jaxmetaverse's picture
Upload folder using huggingface_hub
82ea528 verified
from typing import Any, List, Tuple, Optional, Union, Dict
from einops import rearrange
import torch
import torch.nn as nn
import numpy as np
from diffusers.models import ModelMixin
from diffusers.configuration_utils import ConfigMixin, register_to_config
from .activation_layers import get_activation_layer
from .norm_layers import get_norm_layer
from .embed_layers import TimestepEmbedder, PatchEmbed, TextProjection
from .attention import attention, get_cu_seqlens
from .posemb_layers import apply_rotary_emb
from .mlp_layers import MLP, MLPEmbedder, FinalLayer
from .modulate_layers import ModulateDiT, modulate, apply_gate
from .token_refiner import SingleTokenRefiner
from ...enhance_a_video.enhance import get_feta_scores
from ...enhance_a_video.globals import is_enhance_enabled_single, is_enhance_enabled_double, set_num_frames
from .norm_layers import RMSNorm
from contextlib import contextmanager
@contextmanager
def init_weights_on_device(device = torch.device("meta"), include_buffers :bool = False):
old_register_parameter = torch.nn.Module.register_parameter
if include_buffers:
old_register_buffer = torch.nn.Module.register_buffer
def register_empty_parameter(module, name, param):
old_register_parameter(module, name, param)
if param is not None:
param_cls = type(module._parameters[name])
kwargs = module._parameters[name].__dict__
kwargs["requires_grad"] = param.requires_grad
module._parameters[name] = param_cls(module._parameters[name].to(device), **kwargs)
def register_empty_buffer(module, name, buffer, persistent=True):
old_register_buffer(module, name, buffer, persistent=persistent)
if buffer is not None:
module._buffers[name] = module._buffers[name].to(device)
def patch_tensor_constructor(fn):
def wrapper(*args, **kwargs):
kwargs["device"] = device
return fn(*args, **kwargs)
return wrapper
if include_buffers:
tensor_constructors_to_patch = {
torch_function_name: getattr(torch, torch_function_name)
for torch_function_name in ["empty", "zeros", "ones", "full"]
}
else:
tensor_constructors_to_patch = {}
try:
torch.nn.Module.register_parameter = register_empty_parameter
if include_buffers:
torch.nn.Module.register_buffer = register_empty_buffer
for torch_function_name in tensor_constructors_to_patch.keys():
setattr(torch, torch_function_name, patch_tensor_constructor(getattr(torch, torch_function_name)))
yield
finally:
torch.nn.Module.register_parameter = old_register_parameter
if include_buffers:
torch.nn.Module.register_buffer = old_register_buffer
for torch_function_name, old_torch_function in tensor_constructors_to_patch.items():
setattr(torch, torch_function_name, old_torch_function)
class MMDoubleStreamBlock(nn.Module):
"""
A multimodal dit block with seperate modulation for
text and image/video, see more details (SD3): https://arxiv.org/abs/2403.03206
(Flux.1): https://github.com/black-forest-labs/flux
"""
def __init__(
self,
hidden_size: int,
heads_num: int,
mlp_width_ratio: float,
mlp_act_type: str = "gelu_tanh",
qk_norm: bool = True,
qk_norm_type: str = "rms",
qkv_bias: bool = False,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
attention_mode: str = "sdpa",
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.attention_mode = attention_mode
self.deterministic = False
self.heads_num = heads_num
head_dim = hidden_size // heads_num
mlp_hidden_dim = int(hidden_size * mlp_width_ratio)
self.img_mod = ModulateDiT(
hidden_size,
factor=6,
act_layer=get_activation_layer("silu"),
**factory_kwargs,
)
self.img_norm1 = nn.LayerNorm(
hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs
)
self.img_attn_qkv = nn.Linear(
hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs
)
qk_norm_layer = get_norm_layer(qk_norm_type)
self.img_attn_q_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
