|
import torch
|
|
import torch.nn.functional as F
|
|
from einops import rearrange
|
|
from torch import nn
|
|
|
|
|
|
class InflatedConv3d(nn.Conv2d):
|
|
def forward(self, x):
|
|
video_length = x.shape[2]
|
|
|
|
x = rearrange(x, "b c f h w -> (b f) c h w")
|
|
x = super().forward(x)
|
|
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
|
|
|
|
return x
|
|
|
|
|
|
class InflatedGroupNorm(nn.GroupNorm):
|
|
def forward(self, x):
|
|
video_length = x.shape[2]
|
|
|
|
x = rearrange(x, "b c f h w -> (b f) c h w")
|
|
x = super().forward(x)
|
|
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
|
|
|
|
return x
|
|
|
|
|
|
class Upsample3D(nn.Module):
|
|
def __init__(
|
|
self,
|
|
channels,
|
|
use_conv=False,
|
|
use_conv_transpose=False,
|
|
out_channels=None,
|
|
name="conv",
|
|
):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.out_channels = out_channels or channels
|
|
self.use_conv = use_conv
|
|
self.use_conv_transpose = use_conv_transpose
|
|
self.name = name
|
|
|
|
if use_conv_transpose:
|
|
raise NotImplementedError
|
|
if use_conv:
|
|
self.conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1)
|
|
|
|
def forward(self, hidden_states, output_size=None):
|
|
assert hidden_states.shape[1] == self.channels
|
|
|
|
if self.use_conv_transpose:
|
|
raise NotImplementedError
|
|
|
|
|
|
dtype = hidden_states.dtype
|
|
if dtype == torch.bfloat16:
|
|
hidden_states = hidden_states.to(torch.float32)
|
|
|
|
|
|
if hidden_states.shape[0] >= 64:
|
|
hidden_states = hidden_states.contiguous()
|
|
|
|
|
|
|
|
if output_size is None:
|
|
hidden_states = F.interpolate(hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest")
|
|
else:
|
|
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
|
|
|
|
|
|
if dtype == torch.bfloat16:
|
|
hidden_states = hidden_states.to(dtype)
|
|
|
|
hidden_states = self.conv(hidden_states)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class Downsample3D(nn.Module):
|
|
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.out_channels = out_channels or channels
|
|
self.use_conv = use_conv
|
|
self.padding = padding
|
|
stride = 2
|
|
self.name = name
|
|
|
|
if use_conv:
|
|
self.conv = InflatedConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
def forward(self, hidden_states):
|
|
assert hidden_states.shape[1] == self.channels
|
|
if self.use_conv and self.padding == 0:
|
|
raise NotImplementedError
|
|
|
|
assert hidden_states.shape[1] == self.channels
|
|
hidden_states = self.conv(hidden_states)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class ResnetBlock3D(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
in_channels,
|
|
out_channels=None,
|
|
conv_shortcut=False,
|
|
dropout=0.0,
|
|
temb_channels=512,
|
|
groups=32,
|
|
groups_out=None,
|
|
pre_norm=True,
|
|
eps=1e-6,
|
|
non_linearity="swish",
|
|
time_embedding_norm="default",
|
|
output_scale_factor=1.0,
|
|
use_in_shortcut=None,
|
|
use_inflated_groupnorm=None,
|
|
):
|
|
super().__init__()
|
|
self.pre_norm = pre_norm
|
|
self.pre_norm = True
|
|
self.in_channels = in_channels
|
|
out_channels = in_channels if out_channels is None else out_channels
|
|
self.out_channels = out_channels
|
|
self.use_conv_shortcut = conv_shortcut
|
|
self.time_embedding_norm = time_embedding_norm
|
|
self.output_scale_factor = output_scale_factor
|
|
|
|
if groups_out is None:
|
|
groups_out = groups
|
|
|
|
assert use_inflated_groupnorm is not None
|
|
if use_inflated_groupnorm:
|
|
self.norm1 = InflatedGroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
|
|
else:
|
|
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
|
|
|
|
self.conv1 = InflatedConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
|
|
|
if temb_channels is not None:
|
|
if self.time_embedding_norm == "default":
|
|
time_emb_proj_out_channels = out_channels
|
|
elif self.time_embedding_norm == "scale_shift":
|
|
time_emb_proj_out_channels = out_channels * 2
|
|
else:
|
|
raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
|
|
|
|
self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels)
|
|
else:
|
|
self.time_emb_proj = None
|
|
|
|
if use_inflated_groupnorm:
|
|
self.norm2 = InflatedGroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
|
|
else:
|
|
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
|
|
self.dropout = torch.nn.Dropout(dropout)
|
|
self.conv2 = InflatedConv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
|
|
|
if non_linearity == "swish":
|
|
self.nonlinearity = F.silu()
|
|
elif non_linearity == "mish":
|
|
self.nonlinearity = Mish()
|
|
elif non_linearity == "silu":
|
|
self.nonlinearity = nn.SiLU()
|
|
|
|
self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut
|
|
|
|
self.conv_shortcut = None
|
|
if self.use_in_shortcut:
|
|
self.conv_shortcut = InflatedConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
|
|
|
def forward(self, input_tensor, temb):
|
|
hidden_states = input_tensor
|
|
|
|
hidden_states = self.norm1(hidden_states)
|
|
hidden_states = self.nonlinearity(hidden_states)
|
|
|
|
hidden_states = self.conv1(hidden_states)
|
|
|
|
if temb is not None:
|
|
if temb.dim() == 3:
|
|
temb = self.time_emb_proj(self.nonlinearity(temb))
|
|
temb = temb.transpose(1, 2).unsqueeze(-1).unsqueeze(-1)
|
|
else:
|
|
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None]
|
|
|
|
if temb is not None and self.time_embedding_norm == "default":
|
|
hidden_states = hidden_states + temb
|
|
|
|
hidden_states = self.norm2(hidden_states)
|
|
|
|
if temb is not None and self.time_embedding_norm == "scale_shift":
|
|
scale, shift = torch.chunk(temb, 2, dim=1)
|
|
hidden_states = hidden_states * (1 + scale) + shift
|
|
|
|
hidden_states = self.nonlinearity(hidden_states)
|
|
|
|
hidden_states = self.dropout(hidden_states)
|
|
hidden_states = self.conv2(hidden_states)
|
|
|
|
if self.conv_shortcut is not None:
|
|
input_tensor = self.conv_shortcut(input_tensor)
|
|
|
|
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
|
|
|
|
return output_tensor
|
|
|
|
|
|
class Mish(torch.nn.Module):
|
|
def forward(self, hidden_states):
|
|
return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
|
|
|