|
""" |
|
26-Dez-21 |
|
https://github.com/hzwer/Practical-RIFE |
|
https://github.com/hzwer/Practical-RIFE/blob/main/model/warplayer.py |
|
https://github.com/HolyWu/vs-rife/blob/master/vsrife/__init__.py |
|
""" |
|
from torch.nn.parallel import DistributedDataParallel as DDP |
|
from torch.optim import AdamW |
|
import torch |
|
import torch.nn.functional as F |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
import warnings |
|
from comfy.model_management import get_torch_device |
|
|
|
device = get_torch_device() |
|
backwarp_tenGrid = {} |
|
|
|
|
|
class ResConv(nn.Module): |
|
def __init__(self, c, dilation=1): |
|
super(ResConv, self).__init__() |
|
self.conv = nn.Conv2d(c, c, 3, 1, dilation, dilation=dilation, groups=1) |
|
self.beta = nn.Parameter(torch.ones((1, c, 1, 1)), requires_grad=True) |
|
self.relu = nn.LeakyReLU(0.2, True) |
|
|
|
def forward(self, x): |
|
return self.relu(self.conv(x) * self.beta + x) |
|
|
|
|
|
def warp(tenInput, tenFlow): |
|
k = (str(tenFlow.device), str(tenFlow.size())) |
|
if k not in backwarp_tenGrid: |
|
tenHorizontal = ( |
|
torch.linspace(-1.0, 1.0, tenFlow.shape[3], device=device) |
|
.view(1, 1, 1, tenFlow.shape[3]) |
|
.expand(tenFlow.shape[0], -1, tenFlow.shape[2], -1) |
|
) |
|
tenVertical = ( |
|
torch.linspace(-1.0, 1.0, tenFlow.shape[2], device=device) |
|
.view(1, 1, tenFlow.shape[2], 1) |
|
.expand(tenFlow.shape[0], -1, -1, tenFlow.shape[3]) |
|
) |
|
backwarp_tenGrid[k] = torch.cat([tenHorizontal, tenVertical], 1).to(device) |
|
|
|
tenFlow = torch.cat( |
|
[ |
|
tenFlow[:, 0:1, :, :] / ((tenInput.shape[3] - 1.0) / 2.0), |
|
tenFlow[:, 1:2, :, :] / ((tenInput.shape[2] - 1.0) / 2.0), |
|
], |
|
1, |
|
) |
|
|
|
g = (backwarp_tenGrid[k] + tenFlow).permute(0, 2, 3, 1) |
|
|
|
if tenInput.type() == "torch.cuda.HalfTensor": |
|
g = g.half() |
|
|
|
padding_mode = "border" |
|
if device.type == "mps": |
|
|
|
padding_mode = "zeros" |
|
g = g.clamp(-1, 1) |
|
return torch.nn.functional.grid_sample( |
|
input=tenInput, |
|
grid=g, |
|
mode="bilinear", |
|
padding_mode=padding_mode, |
|
align_corners=True, |
|
) |
|
|
|
|
|
def conv( |
|
in_planes, |
|
out_planes, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
dilation=1, |
|
arch_ver="4.0", |
|
): |
|
if arch_ver == "4.0": |
|
return nn.Sequential( |
|
nn.Conv2d( |
|
in_planes, |
|
out_planes, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
dilation=dilation, |
|
bias=True, |
|
), |
|
nn.PReLU(out_planes), |
|
) |
|
if arch_ver in ["4.2", "4.3", "4.5", "4.6", "4.7", "4.10"]: |
|
return nn.Sequential( |
|
nn.Conv2d( |
|
in_planes, |
|
out_planes, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
dilation=dilation, |
|
bias=True, |
|
), |
|
nn.LeakyReLU(0.2, True), |
|
) |
|
|
|
|
|
def conv_woact(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1): |
|
return nn.Sequential( |
|
nn.Conv2d( |
|
in_planes, |
|
out_planes, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
dilation=dilation, |
|
bias=True, |
|
), |
|
) |
|
|
|
|
|
def conv_woact(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1): |