if qk_norm
else nn.Identity()
)
self.img_attn_k_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
if qk_norm
else nn.Identity()
)
self.img_attn_proj = nn.Linear(
hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs
)
self.img_norm2 = nn.LayerNorm(
hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs
)
self.img_mlp = MLP(
hidden_size,
mlp_hidden_dim,
act_layer=get_activation_layer(mlp_act_type),
bias=True,
**factory_kwargs,
)
self.txt_mod = ModulateDiT(
hidden_size,
factor=6,
act_layer=get_activation_layer("silu"),
**factory_kwargs,
)
self.txt_norm1 = nn.LayerNorm(
hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs
)
self.txt_attn_qkv = nn.Linear(
hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs
)
self.txt_attn_q_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
if qk_norm
else nn.Identity()
)
self.txt_attn_k_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
if qk_norm
else nn.Identity()
)
self.txt_attn_proj = nn.Linear(
hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs
)
self.txt_norm2 = nn.LayerNorm(
hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs
)
self.txt_mlp = MLP(
hidden_size,
mlp_hidden_dim,
act_layer=get_activation_layer(mlp_act_type),
bias=True,
**factory_kwargs,
)
def enable_deterministic(self):
self.deterministic = True
def disable_deterministic(self):
self.deterministic = False
def forward(
self,
img: torch.Tensor,
txt: torch.Tensor,
vec: torch.Tensor,
cu_seqlens_q: Optional[torch.Tensor] = None,
cu_seqlens_kv: Optional[torch.Tensor] = None,
max_seqlen_q: Optional[int] = None,
max_seqlen_kv: Optional[int] = None,
freqs_cis: tuple = None,
attn_mask: Optional[torch.Tensor] = None,
upcast_rope: bool = True,
) -> Tuple[torch.Tensor, torch.Tensor]:
(
img_mod1_shift,
img_mod1_scale,
img_mod1_gate,
img_mod2_shift,
img_mod2_scale,
img_mod2_gate,
) = self.img_mod(vec).chunk(6, dim=-1)
(
txt_mod1_shift,
txt_mod1_scale,
txt_mod1_gate,
txt_mod2_shift,
txt_mod2_scale,
txt_mod2_gate,
) = self.txt_mod(vec).chunk(6, dim=-1)
# Prepare image for attention.
img_modulated = self.img_norm1(img)
img_modulated = modulate(
img_modulated, shift=img_mod1_shift, scale=img_mod1_scale
)
img_qkv = self.img_attn_qkv(img_modulated)
img_q, img_k, img_v = rearrange(
img_qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num
)
# Apply QK-Norm if needed
img_q = self.img_attn_q_norm(img_q).to(img_v)
img_k = self.img_attn_k_norm(img_k).to(img_v)
# Apply RoPE if needed.
if freqs_cis is not None:
img_q, img_k = apply_rotary_emb(img_q, img_k, freqs_cis, upcast=upcast_rope)
# Prepare txt for attention.
txt_modulated = self.txt_norm1(txt)
txt_modulated = modulate(
txt_modulated, shift=txt_mod1_shift, scale=txt_mod1_scale
)
txt_qkv = self.txt_attn_qkv(txt_modulated)
txt_q, txt_k, txt_v = rearrange(
txt_qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num
)
# Apply QK-Norm if needed.
txt_q = self.txt_attn_q_norm(txt_q).to(txt_v)
txt_k = self.txt_attn_k_norm(txt_k).to(txt_v)
if is_enhance_enabled_double():
feta_scores = get_feta_scores(img_q, img_k)
# Run actual attention.
q = torch.cat((img_q, txt_q), dim=1)
k = torch.cat((img_k, txt_k), dim=1)
v = torch.cat((img_v, txt_v), dim=1)
attn = attention(
q,
k,
v,
heads = self.heads_num,
mode=self.attention_mode,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_kv=cu_seqlens_kv,
max_seqlen_q=max_seqlen_q,
max_seqlen_kv=max_seqlen_kv,
batch_size=img_k.shape[0],
attn_mask=attn_mask
)
img_attn, txt_attn = attn[:, : img.shape[1]], attn[:, img.shape[1] :]
if is_enhance_enabled_double():
img_attn *= feta_scores
# Calculate the img bloks.
img = img + apply_gate(self.img_attn_proj(img_attn), gate=img_mod1_gate)
img = img + apply_gate(
self.img_mlp(
modulate(
self.img_norm2(img), shift=img_mod2_shift, scale=img_mod2_scale
)
),
gate=img_mod2_gate,
)
