__file__).parent.name
CKPT_NAMES = ["M2M.pth"]
class M2M_VFI:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"ckpt_name": (CKPT_NAMES, ),
"frames": ("IMAGE", ),
"clear_cache_after_n_frames": ("INT", {"default": 10, "min": 1, "max": 1000}),
"multiplier": ("INT", {"default": 2, "min": 2, "max": 1000}),
},
"optional": {
"optional_interpolation_states": ("INTERPOLATION_STATES", )
}
}
RETURN_TYPES = ("IMAGE", )
FUNCTION = "vfi"
CATEGORY = "ComfyUI-Frame-Interpolation/VFI"
def vfi(
self,
ckpt_name: typing.AnyStr,
frames: torch.Tensor,
clear_cache_after_n_frames: typing.SupportsInt = 1,
multiplier: typing.SupportsInt = 2,
optional_interpolation_states: InterpolationStateList = None,
**kwargs
):
from .M2M_arch import M2M_PWC
model_path = load_file_from_github_release(MODEL_TYPE, ckpt_name)
interpolation_model = M2M_PWC()
interpolation_model.load_state_dict(torch.load(model_path))
interpolation_model.eval().to(get_torch_device())
frames = preprocess_frames(frames)
def return_middle_frame(frame_0, frame_1, int_timestep, model):
tenSteps = [
torch.FloatTensor([int_timestep] * len(frame_0)).view(len(frame_0), 1, 1, 1).to(get_torch_device())
]
return model(frame_0, frame_1, tenSteps)[0]
args = [interpolation_model]
out = postprocess_frames(
generic_frame_loop(type(self).__name__, frames, clear_cache_after_n_frames, multiplier, return_middle_frame, *args,
interpolation_states=optional_interpolation_states, dtype=torch.float32)
)
return (out,)