|
return nn.Sequential( |
|
nn.Conv2d( |
|
in_planes, |
|
out_planes, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
dilation=dilation, |
|
bias=True, |
|
) |
|
) |
|
|
|
|
|
def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1, arch_ver="4.0"): |
|
if arch_ver == "4.0": |
|
return nn.Sequential( |
|
torch.nn.ConvTranspose2d( |
|
in_channels=in_planes, |
|
out_channels=out_planes, |
|
kernel_size=4, |
|
stride=2, |
|
padding=1, |
|
bias=True, |
|
), |
|
nn.PReLU(out_planes), |
|
) |
|
if arch_ver in ["4.2", "4.3", "4.5", "4.6", "4.7", "4.10"]: |
|
return nn.Sequential( |
|
torch.nn.ConvTranspose2d( |
|
in_channels=in_planes, |
|
out_channels=out_planes, |
|
kernel_size=4, |
|
stride=2, |
|
padding=1, |
|
bias=True, |
|
), |
|
nn.LeakyReLU(0.2, True), |
|
) |
|
|
|
|
|
class Conv2(nn.Module): |
|
def __init__(self, in_planes, out_planes, stride=2, arch_ver="4.0"): |
|
super(Conv2, self).__init__() |
|
self.conv1 = conv(in_planes, out_planes, 3, stride, 1, arch_ver=arch_ver) |
|
self.conv2 = conv(out_planes, out_planes, 3, 1, 1, arch_ver=arch_ver) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.conv2(x) |
|
return x |
|
|
|
|
|
class IFBlock(nn.Module): |
|
def __init__(self, in_planes, c=64, arch_ver="4.0"): |
|
super(IFBlock, self).__init__() |
|
self.arch_ver = arch_ver |
|
self.conv0 = nn.Sequential( |
|
conv(in_planes, c // 2, 3, 2, 1, arch_ver=arch_ver), |
|
conv(c // 2, c, 3, 2, 1, arch_ver=arch_ver), |
|
) |
|
self.arch_ver = arch_ver |
|
|
|
if arch_ver in ["4.0", "4.2", "4.3"]: |
|
self.convblock = nn.Sequential( |
|
conv(c, c, arch_ver=arch_ver), |
|
conv(c, c, arch_ver=arch_ver), |
|
conv(c, c, arch_ver=arch_ver), |
|
conv(c, c, arch_ver=arch_ver), |
|
conv(c, c, arch_ver=arch_ver), |
|
conv(c, c, arch_ver=arch_ver), |
|
conv(c, c, arch_ver=arch_ver), |
|
conv(c, c, arch_ver=arch_ver), |
|
) |
|
self.lastconv = nn.ConvTranspose2d(c, 5, 4, 2, 1) |
|
|
|
if arch_ver in ["4.5", "4.6", "4.7", "4.10"]: |
|
self.convblock = nn.Sequential( |
|
ResConv(c), |
|
ResConv(c), |
|
ResConv(c), |
|
ResConv(c), |
|
ResConv(c), |
|
ResConv(c), |
|
ResConv(c), |
|
ResConv(c), |
|
) |
|
if arch_ver == "4.5": |
|
self.lastconv = nn.Sequential( |
|
nn.ConvTranspose2d(c, 4 * 5, 4, 2, 1), nn.PixelShuffle(2) |
|
) |
|
if arch_ver in ["4.6", "4.7", "4.10"]: |
|
self.lastconv = nn.Sequential( |
|
nn.ConvTranspose2d(c, 4 * 6, 4, 2, 1), nn.PixelShuffle(2) |
|
) |
|
|
|
def forward(self, x, flow=None, scale=1): |
|
x = F.interpolate( |
|
x, scale_factor=1.0 / scale, mode="bilinear", align_corners=False |
|
) |
|
if flow is not None: |
|
flow = ( |
|
F.interpolate( |
|
flow, scale_factor=1.0 / scale, mode="bilinear", align_corners=False |
|
) |
|
* 1.0 |
|
/ scale |
|
) |
|
x = torch.cat((x, flow), 1) |
|
feat = self.conv0(x) |
|
if self.arch_ver == "4.0": |
|
feat = self.convblock(feat) + feat |
|
if self.arch_ver in ["4.2", "4.3", "4.5", "4.6", "4.7", "4.10"]: |
|
feat = self.convblock(feat) |
|
|
|
tmp = self.lastconv(feat) |
|
if self.arch_ver in ["4.0", "4.2", "4.3"]: |
