|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Tuple, List, Union, Optional |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from einops import rearrange, repeat |
|
from skimage import measure |
|
from tqdm import tqdm |
|
try: |
|
from sageattention import sageattn |
|
except ImportError: |
|
sageattn = None |
|
from comfy.utils import ProgressBar |
|
|
|
class FourierEmbedder(nn.Module): |
|
"""The sin/cosine positional embedding. Given an input tensor `x` of shape [n_batch, ..., c_dim], it converts |
|
each feature dimension of `x[..., i]` into: |
|
[ |
|
sin(x[..., i]), |
|
sin(f_1*x[..., i]), |
|
sin(f_2*x[..., i]), |
|
... |
|
sin(f_N * x[..., i]), |
|
cos(x[..., i]), |
|
cos(f_1*x[..., i]), |
|
cos(f_2*x[..., i]), |
|
... |
|
cos(f_N * x[..., i]), |
|
x[..., i] # only present if include_input is True. |
|
], here f_i is the frequency. |
|
|
|
Denote the space is [0 / num_freqs, 1 / num_freqs, 2 / num_freqs, 3 / num_freqs, ..., (num_freqs - 1) / num_freqs]. |
|
If logspace is True, then the frequency f_i is [2^(0 / num_freqs), ..., 2^(i / num_freqs), ...]; |
|
Otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)]. |
|
|
|
Args: |
|
num_freqs (int): the number of frequencies, default is 6; |
|
logspace (bool): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...], |
|
otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)]; |
|
input_dim (int): the input dimension, default is 3; |
|
include_input (bool): include the input tensor or not, default is True. |
|
|
|
Attributes: |
|
frequencies (torch.Tensor): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...], |
|
otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1); |
|
|
|
out_dim (int): the embedding size, if include_input is True, it is input_dim * (num_freqs * 2 + 1), |
|
otherwise, it is input_dim * num_freqs * 2. |
|
|
|
""" |
|
|
|
def __init__(self, |
|
num_freqs: int = 6, |
|
logspace: bool = True, |
|
input_dim: int = 3, |
|
include_input: bool = True, |
|
include_pi: bool = True) -> None: |
|
|
|
"""The initialization""" |
|
|
|
super().__init__() |
|
|
|
if logspace: |
|
frequencies = 2.0 ** torch.arange( |
|
num_freqs, |
|
dtype=torch.float32 |
|
) |
|
else: |
|
frequencies = torch.linspace( |
|
1.0, |
|
2.0 ** (num_freqs - 1), |
|
num_freqs, |
|
dtype=torch.float32 |
|
) |
|
|
|
if include_pi: |
|
frequencies *= torch.pi |
|
|
|
self.register_buffer("frequencies", frequencies, persistent=False) |
|
self.include_input = include_input |
|
self.num_freqs = num_freqs |
|
|
|
self.out_dim = self.get_dims(input_dim) |
|
|
|
def get_dims(self, input_dim): |
|
temp = 1 if self.include_input or self.num_freqs == 0 else 0 |
|
out_dim = input_dim * (self.num_freqs * 2 + temp) |
|
|
|
return out_dim |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
""" Forward process. |
|
|
|
Args: |
|
x: tensor of shape [..., dim] |
|
|
|
Returns: |
|
embedding: an embedding of `x` of shape [..., dim * (num_freqs * 2 + temp)] |
|
where temp is 1 if include_input is True and 0 otherwise. |
|
""" |
|
|
|
if self.num_freqs > 0: |
|
embed = (x[..., None].contiguous() * self.frequencies).view(*x.shape[:-1], -1) |
|
if self.include_input: |
|
return torch.cat((x, embed.sin(), embed.cos()), dim=-1) |
|
else: |
|
return torch.cat((embed.sin(), embed.cos()), dim=-1) |
|
else: |
|
return x |
|
|
|
|
|
class DropPath(nn.Module): |
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). |
|
""" |
|
|
|
def __init__(self, drop_prob: float = 0., scale_by_keep: bool = True): |
|
super(DropPath, self).__init__() |
|
self.drop_prob = drop_prob |
|
self.scale_by_keep = scale_by_keep |
|
|