# Calculate the txt bloks.
txt = txt + apply_gate(self.txt_attn_proj(txt_attn), gate=txt_mod1_gate)
txt = txt + apply_gate(
self.txt_mlp(
modulate(
self.txt_norm2(txt), shift=txt_mod2_shift, scale=txt_mod2_scale
)
),
gate=txt_mod2_gate,
)
return img, txt
class MMSingleStreamBlock(nn.Module):
"""
A DiT block with parallel linear layers as described in
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
Also refer to (SD3): https://arxiv.org/abs/2403.03206
(Flux.1): https://github.com/black-forest-labs/flux
"""
def __init__(
self,
hidden_size: int,
heads_num: int,
mlp_width_ratio: float = 4.0,
mlp_act_type: str = "gelu_tanh",
qk_norm: bool = True,
qk_norm_type: str = "rms",
qk_scale: float = None,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
attention_mode: str = "sdpa",
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.attention_mode = attention_mode
self.deterministic = False
self.hidden_size = hidden_size
self.heads_num = heads_num
head_dim = hidden_size // heads_num
mlp_hidden_dim = int(hidden_size * mlp_width_ratio)
self.mlp_hidden_dim = mlp_hidden_dim
self.scale = qk_scale or head_dim ** -0.5
# qkv and mlp_in
self.linear1 = nn.Linear(
hidden_size, hidden_size * 3 + mlp_hidden_dim, **factory_kwargs
)
# proj and mlp_out
self.linear2 = nn.Linear(
hidden_size + mlp_hidden_dim, hidden_size, **factory_kwargs
)
qk_norm_layer = get_norm_layer(qk_norm_type)
self.q_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
if qk_norm
else nn.Identity()
)
self.k_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
if qk_norm
else nn.Identity()
)
self.pre_norm = nn.LayerNorm(
hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs
)
self.mlp_act = get_activation_layer(mlp_act_type)()
self.modulation = ModulateDiT(
hidden_size,
factor=3,
act_layer=get_activation_layer("silu"),
**factory_kwargs,
)
def enable_deterministic(self):
self.deterministic = True
def disable_deterministic(self):
self.deterministic = False
def forward(
self,
x: torch.Tensor,
vec: torch.Tensor,
txt_len: int,
cu_seqlens_q: Optional[torch.Tensor] = None,
cu_seqlens_kv: Optional[torch.Tensor] = None,
max_seqlen_q: Optional[int] = None,
max_seqlen_kv: Optional[int] = None,
freqs_cis: Tuple[torch.Tensor, torch.Tensor] = None,
attn_mask: Optional[torch.Tensor] = None,
upcast_rope: bool = True,
stg_mode: Optional[str] = None,
) -> torch.Tensor:
mod_shift, mod_scale, mod_gate = self.modulation(vec).chunk(3, dim=-1)
x_mod = modulate(self.pre_norm(x), shift=mod_shift, scale=mod_scale)
qkv, mlp = torch.split(
self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1
)
q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num)
# Apply QK-Norm if needed.
q = self.q_norm(q).to(v)
k = self.k_norm(k).to(v)
# Apply RoPE if needed.
if freqs_cis is not None:
img_q, txt_q = q[:, :-txt_len, :, :], q[:, -txt_len:, :, :]
img_k, txt_k = k[:, :-txt_len, :, :], k[:, -txt_len:, :, :]
img_q, img_k = apply_rotary_emb(img_q, img_k, freqs_cis, upcast=upcast_rope)
# assert (
# img_qq.shape == img_q.shape and img_kk.shape == img_k.shape
# ), f"img_kk: {img_qq.shape}, img_q: {img_q.shape}, img_kk: {img_kk.shape}, img_k: {img_k.shape}"
q = torch.cat((img_q, txt_q), dim=1)
k = torch.cat((img_k, txt_k), dim=1)
if is_enhance_enabled_single():
feta_scores = get_feta_scores(img_q, img_k)
# Compute attention.
#assert (
# cu_seqlens_q.shape[0] == 2 * x.shape[0] + 1
#), f"cu_seqlens_q.shape:{cu_seqlens_q.shape}, x.shape[0]:{x.shape[0]}"
if stg_mode is not None:
if stg_mode == "STG-A":
attn = attention(
q,
k,
v,
heads = self.heads_num,
mode=self.attention_mode,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_kv=cu_seqlens_kv,
max_seqlen_q=max_seqlen_q,
max_seqlen_kv=max_seqlen_kv,
batch_size=x.shape[0],
do_stg=True,
txt_len=txt_len,
attn_mask=attn_mask
)
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
return x + apply_gate(output, gate=mod_gate)
elif stg_mode == "STG-R":
attn = attention(
q,
k,
v,
heads = self.heads_num,
mode=self.attention_mode,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_kv=cu_seqlens_kv,
max_seqlen_q=max_seqlen_q,
max_seqlen_kv=max_seqlen_kv,
batch_size=x.shape[0],
attn_mask=attn_mask
)