|
tmp = F.interpolate( |
|
tmp, scale_factor=scale * 2, mode="bilinear", align_corners=False |
|
) |
|
flow = tmp[:, :4] * scale * 2 |
|
if self.arch_ver in ["4.5", "4.6", "4.7", "4.10"]: |
|
tmp = F.interpolate( |
|
tmp, scale_factor=scale, mode="bilinear", align_corners=False |
|
) |
|
flow = tmp[:, :4] * scale |
|
mask = tmp[:, 4:5] |
|
return flow, mask |
|
|
|
|
|
class Contextnet(nn.Module): |
|
def __init__(self, arch_ver="4.0"): |
|
super(Contextnet, self).__init__() |
|
c = 16 |
|
self.conv1 = Conv2(3, c, arch_ver=arch_ver) |
|
self.conv2 = Conv2(c, 2 * c, arch_ver=arch_ver) |
|
self.conv3 = Conv2(2 * c, 4 * c, arch_ver=arch_ver) |
|
self.conv4 = Conv2(4 * c, 8 * c, arch_ver=arch_ver) |
|
|
|
def forward(self, x, flow): |
|
x = self.conv1(x) |
|
flow = ( |
|
F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False) |
|
* 0.5 |
|
) |
|
f1 = warp(x, flow) |
|
x = self.conv2(x) |
|
flow = ( |
|
F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False) |
|
* 0.5 |
|
) |
|
f2 = warp(x, flow) |
|
x = self.conv3(x) |
|
flow = ( |
|
F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False) |
|
* 0.5 |
|
) |
|
f3 = warp(x, flow) |
|
x = self.conv4(x) |
|
flow = ( |
|
F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False) |
|
* 0.5 |
|
) |
|
f4 = warp(x, flow) |
|
return [f1, f2, f3, f4] |
|
|
|
|
|
class Unet(nn.Module): |
|
def __init__(self, arch_ver="4.0"): |
|
super(Unet, self).__init__() |
|
c = 16 |
|
self.down0 = Conv2(17, 2 * c, arch_ver=arch_ver) |
|
self.down1 = Conv2(4 * c, 4 * c, arch_ver=arch_ver) |
|
self.down2 = Conv2(8 * c, 8 * c, arch_ver=arch_ver) |
|
self.down3 = Conv2(16 * c, 16 * c, arch_ver=arch_ver) |
|
self.up0 = deconv(32 * c, 8 * c, arch_ver=arch_ver) |
|
self.up1 = deconv(16 * c, 4 * c, arch_ver=arch_ver) |
|
self.up2 = deconv(8 * c, 2 * c, arch_ver=arch_ver) |
|
self.up3 = deconv(4 * c, c, arch_ver=arch_ver) |
|
self.conv = nn.Conv2d(c, 3, 3, 1, 1) |
|
|
|
def forward(self, img0, img1, warped_img0, warped_img1, mask, flow, c0, c1): |
|
s0 = self.down0( |
|
torch.cat((img0, img1, warped_img0, warped_img1, mask, flow), 1) |
|
) |
|
s1 = self.down1(torch.cat((s0, c0[0], c1[0]), 1)) |
|
s2 = self.down2(torch.cat((s1, c0[1], c1[1]), 1)) |
|
s3 = self.down3(torch.cat((s2, c0[2], c1[2]), 1)) |
|
x = self.up0(torch.cat((s3, c0[3], c1[3]), 1)) |
|
x = self.up1(torch.cat((x, s2), 1)) |
|
x = self.up2(torch.cat((x, s1), 1)) |
|
x = self.up3(torch.cat((x, s0), 1)) |
|
x = self.conv(x) |
|
return torch.sigmoid(x) |
|
|
|
|
|
""" |
|
currently supports 4.0-4.12 |
|
|
|
4.0: 4.0, 4.1 |
|
4.2: 4.2 |
|
4.3: 4.3, 4.4 |
|
4.5: 4.5 |
|
4.6: 4.6 |
|
4.7: 4.7, 4.8, 4.9 |
|
4.10: 4.10 4.11 4.12 |
|
""" |
|
|
|
|
|
class IFNet(nn.Module): |
|
def __init__(self, arch_ver="4.0"): |
|
super(IFNet, self).__init__() |
|
self.arch_ver = arch_ver |
|
if arch_ver in ["4.0", "4.2", "4.3", "4.5", "4.6"]: |
|
self.block0 = IFBlock(7, c=192, arch_ver=arch_ver) |
|
self.block1 = IFBlock(8 + 4, c=128, arch_ver=arch_ver) |
|
self.block2 = IFBlock(8 + 4, c=96, arch_ver=arch_ver) |
|