|
def forward(self, x): |
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). |
|
|
|
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, |
|
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... |
|
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for |
|
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use |
|
'survival rate' as the argument. |
|
|
|
""" |
|
if self.drop_prob == 0. or not self.training: |
|
return x |
|
keep_prob = 1 - self.drop_prob |
|
shape = (x.shape[0],) + (1,) * (x.ndim - 1) |
|
random_tensor = x.new_empty(shape).bernoulli_(keep_prob) |
|
if keep_prob > 0.0 and self.scale_by_keep: |
|
random_tensor.div_(keep_prob) |
|
return x * random_tensor |
|
|
|
def extra_repr(self): |
|
return f'drop_prob={round(self.drop_prob, 3):0.3f}' |
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__( |
|
self, *, |
|
width: int, |
|
output_width: int = None, |
|
drop_path_rate: float = 0.0 |
|
): |
|
super().__init__() |
|
self.width = width |
|
self.c_fc = nn.Linear(width, width * 4) |
|
self.c_proj = nn.Linear(width * 4, output_width if output_width is not None else width) |
|
self.gelu = nn.GELU() |
|
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() |
|
|
|
def forward(self, x): |
|
return self.drop_path(self.c_proj(self.gelu(self.c_fc(x)))) |
|
|
|
|
|
class QKVMultiheadCrossAttention(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
heads: int, |
|
n_data: Optional[int] = None, |
|
width=None, |
|
qk_norm=False, |
|
norm_layer=nn.LayerNorm, |
|
attention_mode: str = "sdpa" |
|
): |
|
super().__init__() |
|
self.heads = heads |
|
self.n_data = n_data |
|
self.q_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity() |
|
self.k_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity() |
|
if attention_mode == "sdpa": |
|
self.attention_func = F.scaled_dot_product_attention |
|
elif attention_mode == "sageattn": |
|
self.attention_func = sageattn |
|
|
|
def forward(self, q, kv): |
|
_, n_ctx, _ = q.shape |
|
bs, n_data, width = kv.shape |
|
attn_ch = width // self.heads // 2 |
|
q = q.view(bs, n_ctx, self.heads, -1) |
|
kv = kv.view(bs, n_data, self.heads, -1) |
|
k, v = torch.split(kv, attn_ch, dim=-1) |
|
|
|
q = self.q_norm(q) |
|
k = self.k_norm(k) |
|
|
|
q, k, v = map(lambda t: rearrange(t, 'b n h d -> b h n d', h=self.heads), (q, k, v)) |
|
out = self.attention_func(q, k, v).transpose(1, 2).reshape(bs, n_ctx, -1) |
|
|
|
return out |
|
|
|
|
|
class MultiheadCrossAttention(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
width: int, |
|
heads: int, |
|
qkv_bias: bool = True, |
|
n_data: Optional[int] = None, |
|
data_width: Optional[int] = None, |
|
norm_layer=nn.LayerNorm, |
|
qk_norm: bool = False, |
|
attention_mode: str = "sdpa" |
|
): |
|
super().__init__() |
|
self.n_data = n_data |
|
self.width = width |
|
self.heads = heads |
|
self.data_width = width if data_width is None else data_width |
|
self.c_q = nn.Linear(width, width, bias=qkv_bias) |
|
self.c_kv = nn.Linear(self.data_width, width * 2, bias=qkv_bias) |
|
self.c_proj = nn.Linear(width, width) |
|
self.attention = QKVMultiheadCrossAttention( |
|
heads=heads, |
|
n_data=n_data, |
|
width=width, |
|
norm_layer=norm_layer, |
|
qk_norm=qk_norm, |
|
attention_mode=attention_mode |
|
) |
|
|
|
def forward(self, x, data): |
|
x = self.c_q(x) |
|
data = self.c_kv(data) |
|
x = self.attention(x, data) |
|
x = self.c_proj(x) |
|
return x |
|
|
|
|
|
class ResidualCrossAttentionBlock(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
n_data: Optional[int] = None, |
|
width: int, |
|
heads: int, |
|
data_width: Optional[int] = None, |
|