# Compute activation in mlp stream, cat again and run second linear layer.
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
output = apply_gate(output, gate=mod_gate)
batch_size = output.shape[0]
output[:batch_size-1, :, :] = 0
return x + output
else:
attn = attention(
q,
k,
v,
heads = self.heads_num,
mode=self.attention_mode,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_kv=cu_seqlens_kv,
max_seqlen_q=max_seqlen_q,
max_seqlen_kv=max_seqlen_kv,
batch_size=x.shape[0],
attn_mask=attn_mask
)
if is_enhance_enabled_single():
attn *= feta_scores
#attn[:, :-txt_len, :] *= feta_scores
# Compute activation in mlp stream, cat again and run second linear layer.
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
output = x + apply_gate(output, gate=mod_gate)
return output
class HYVideoDiffusionTransformer(ModelMixin, ConfigMixin):
"""
HunyuanVideo Transformer backbone
Inherited from ModelMixin and ConfigMixin for compatibility with diffusers' sampler StableDiffusionPipeline.
Reference:
[1] Flux.1: https://github.com/black-forest-labs/flux
[2] MMDiT: http://arxiv.org/abs/2403.03206
Parameters
----------
args: argparse.Namespace
The arguments parsed by argparse.
patch_size: list
The size of the patch.
in_channels: int
The number of input channels.
out_channels: int
The number of output channels.
hidden_size: int
The hidden size of the transformer backbone.
heads_num: int
The number of attention heads.
mlp_width_ratio: float
The ratio of the hidden size of the MLP in the transformer block.
mlp_act_type: str
The activation function of the MLP in the transformer block.
depth_double_blocks: int
The number of transformer blocks in the double blocks.
depth_single_blocks: int
The number of transformer blocks in the single blocks.
rope_dim_list: list
The dimension of the rotary embedding for t, h, w.
qkv_bias: bool
Whether to use bias in the qkv linear layer.
qk_norm: bool
Whether to use qk norm.
qk_norm_type: str
The type of qk norm.
guidance_embed: bool
Whether to use guidance embedding for distillation.
text_projection: str
The type of the text projection, default is single_refiner.
use_attention_mask: bool
Whether to use attention mask for text encoder.
dtype: torch.dtype
The dtype of the model.
device: torch.device
The device of the model.
"""
@register_to_config
def __init__(
self,
patch_size: list = [1, 2, 2],
in_channels: int = 4, # Should be VAE.config.latent_channels.
out_channels: int = None,
hidden_size: int = 3072,
heads_num: int = 24,
mlp_width_ratio: float = 4.0,
mlp_act_type: str = "gelu_tanh",
mm_double_blocks_depth: int = 20,
mm_single_blocks_depth: int = 40,
rope_dim_list: List[int] = [16, 56, 56],
qkv_bias: bool = True,
qk_norm: bool = True,
qk_norm_type: str = "rms",
guidance_embed: bool = False, # For modulation.
text_projection: str = "single_refiner",
use_attention_mask: bool = True,
text_states_dim: int = 4096,
text_states_dim_2: int = 768,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