self.block3 = IFBlock(8 + 4, c=64, arch_ver=arch_ver) |
|
if arch_ver in ["4.7"]: |
|
self.block0 = IFBlock(7 + 8, c=192, arch_ver=arch_ver) |
|
self.block1 = IFBlock(8 + 4 + 8, c=128, arch_ver=arch_ver) |
|
self.block2 = IFBlock(8 + 4 + 8, c=96, arch_ver=arch_ver) |
|
self.block3 = IFBlock(8 + 4 + 8, c=64, arch_ver=arch_ver) |
|
self.encode = nn.Sequential( |
|
nn.Conv2d(3, 16, 3, 2, 1), nn.ConvTranspose2d(16, 4, 4, 2, 1) |
|
) |
|
if arch_ver in ["4.10"]: |
|
self.block0 = IFBlock(7 + 16, c=192) |
|
self.block1 = IFBlock(8 + 4 + 16, c=128) |
|
self.block2 = IFBlock(8 + 4 + 16, c=96) |
|
self.block3 = IFBlock(8 + 4 + 16, c=64) |
|
self.encode = nn.Sequential( |
|
nn.Conv2d(3, 32, 3, 2, 1), |
|
nn.LeakyReLU(0.2, True), |
|
nn.Conv2d(32, 32, 3, 1, 1), |
|
nn.LeakyReLU(0.2, True), |
|
nn.Conv2d(32, 32, 3, 1, 1), |
|
nn.LeakyReLU(0.2, True), |
|
nn.ConvTranspose2d(32, 8, 4, 2, 1), |
|
) |
|
|
|
if arch_ver in ["4.0", "4.2", "4.3"]: |
|
self.contextnet = Contextnet(arch_ver=arch_ver) |
|
self.unet = Unet(arch_ver=arch_ver) |
|
self.arch_ver = arch_ver |
|
|
|
def forward( |
|
self, |
|
img0, |
|
img1, |
|
timestep=0.5, |
|
scale_list=[8, 4, 2, 1], |
|
training=True, |
|
fastmode=True, |
|
ensemble=False, |
|
return_flow=False, |
|
): |
|
img0 = torch.clamp(img0, 0, 1) |
|
img1 = torch.clamp(img1, 0, 1) |
|
|
|
n, c, h, w = img0.shape |
|
ph = ((h - 1) // 64 + 1) * 64 |
|
pw = ((w - 1) // 64 + 1) * 64 |
|
padding = (0, pw - w, 0, ph - h) |
|
img0 = F.pad(img0, padding) |
|
img1 = F.pad(img1, padding) |
|
x = torch.cat((img0, img1), 1) |
|
|
|
if training == False: |
|
channel = x.shape[1] // 2 |
|
img0 = x[:, :channel] |
|
img1 = x[:, channel:] |
|
if not torch.is_tensor(timestep): |
|
timestep = (x[:, :1].clone() * 0 + 1) * timestep |
|
else: |
|
timestep = timestep.repeat(1, 1, img0.shape[2], img0.shape[3]) |
|
|
|
flow_list = [] |
|
merged = [] |
|
mask_list = [] |
|
|
|
if self.arch_ver in ["4.7", "4.10"]: |
|
f0 = self.encode(img0[:, :3]) |
|
f1 = self.encode(img1[:, :3]) |
|
|
|
warped_img0 = img0 |
|
warped_img1 = img1 |
|
flow = None |
|
mask = None |
|
block = [self.block0, self.block1, self.block2, self.block3] |
|
|
|
for i in range(4): |
|
if flow is None: |
|
|
|
if self.arch_ver in ["4.0", "4.2", "4.3", "4.5", "4.6"]: |
|
flow, mask = block[i]( |
|
torch.cat((img0[:, :3], img1[:, :3], timestep), 1), |
|
None, |
|
scale=scale_list[i], |
|
) |
|
if ensemble: |
|
f1, m1 = block[i]( |
|
torch.cat((img1[:, :3], img0[:, :3], 1 - timestep), 1), |
|
None, |
|
scale=scale_list[i], |
|
) |
|
flow = (flow + torch.cat((f1[:, 2:4], f1[:, :2]), 1)) / 2 |
|
mask = (mask + (-m1)) / 2 |
|
|
|
|
|
if self.arch_ver in ["4.7", "4.10"]: |
|
flow, mask = block[i]( |
|
torch.cat((img0[:, :3], img1[:, :3], f0, f1, timestep), 1), |
|
None, |
|
scale=scale_list[i], |
|
) |
|
|
|
if ensemble: |
|
f_, m_ = block[i]( |
|
torch.cat( |
|
(img1[:, :3], img0[:, :3], f1, f0, 1 - timestep), 1 |
|
), |
|
None, |
|
scale=scale_list[i], |
|
) |
|
flow = (flow + torch.cat((f_[:, 2:4], f_[:, :2]), 1)) / 2 |
|
mask = (mask + (-m_)) / 2 |