qkv_bias: bool = True, |
|
norm_layer=nn.LayerNorm, |
|
qk_norm: bool = False, |
|
attention_mode: str = "sdpa" |
|
): |
|
super().__init__() |
|
|
|
if data_width is None: |
|
data_width = width |
|
|
|
self.attention_mode = attention_mode |
|
|
|
self.attn = MultiheadCrossAttention( |
|
n_data=n_data, |
|
width=width, |
|
heads=heads, |
|
data_width=data_width, |
|
qkv_bias=qkv_bias, |
|
norm_layer=norm_layer, |
|
qk_norm=qk_norm, |
|
attention_mode=self.attention_mode |
|
) |
|
self.ln_1 = norm_layer(width, elementwise_affine=True, eps=1e-6) |
|
self.ln_2 = norm_layer(data_width, elementwise_affine=True, eps=1e-6) |
|
self.ln_3 = norm_layer(width, elementwise_affine=True, eps=1e-6) |
|
self.mlp = MLP(width=width) |
|
|
|
def forward(self, x: torch.Tensor, data: torch.Tensor): |
|
x = x + self.attn(self.ln_1(x), self.ln_2(data)) |
|
x = x + self.mlp(self.ln_3(x)) |
|
return x |
|
|
|
|
|
class QKVMultiheadAttention(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
heads: int, |
|
n_ctx: int, |
|
width=None, |
|
qk_norm=False, |
|
norm_layer=nn.LayerNorm, |
|
attention_mode: str = "sdpa" |
|
): |
|
super().__init__() |
|
self.heads = heads |
|
self.n_ctx = n_ctx |
|
self.q_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity() |
|
self.k_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity() |
|
if attention_mode == "sdpa": |
|
self.attention_func = F.scaled_dot_product_attention |
|
elif attention_mode == "sageattn": |
|
self.attention_func = sageattn |
|
|
|
def forward(self, qkv): |
|
bs, n_ctx, width = qkv.shape |
|
attn_ch = width // self.heads // 3 |
|
qkv = qkv.view(bs, n_ctx, self.heads, -1) |
|
q, k, v = torch.split(qkv, attn_ch, dim=-1) |
|
|
|
q = self.q_norm(q) |
|
k = self.k_norm(k) |
|
|
|
q, k, v = map(lambda t: rearrange(t, 'b n h d -> b h n d', h=self.heads), (q, k, v)) |
|
out = self.attention_func(q, k, v).transpose(1, 2).reshape(bs, n_ctx, -1) |
|
return out |
|
|
|
|
|
class MultiheadAttention(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
n_ctx: int, |
|
width: int, |
|
heads: int, |
|
qkv_bias: bool, |
|
norm_layer=nn.LayerNorm, |
|
qk_norm: bool = False, |
|
drop_path_rate: float = 0.0 |
|
): |
|
super().__init__() |
|
self.n_ctx = n_ctx |
|
self.width = width |
|
self.heads = heads |
|
self.c_qkv = nn.Linear(width, width * 3, bias=qkv_bias) |
|
self.c_proj = nn.Linear(width, width) |
|
self.attention = QKVMultiheadAttention( |
|
heads=heads, |
|
n_ctx=n_ctx, |
|
width=width, |
|
norm_layer=norm_layer, |
|
qk_norm=qk_norm |
|
) |
|
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() |
|
|
|
def forward(self, x): |
|
x = self.c_qkv(x) |
|
x = self.attention(x) |
|
x = self.drop_path(self.c_proj(x)) |
|
return x |
|
|
|
|
|
class ResidualAttentionBlock(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
n_ctx: int, |
|
width: int, |
|
heads: int, |
|
qkv_bias: bool = True, |
|
norm_layer=nn.LayerNorm, |
|
qk_norm: bool = False, |
|
drop_path_rate: float = 0.0, |
|
): |
|
super().__init__() |
|
self.attn = MultiheadAttention( |
|
n_ctx=n_ctx, |
|
width=width, |
|
heads=heads, |
|
qkv_bias=qkv_bias, |
|
norm_layer=norm_layer, |
|
qk_norm=qk_norm, |
|
drop_path_rate=drop_path_rate |
|
) |
|
self.ln_1 = norm_layer(width, elementwise_affine=True, eps=1e-6) |
|
self.mlp = MLP(width=width, drop_path_rate=drop_path_rate) |
|
self.ln_2 = norm_layer(width, elementwise_affine=True, eps=1e-6) |
|
|
|
def forward(self, x: torch.Tensor): |
|
x = x + self.attn(self.ln_1(x)) |
|
x = x + self.mlp(self.ln_2(x)) |
|
return x |
|
|
|
|
|
class Transformer(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
n_ctx: int, |