main_device: Optional[torch.device] = None,
offload_device: Optional[torch.device] = None,
attention_mode: str = "sdpa",
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.patch_size = patch_size
self.in_channels = in_channels
self.out_channels = in_channels if out_channels is None else out_channels
self.unpatchify_channels = self.out_channels
self.guidance_embed = guidance_embed
self.rope_dim_list = rope_dim_list
self.main_device = main_device
self.offload_device = offload_device
self.attention_mode = attention_mode
# Text projection. Default to linear projection.
# Alternative: TokenRefiner. See more details (LI-DiT): http://arxiv.org/abs/2406.11831
self.use_attention_mask = use_attention_mask
self.text_projection = text_projection
self.text_states_dim = text_states_dim
self.text_states_dim_2 = text_states_dim_2
if hidden_size % heads_num != 0:
raise ValueError(
f"Hidden size {hidden_size} must be divisible by heads_num {heads_num}"
)
pe_dim = hidden_size // heads_num
if sum(rope_dim_list) != pe_dim:
raise ValueError(
f"Got {rope_dim_list} but expected positional dim {pe_dim}"
)
self.hidden_size = hidden_size
self.heads_num = heads_num
# image projection
self.img_in = PatchEmbed(
self.patch_size, self.in_channels, self.hidden_size, **factory_kwargs
)
# text projection
if self.text_projection == "linear":
self.txt_in = TextProjection(
self.text_states_dim,
self.hidden_size,
get_activation_layer("silu"),
**factory_kwargs,
)
elif self.text_projection == "single_refiner":
self.txt_in = SingleTokenRefiner(
self.text_states_dim, hidden_size, heads_num, depth=2, **factory_kwargs
)
else:
raise NotImplementedError(
f"Unsupported text_projection: {self.text_projection}"
)
# time modulation
self.time_in = TimestepEmbedder(
self.hidden_size, get_activation_layer("silu"), **factory_kwargs
)
# text modulation
self.vector_in = MLPEmbedder(
self.text_states_dim_2, self.hidden_size, **factory_kwargs
)
# guidance modulation
self.guidance_in = (
TimestepEmbedder(
self.hidden_size, get_activation_layer("silu"), **factory_kwargs
)
if guidance_embed
else None
)
# double blocks
self.double_blocks = nn.ModuleList(
[
MMDoubleStreamBlock(
self.hidden_size,
self.heads_num,
mlp_width_ratio=mlp_width_ratio,
mlp_act_type=mlp_act_type,
qk_norm=qk_norm,
qk_norm_type=qk_norm_type,
qkv_bias=qkv_bias,
attention_mode=attention_mode,
**factory_kwargs,
)
for _ in range(mm_double_blocks_depth)
]
)
# single blocks
self.single_blocks = nn.ModuleList(
[
MMSingleStreamBlock(
self.hidden_size,
self.heads_num,
mlp_width_ratio=mlp_width_ratio,
mlp_act_type=mlp_act_type,
qk_norm=qk_norm,
qk_norm_type=qk_norm_type,
attention_mode=attention_mode,
**factory_kwargs,
)
for _ in range(mm_single_blocks_depth)
]
)
self.final_layer = FinalLayer(
self.hidden_size,
self.patch_size,
self.out_channels,
get_activation_layer("silu"),
**factory_kwargs,
)
self.upcast_rope = True
#init block swap variables
self.double_blocks_to_swap = -1
self.single_blocks_to_swap = -1
self.offload_txt_in = False
self.offload_img_in = False
#init TeaCache variables
self.enable_teacache = False
self.cnt = 0
self.num_steps = 0
self.rel_l1_thresh = 0.15
self.accumulated_rel_l1_distance = 0
self.previous_modulated_input = None
self.previous_residual = None
self.last_dimensions = None
self.last_frame_count = None
# thanks @2kpr for the initial block swap code!
def block_swap(self, double_blocks_to_swap, single_blocks_to_swap, offload_txt_in=False, offload_img_in=False):
print(f"Swapping {double_blocks_to_swap + 1} double blocks and {single_blocks_to_swap + 1} single blocks")
self.double_blocks_to_swap = double_blocks_to_swap
self.single_blocks_to_swap = single_blocks_to_swap
self.offload_txt_in = offload_txt_in
self.offload_img_in = offload_img_in
for b, block in enumerate(self.double_blocks):
if b > self.double_blocks_to_swap:
#print(f"Moving double_block {b} to main device")
block.to(self.main_device)
else:
#print(f"Moving double_block {b} to offload_device")
block.to(self.offload_device)
for b, block in enumerate(self.single_blocks):
if b > self.single_blocks_to_swap:
block.to(self.main_device)
else:
block.to(self.offload_device)
def enable_auto_offload(self, dtype=torch.bfloat16, device="cuda"):
def cast_to(weight, dtype=None, device=None, copy=False):
if device is None or weight.device == device:
if not copy:
if dtype is None or weight.dtype == dtype:
return weight
return weight.to(dtype=dtype, copy=copy)
r = torch.empty_like(weight, dtype=dtype, device=device)
r.copy_(weight)
return r
def cast_weight(s, input=None, dtype=None, device=None):
if input is not None:
if dtype is None:
dtype = input.dtype
if device is None:
device = input.device
weight = cast_to(s.weight, dtype, device)
return weight
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None):
if input is not None:
if dtype is None:
dtype = input.dtype
if bias_dtype is None:
bias_dtype = dtype
if device is None:
device = input.device
weight = cast_to(s.weight, dtype, device)
bias = cast_to(s.bias, bias_dtype, device) if s.bias is not None else None
return weight, bias
class quantized_layer:
class Linear(torch.nn.Linear):
def __init__(self, *args, dtype=torch.bfloat16, device="cuda", **kwargs):
super().__init__(*args, **kwargs)
self.dtype = dtype
self.device = device
def block_forward_(self, x, i, j, dtype, device):
weight_ = cast_to(
self.weight[j * self.block_size: (j + 1) * self.block_size, i * self.block_size: (i + 1) * self.block_size],
dtype=dtype, device=device
)
if self.bias is None or i > 0:
bias_ = None
else:
bias_ = cast_to(self.bias[j * self.block_size: (j + 1) * self.block_size], dtype=dtype, device=device)
x_ = x[..., i * self.block_size: (i + 1) * self.block_size]
y_ = torch.nn.functional.linear(x_, weight_, bias_)
del x_, weight_, bias_
torch.cuda.empty_cache()
return y_
def block_forward(self, x, **kwargs):