|
|
|
else: |
|
|
|
if self.arch_ver in ["4.0", "4.2", "4.3", "4.5", "4.6"]: |
|
f0, m0 = block[i]( |
|
torch.cat( |
|
(warped_img0[:, :3], warped_img1[:, :3], timestep, mask), 1 |
|
), |
|
flow, |
|
scale=scale_list[i], |
|
) |
|
|
|
if self.arch_ver in ["4.0"]: |
|
if ( |
|
i == 1 |
|
and f0[:, :2].abs().max() > 32 |
|
and f0[:, 2:4].abs().max() > 32 |
|
and not training |
|
): |
|
for k in range(4): |
|
scale_list[k] *= 2 |
|
flow, mask = block[0]( |
|
torch.cat((img0[:, :3], img1[:, :3], timestep), 1), |
|
None, |
|
scale=scale_list[0], |
|
) |
|
warped_img0 = warp(img0, flow[:, :2]) |
|
warped_img1 = warp(img1, flow[:, 2:4]) |
|
f0, m0 = block[i]( |
|
torch.cat( |
|
( |
|
warped_img0[:, :3], |
|
warped_img1[:, :3], |
|
timestep, |
|
mask, |
|
), |
|
1, |
|
), |
|
flow, |
|
scale=scale_list[i], |
|
) |
|
|
|
|
|
if self.arch_ver in ["4.7", "4.10"]: |
|
fd, m0 = block[i]( |
|
torch.cat( |
|
( |
|
warped_img0[:, :3], |
|
warped_img1[:, :3], |
|
warp(f0, flow[:, :2]), |
|
warp(f1, flow[:, 2:4]), |
|
timestep, |
|
mask, |
|
), |
|
1, |
|
), |
|
flow, |
|
scale=scale_list[i], |
|
) |
|
flow = flow + fd |
|
|
|
|
|
if ensemble and self.arch_ver in [ |
|
"4.0", |
|
"4.2", |
|
"4.3", |
|
"4.5", |
|
"4.6", |
|
]: |
|
f1, m1 = block[i]( |
|
torch.cat( |
|
( |
|
warped_img1[:, :3], |
|
warped_img0[:, :3], |
|
1 - timestep, |
|
-mask, |
|
), |
|
1, |
|
), |
|
torch.cat((flow[:, 2:4], flow[:, :2]), 1), |
|
scale=scale_list[i], |
|
) |
|
f0 = (f0 + torch.cat((f1[:, 2:4], f1[:, :2]), 1)) / 2 |
|
m0 = (m0 + (-m1)) / 2 |
|
|
|
|
|
if ensemble and self.arch_ver in ["4.7", "4.10"]: |
|
wf0 = warp(f0, flow[:, :2]) |
|
wf1 = warp(f1, flow[:, 2:4]) |
|
|
|
f_, m_ = block[i]( |
|
torch.cat( |
|
( |
|
warped_img1[:, :3], |
|
warped_img0[:, :3], |
|
wf1, |
|
wf0, |
|
1 - timestep, |
|
-mask, |
|
), |
|
1, |
|
), |
|
torch.cat((flow[:, 2:4], flow[:, :2]), 1), |
|
scale=scale_list[i], |
|
) |
|
fd = (fd + torch.cat((f_[:, 2:4], f_[:, :2]), 1)) / 2 |
|
mask = (m0 + (-m_)) / 2 |
|
|
|
if self.arch_ver in ["4.0", "4.2", "4.3", "4.5", "4.6"]: |
|
flow = flow + f0 |
|
mask = mask + m0 |
|
|
|
if not ensemble and self.arch_ver in ["4.7", "4.10"]: |
|
mask = m0 |
|
|
|
mask_list.append(mask) |
|
flow_list.append(flow) |
|
warped_img0 = warp(img0, flow[:, :2]) |
|
warped_img1 = warp(img1, flow[:, 2:4]) |
|
merged.append((warped_img0, warped_img1)) |
|
|
|
if self.arch_ver in ["4.0", "4.1", "4.2", "4.3", "4.4", "4.5", "4.6"]: |
|
mask_list[3] = torch.sigmoid(mask_list[3]) |
|
merged[3] = merged[3][0] * mask_list[3] + merged[3][1] * (1 - mask_list[3]) |
|
|
|
if self.arch_ver in ["4.7", "4.10"]: |
|
mask = torch.sigmoid(mask) |
|
merged[3] = warped_img0 * mask + warped_img1 * (1 - mask) |
|
|
|
if not fastmode and self.arch_ver in ["4.0", "4.2", "4.3"]: |
|
c0 = self.contextnet(img0, flow[:, :2]) |
|
c1 = self.contextnet(img1, flow[:, 2:4]) |
|
tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1) |
|
res = tmp[:, :3] * 2 - 1 |
|
merged[3] = torch.clamp(merged[3] + res, 0, 1) |
|
return merged[3][:, :, :h, :w] |