|
width: int, |
|
layers: int, |
|
heads: int, |
|
qkv_bias: bool = True, |
|
norm_layer=nn.LayerNorm, |
|
qk_norm: bool = False, |
|
drop_path_rate: float = 0.0 |
|
): |
|
super().__init__() |
|
self.n_ctx = n_ctx |
|
self.width = width |
|
self.layers = layers |
|
self.resblocks = nn.ModuleList( |
|
[ |
|
ResidualAttentionBlock( |
|
n_ctx=n_ctx, |
|
width=width, |
|
heads=heads, |
|
qkv_bias=qkv_bias, |
|
norm_layer=norm_layer, |
|
qk_norm=qk_norm, |
|
drop_path_rate=drop_path_rate |
|
) |
|
for _ in range(layers) |
|
] |
|
) |
|
|
|
def forward(self, x: torch.Tensor): |
|
for block in self.resblocks: |
|
x = block(x) |
|
return x |
|
|
|
|
|
class CrossAttentionDecoder(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
*, |
|
num_latents: int, |
|
out_channels: int, |
|
fourier_embedder: FourierEmbedder, |
|
width: int, |
|
heads: int, |
|
qkv_bias: bool = True, |
|
qk_norm: bool = False, |
|
label_type: str = "binary", |
|
attention_mode: str = "sdpa" |
|
): |
|
super().__init__() |
|
|
|
self.fourier_embedder = fourier_embedder |
|
|
|
self.query_proj = nn.Linear(self.fourier_embedder.out_dim, width) |
|
|
|
self.cross_attn_decoder = ResidualCrossAttentionBlock( |
|
n_data=num_latents, |
|
width=width, |
|
heads=heads, |
|
qkv_bias=qkv_bias, |
|
qk_norm=qk_norm, |
|
attention_mode=attention_mode |
|
) |
|
|
|
self.ln_post = nn.LayerNorm(width) |
|
self.output_proj = nn.Linear(width, out_channels) |
|
self.label_type = label_type |
|
|
|
def forward(self, queries: torch.FloatTensor, latents: torch.FloatTensor): |
|
queries = self.query_proj(self.fourier_embedder(queries).to(latents.dtype)) |
|
x = self.cross_attn_decoder(queries, latents) |
|
x = self.ln_post(x) |
|
occ = self.output_proj(x) |
|
return occ |
|
|
|
|
|
def generate_dense_grid_points(bbox_min: np.ndarray, |
|
bbox_max: np.ndarray, |
|
octree_depth: int, |
|
indexing: str = "ij", |
|
octree_resolution: int = None, |
|
): |
|
length = bbox_max - bbox_min |
|
num_cells = np.exp2(octree_depth) |
|
if octree_resolution is not None: |
|
num_cells = octree_resolution |
|
|
|
x = np.linspace(bbox_min[0], bbox_max[0], int(num_cells) + 1, dtype=np.float32) |
|
y = np.linspace(bbox_min[1], bbox_max[1], int(num_cells) + 1, dtype=np.float32) |
|
z = np.linspace(bbox_min[2], bbox_max[2], int(num_cells) + 1, dtype=np.float32) |
|
[xs, ys, zs] = np.meshgrid(x, y, z, indexing=indexing) |
|
xyz = np.stack((xs, ys, zs), axis=-1) |
|
xyz = xyz.reshape(-1, 3) |
|
grid_size = [int(num_cells) + 1, int(num_cells) + 1, int(num_cells) + 1] |
|
|
|
return xyz, grid_size, length |
|
|
|
|
|
def center_vertices(vertices): |
|
"""Translate the vertices so that bounding box is centered at zero.""" |
|
vert_min = vertices.min(dim=0)[0] |
|
vert_max = vertices.max(dim=0)[0] |
|
vert_center = 0.5 * (vert_min + vert_max) |
|
return vertices - vert_center |
|
|
|
|
|
class Latent2MeshOutput: |
|
|
|
def __init__(self, mesh_v=None, mesh_f=None): |
|
self.mesh_v = mesh_v |
|
self.mesh_f = mesh_f |
|
|
|
|
|
class ShapeVAE(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
num_latents: int, |
|
embed_dim: int, |
|
width: int, |
|
heads: int, |
|
num_decoder_layers: int, |
|
num_freqs: int = 8, |
|
include_pi: bool = True, |
|
qkv_bias: bool = True, |
|
qk_norm: bool = False, |
|
label_type: str = "binary", |
|
drop_path_rate: float = 0.0, |
|
scale_factor: float = 1.0, |
|
attention_mode: str = "sdpa" |
|
): |
|
super().__init__() |
|
self.fourier_embedder = FourierEmbedder(num_freqs=num_freqs, include_pi=include_pi) |
|
|
|
self.post_kl = nn.Linear(embed_dim, width) |
|
|
|
self.transformer = Transformer( |