# This feature can only reduce 2GB VRAM, so we disable it.
y = torch.zeros(x.shape[:-1] + (self.out_features,), dtype=x.dtype, device=x.device)
for i in range((self.in_features + self.block_size - 1) // self.block_size):
for j in range((self.out_features + self.block_size - 1) // self.block_size):
y[..., j * self.block_size: (j + 1) * self.block_size] += self.block_forward_(x, i, j, dtype=x.dtype, device=x.device)
return y
def forward(self, x, **kwargs):
weight, bias = cast_bias_weight(self, x, dtype=self.dtype, device=self.device)
return torch.nn.functional.linear(x, weight, bias)
class RMSNorm(torch.nn.Module):
def __init__(self, module, dtype=torch.bfloat16, device="cuda"):
super().__init__()
self.module = module
self.dtype = dtype
self.device = device
def forward(self, hidden_states, **kwargs):
input_dtype = hidden_states.dtype
variance = hidden_states.to(torch.float32).square().mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.module.eps)
hidden_states = hidden_states.to(input_dtype)
if self.module.weight is not None:
weight = cast_weight(self.module, hidden_states, dtype=torch.bfloat16, device="cuda")
hidden_states = hidden_states * weight
return hidden_states
class Conv3d(torch.nn.Conv3d):
def __init__(self, *args, dtype=torch.bfloat16, device="cuda", **kwargs):
super().__init__(*args, **kwargs)
self.dtype = dtype
self.device = device
def forward(self, x):
weight, bias = cast_bias_weight(self, x, dtype=self.dtype, device=self.device)
return torch.nn.functional.conv3d(x, weight, bias, self.stride, self.padding, self.dilation, self.groups)
class LayerNorm(torch.nn.LayerNorm):
def __init__(self, *args, dtype=torch.bfloat16, device="cuda", **kwargs):
super().__init__(*args, **kwargs)
self.dtype = dtype
self.device = device
def forward(self, x):
if self.weight is not None and self.bias is not None:
weight, bias = cast_bias_weight(self, x, dtype=self.dtype, device=self.device)
return torch.nn.functional.layer_norm(x, self.normalized_shape, weight, bias, self.eps)
else:
return torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
def replace_layer(model, dtype=torch.bfloat16, device="cuda"):
for name, module in model.named_children():
if isinstance(module, torch.nn.Linear):
with init_weights_on_device():
new_layer = quantized_layer.Linear(
module.in_features, module.out_features, bias=module.bias is not None,
dtype=dtype, device=device
)
new_layer.load_state_dict(module.state_dict(), assign=True)
setattr(model, name, new_layer)
elif isinstance(module, torch.nn.Conv3d):
with init_weights_on_device():
new_layer = quantized_layer.Conv3d(
module.in_channels, module.out_channels, kernel_size=module.kernel_size, stride=module.stride,
dtype=dtype, device=device
)
new_layer.load_state_dict(module.state_dict(), assign=True)
setattr(model, name, new_layer)
elif isinstance(module, RMSNorm):
new_layer = quantized_layer.RMSNorm(
module,
dtype=dtype, device=device
)
setattr(model, name, new_layer)
elif isinstance(module, torch.nn.LayerNorm):
with init_weights_on_device():
new_layer = quantized_layer.LayerNorm(
module.normalized_shape, elementwise_affine=module.elementwise_affine, eps=module.eps,
dtype=dtype, device=device
)
new_layer.load_state_dict(module.state_dict(), assign=True)
setattr(model, name, new_layer)
else:
replace_layer(module, dtype=dtype, device=device)
replace_layer(self, dtype=dtype, device=device)
def enable_deterministic(self):
for block in self.double_blocks:
block.enable_deterministic()
for block in self.single_blocks:
block.enable_deterministic()
def disable_deterministic(self):
for block in self.double_blocks:
block.disable_deterministic()
for block in self.single_blocks:
block.disable_deterministic()
def forward(
self,
x: torch.Tensor,
t: torch.Tensor, # Should be in range(0, 1000).
text_states: torch.Tensor = None,
text_mask: torch.Tensor = None, # Now we don't use it.
text_states_2: Optional[torch.Tensor] = None, # Text embedding for modulation.
freqs_cos: Optional[torch.Tensor] = None,
freqs_sin: Optional[torch.Tensor] = None,
guidance: torch.Tensor = None, # Guidance for modulation, should be cfg_scale x 1000.
stg_mode: str = None,
stg_block_idx: int = -1,
return_dict: bool = True,
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
def _process_double_blocks(img, txt, vec, block_args):
for b, block in enumerate(self.double_blocks):
if b <= self.double_blocks_to_swap and self.double_blocks_to_swap >= 0:
block.to(self.main_device)
img, txt = block(img, txt, vec, *block_args)
if b <= self.double_blocks_to_swap and self.double_blocks_to_swap >= 0:
block.to(self.offload_device, non_blocking=True)
return img, txt
def _process_single_blocks(x, vec, txt_seq_len, block_args, stg_mode=None, stg_block_idx=None):
for b, block in enumerate(self.single_blocks):
if b <= self.single_blocks_to_swap and self.single_blocks_to_swap >= 0:
block.to(self.main_device)
curr_stg_mode = stg_mode if b == stg_block_idx else None
x = block(x, vec, txt_seq_len, *block_args, curr_stg_mode)
if b <= self.single_blocks_to_swap and self.single_blocks_to_swap >= 0:
block.to(self.offload_device, non_blocking=True)
return x
out = {}
img = x
txt = text_states
_, _, ot, oh, ow = x.shape
tt, th, tw = (
ot // self.patch_size[0],
oh // self.patch_size[1],
ow // self.patch_size[2],
)
set_num_frames(img.shape[2])
current_dims = (ot, oh, ow)
# Check if dimensions changed since last run
if not hasattr(self, 'last_dims') or self.last_dims != current_dims:
# Reset TeaCache state on dimension change
self.cnt = 0
self.accumulated_rel_l1_distance = 0
self.previous_modulated_input = None
self.previous_residual = None
self.last_dims = current_dims
# Prepare modulation vectors.
vec = self.time_in(t)
# text modulation
if text_states_2 is not None:
vec = vec + self.vector_in(text_states_2)
# guidance modulation
if guidance is not None:
# our timestep_embedding is merged into guidance_in(TimestepEmbedder)
vec = vec + self.guidance_in(guidance)