|
n_ctx=num_latents, |
|
width=width, |
|
layers=num_decoder_layers, |
|
heads=heads, |
|
qkv_bias=qkv_bias, |
|
qk_norm=qk_norm, |
|
drop_path_rate=drop_path_rate |
|
) |
|
|
|
self.geo_decoder = CrossAttentionDecoder( |
|
fourier_embedder=self.fourier_embedder, |
|
out_channels=1, |
|
num_latents=num_latents, |
|
width=width, |
|
heads=heads, |
|
qkv_bias=qkv_bias, |
|
qk_norm=qk_norm, |
|
label_type=label_type, |
|
attention_mode=attention_mode |
|
) |
|
|
|
self.scale_factor = scale_factor |
|
self.latent_shape = (num_latents, embed_dim) |
|
|
|
self.attention_mode = attention_mode |
|
|
|
def forward(self, latents): |
|
latents = self.post_kl(latents) |
|
latents = self.transformer(latents) |
|
return latents |
|
|
|
@torch.no_grad() |
|
def latents2mesh( |
|
self, |
|
latents: torch.FloatTensor, |
|
bounds: Union[Tuple[float], List[float], float] = 1.1, |
|
octree_depth: int = 7, |
|
num_chunks: int = 10000, |
|
mc_level: float = -1 / 512, |
|
octree_resolution: int = None, |
|
mc_algo: str = 'dmc', |
|
): |
|
device = latents.device |
|
|
|
|
|
if isinstance(bounds, float): |
|
bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds] |
|
bbox_min = np.array(bounds[0:3]) |
|
bbox_max = np.array(bounds[3:6]) |
|
bbox_size = bbox_max - bbox_min |
|
xyz_samples, grid_size, length = generate_dense_grid_points( |
|
bbox_min=bbox_min, |
|
bbox_max=bbox_max, |
|
octree_depth=octree_depth, |
|
octree_resolution=octree_resolution, |
|
indexing="ij" |
|
) |
|
xyz_samples = torch.FloatTensor(xyz_samples) |
|
|
|
|
|
batch_logits = [] |
|
batch_size = latents.shape[0] |
|
comfy_pbar = ProgressBar(xyz_samples.shape[0]) |
|
for start in tqdm(range(0, xyz_samples.shape[0], num_chunks), |
|
desc=f"MC Level {mc_level} Implicit Function:"): |
|
queries = xyz_samples[start: start + num_chunks, :].to(device) |
|
queries = queries.half() |
|
batch_queries = repeat(queries, "p c -> b p c", b=batch_size) |
|
|
|
logits = self.geo_decoder(batch_queries.to(latents.dtype), latents) |
|
if mc_level == -1: |
|
mc_level = 0 |
|
logits = torch.sigmoid(logits) * 2 - 1 |
|
print(f'Training with soft labels, inference with sigmoid and marching cubes level 0.') |
|
batch_logits.append(logits) |
|
comfy_pbar.update(num_chunks) |
|
grid_logits = torch.cat(batch_logits, dim=1) |
|
grid_logits = grid_logits.view((batch_size, grid_size[0], grid_size[1], grid_size[2])).float() |
|
|
|
|
|
outputs = [] |
|
for i in range(batch_size): |
|
try: |
|
if mc_algo == 'mc': |
|
vertices, faces, normals, _ = measure.marching_cubes( |
|
grid_logits[i].cpu().numpy(), |
|
mc_level, |
|
method="lewiner" |
|
) |
|
vertices = vertices / grid_size * bbox_size + bbox_min |
|
elif mc_algo == 'dmc': |
|
if not hasattr(self, 'dmc'): |
|
try: |
|
from diso import DiffDMC |
|
except: |
|
raise ImportError("Please install diso via `pip install diso`, or set mc_algo to 'mc'") |
|
self.dmc = DiffDMC(dtype=torch.float32).to(device) |
|
octree_resolution = 2 ** octree_depth if octree_resolution is None else octree_resolution |
|
sdf = -grid_logits[i] / octree_resolution |
|
verts, faces = self.dmc(sdf, deform=None, return_quads=False, normalize=True) |
|
verts = center_vertices(verts) |
|
vertices = verts.detach().cpu().numpy() |
|
faces = faces.detach().cpu().numpy()[:, ::-1] |
|
else: |
|
raise ValueError(f"mc_algo {mc_algo} not supported.") |
|
|
|
outputs.append( |
|
Latent2MeshOutput( |
|
mesh_v=vertices.astype(np.float32), |
|
mesh_f=np.ascontiguousarray(faces) |
|
) |
|
) |
|
|
|
except ValueError: |
|
outputs.append(None) |
|
except RuntimeError: |
|
outputs.append(None) |
|
|
|
return outputs |
|
|