# Embed image and text.
if self.offload_txt_in:
self.txt_in.to(self.main_device)
if self.offload_img_in:
self.img_in.to(self.main_device)
img = self.img_in(img)
if self.text_projection == "linear":
txt = self.txt_in(txt)
elif self.text_projection == "single_refiner":
txt = self.txt_in(txt, t, text_mask if self.use_attention_mask else None)
else:
raise NotImplementedError(
f"Unsupported text_projection: {self.text_projection}"
)
if self.offload_txt_in:
self.txt_in.to(self.offload_device, non_blocking=True)
if self.offload_img_in:
self.img_in.to(self.offload_device, non_blocking=True)
txt_seq_len = txt.shape[1]
img_seq_len = img.shape[1]
max_seqlen_q = max_seqlen_kv = img_seq_len + txt_seq_len
if "varlen" not in self.attention_mode:
cu_seqlens_q, cu_seqlens_kv = None, None
# Create a square boolean mask filled with False
attn_mask = torch.zeros((1, max_seqlen_q, max_seqlen_q), dtype=torch.bool, device=text_mask.device)
# Calculate the valid attention regions
text_len = text_mask[0].sum().item()
total_len = text_len + img_seq_len
# Allow attention to all tokens up to total_len
attn_mask[0, :total_len, :total_len] = True
else:
attn_mask = None
# Compute cu_squlens for flash attention
cu_seqlens_q = get_cu_seqlens(text_mask, img_seq_len)
cu_seqlens_kv = cu_seqlens_q
freqs_cis = (freqs_cos, freqs_sin) if freqs_cos is not None else None
block_args = [cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv, freqs_cis, attn_mask, self.upcast_rope]
#tea_cache
if self.enable_teacache:
inp = img.clone()
vec_ = vec.clone()
txt_ = txt.clone()
self.double_blocks[0].to(self.main_device)
(
img_mod1_shift,
img_mod1_scale,
img_mod1_gate,
img_mod2_shift,
img_mod2_scale,
img_mod2_gate,
) = self.double_blocks[0].img_mod(vec_).chunk(6, dim=-1)
normed_inp = self.double_blocks[0].img_norm1(inp)
modulated_inp = modulate(
normed_inp, shift=img_mod1_shift, scale=img_mod1_scale
)
if self.cnt == 0 or self.cnt == self.num_steps-1:
should_calc = True
self.accumulated_rel_l1_distance = 0
self.previous_modulated_input = modulated_inp.clone()
else:
coefficients = [7.33226126e+02, -4.01131952e+02, 6.75869174e+01, -3.14987800e+00, 9.61237896e-02]
rescale_func = np.poly1d(coefficients)
self.accumulated_rel_l1_distance += rescale_func(((modulated_inp-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item())
if self.accumulated_rel_l1_distance < self.rel_l1_thresh:
should_calc = False
else:
should_calc = True
self.accumulated_rel_l1_distance = 0
self.previous_modulated_input = modulated_inp.clone()
self.cnt += 1
if self.cnt == self.num_steps:
self.cnt = 0
if not should_calc and self.previous_residual is not None:
# Verify tensor dimensions match before adding
if img.shape == self.previous_residual.shape:
img = img + self.previous_residual
else:
should_calc = True # Force recalculation if dimensions don't match
if should_calc:
ori_img = img.clone()
# Pass through DiT blocks
img, txt = _process_double_blocks(img, txt, vec, block_args)
# Merge txt and img to pass through single stream blocks.
x = torch.cat((img, txt), 1)
x = _process_single_blocks(x, vec, txt.shape[1], block_args, stg_mode, stg_block_idx)
img = x[:, :img_seq_len, ...]
self.previous_residual = img - ori_img
else:
# Pass through DiT blocks
img, txt = _process_double_blocks(img, txt, vec, block_args)
# Merge txt and img to pass through single stream blocks.
x = torch.cat((img, txt), 1)
x = _process_single_blocks(x, vec, txt.shape[1], block_args, stg_mode, stg_block_idx)
img = x[:, :img_seq_len, ...]
# ---------------------------- Final layer ------------------------------
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
img = self.unpatchify(img, tt, th, tw)
if return_dict:
out["x"] = img
return out
return img
def unpatchify(self, x, t, h, w):
"""
x: (N, T, patch_size**2 * C)
imgs: (N, H, W, C)
"""
c = self.unpatchify_channels
pt, ph, pw = self.patch_size
assert t * h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], t, h, w, c, pt, ph, pw))
x = torch.einsum("nthwcopq->nctohpwq", x)
imgs = x.reshape(shape=(x.shape[0], c, t * pt, h * ph, w * pw))
return imgs
#################################################################################
# HunyuanVideo Configs #
#################################################################################
# HUNYUAN_VIDEO_CONFIG = {
# "HYVideo-T/2": {
# "mm_double_blocks_depth": 20,
# "mm_single_blocks_depth": 40,
# "rope_dim_list": [16, 56, 56],
# "hidden_size": 3072,
# "heads_num": 24,
# "mlp_width_ratio": 4,
# },
# "HYVideo-T/2-cfgdistill": {
# "mm_double_blocks_depth": 20,
# "mm_single_blocks_depth": 40,
# "rope_dim_list": [16, 56, 56],
# "hidden_size": 3072,
# "heads_num": 24,
# "mlp_width_ratio": 4,
# "guidance_embed": True,
# },
# }