|
import inspect
|
|
from dataclasses import dataclass
|
|
from typing import Callable, List, Optional, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
from diffusers import (
|
|
DDIMScheduler,
|
|
DiffusionPipeline,
|
|
DPMSolverMultistepScheduler,
|
|
EulerAncestralDiscreteScheduler,
|
|
EulerDiscreteScheduler,
|
|
LMSDiscreteScheduler,
|
|
PNDMScheduler,
|
|
)
|
|
from diffusers.image_processor import VaeImageProcessor
|
|
from diffusers.utils import BaseOutput
|
|
from diffusers.utils.torch_utils import randn_tensor
|
|
from einops import rearrange
|
|
|
|
|
|
@dataclass
|
|
class VideoPipelineOutput(BaseOutput):
|
|
videos: Union[torch.Tensor, np.ndarray]
|
|
|
|
|
|
class VideoPipeline(DiffusionPipeline):
|
|
def __init__(
|
|
self,
|
|
vae,
|
|
reference_net,
|
|
diffusion_net,
|
|
image_proj,
|
|
scheduler: Union[
|
|
DDIMScheduler,
|
|
PNDMScheduler,
|
|
LMSDiscreteScheduler,
|
|
EulerDiscreteScheduler,
|
|
EulerAncestralDiscreteScheduler,
|
|
DPMSolverMultistepScheduler,
|
|
],
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.register_modules(
|
|
vae=vae,
|
|
reference_net=reference_net,
|
|
diffusion_net=diffusion_net,
|
|
scheduler=scheduler,
|
|
image_proj=image_proj,
|
|
)
|
|
|
|
self.vae_scale_factor: int = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
|
|
|
self.ref_image_processor = VaeImageProcessor(
|
|
vae_scale_factor=self.vae_scale_factor,
|
|
do_convert_rgb=True,
|
|
)
|
|
|
|
@property
|
|
def _execution_device(self):
|
|
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
|
|
return self.device
|
|
for module in self.unet.modules():
|
|
if (
|
|
hasattr(module, "_hf_hook")
|
|
and hasattr(module._hf_hook, "execution_device")
|
|
and module._hf_hook.execution_device is not None
|
|
):
|
|
return torch.device(module._hf_hook.execution_device)
|
|
return self.device
|
|
|
|
def prepare_latents(
|
|
self,
|
|
batch_size: int,
|
|
num_channels_latents: int,
|
|
width: int,
|
|
height: int,
|
|
video_length: int,
|
|
dtype: torch.dtype,
|
|
device: torch.device,
|
|
generator: Optional[torch.Generator] = None,
|
|
latents: Optional[torch.Tensor] = None,
|
|
):
|
|
shape = (
|
|
batch_size,
|
|
num_channels_latents,
|
|
video_length,
|
|
height // self.vae_scale_factor,
|
|
width // self.vae_scale_factor,
|
|
)
|
|
if isinstance(generator, list) and len(generator) != batch_size:
|
|
raise ValueError(
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
|
)
|
|
|
|
if latents is None:
|
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
|
else:
|
|
latents = latents.to(device)
|
|
|
|
|
|
if hasattr(self.scheduler, "init_noise_sigma"):
|
|
latents = latents * self.scheduler.init_noise_sigma
|
|
return latents
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta):
|
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
extra_step_kwargs = {}
|
|
if accepts_eta:
|
|
extra_step_kwargs["eta"] = eta
|
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
if accepts_generator:
|
|
extra_step_kwargs["generator"] = generator
|
|
return extra_step_kwargs
|
|
|
|
def decode_latents(self, latents):
|
|
video_length = latents.shape[2]
|
|
latents = 1 / 0.18215 * latents
|
|
latents = rearrange(latents, "b c f h w -> (b f) c h w")
|
|
video = []
|
|
for frame_idx in range(latents.shape[0]):
|
|
video.append(self.vae.decode(latents[frame_idx : frame_idx + 1]).sample)
|
|
video = torch.cat(video)
|
|
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
|
|
video = (video / 2 + 0.5).clamp(0, 1)
|
|
|
|
video = video.cpu().float().numpy()
|
|
return video
|
|
|
|
@torch.no_grad()
|
|
def __call__(
|
|
self,
|
|
ref_image,
|
|
face_emb,
|
|
audio_tensor,
|
|
width,
|
|
height,
|
|
video_length,
|
|
num_inference_steps,
|
|
guidance_scale,
|
|
num_images_per_prompt=1,
|
|
eta: float = 0.0,
|
|
audio_emotion=None,
|
|
emotion_class_num=None,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
output_type: Optional[str] = "tensor",
|
|
return_dict: bool = True,
|
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
|
callback_steps: Optional[int] = 1,
|
|
):
|
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
|
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
|
|
|
device = self._execution_device
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
|
timesteps = self.scheduler.timesteps
|
|
|
|
batch_size = 1
|
|
|
|
|
|
clip_image_embeds = face_emb
|
|
clip_image_embeds = clip_image_embeds.to(self.image_proj.device, self.image_proj.dtype)
|
|
|
|
encoder_hidden_states = self.image_proj(clip_image_embeds)
|
|
uncond_encoder_hidden_states = self.image_proj(torch.zeros_like(clip_image_embeds))
|
|
|
|
if do_classifier_free_guidance:
|
|
encoder_hidden_states = torch.cat([uncond_encoder_hidden_states, encoder_hidden_states], dim=0)
|
|
|
|
num_channels_latents = self.diffusion_net.in_channels
|
|
|
|
latents = self.prepare_latents(
|
|
batch_size * num_images_per_prompt,
|
|
num_channels_latents,
|
|
width,
|
|
height,
|
|
video_length,
|
|
clip_image_embeds.dtype,
|
|
device,
|
|
generator,
|
|
)
|
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|
|
|
|
|
ref_image_tensor = rearrange(ref_image, "b f c h w -> (b f) c h w")
|
|
ref_image_tensor = self.ref_image_processor.preprocess(
|
|
ref_image_tensor, height=height, width=width
|
|
)
|
|
ref_image_tensor = ref_image_tensor.to(dtype=self.vae.dtype, device=self.vae.device)
|
|
|
|
|
|
ref_image_latents = []
|
|
for frame_idx in range(ref_image_tensor.shape[0]):
|
|
ref_image_latents.append(self.vae.encode(ref_image_tensor[frame_idx : frame_idx + 1]).latent_dist.mean)
|
|
ref_image_latents = torch.cat(ref_image_latents, dim=0)
|
|
|
|
ref_image_latents = ref_image_latents * 0.18215
|
|
|
|
if do_classifier_free_guidance:
|
|
uncond_audio_tensor = torch.zeros_like(audio_tensor)
|
|
audio_tensor = torch.cat([uncond_audio_tensor, audio_tensor], dim=0)
|
|
audio_tensor = audio_tensor.to(dtype=self.diffusion_net.dtype, device=self.diffusion_net.device)
|
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
for i in range(len(timesteps)):
|
|
t = timesteps[i]
|
|
|
|
if i == 0:
|
|
ref_features = self.reference_net(
|
|
ref_image_latents.repeat((2 if do_classifier_free_guidance else 1), 1, 1, 1),
|
|
torch.zeros_like(t),
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
return_dict=False,
|
|
)
|
|
|
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
|
if hasattr(self.scheduler, "scale_model_input"):
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
audio_emotion = torch.tensor(torch.mode(audio_emotion).values.item()).to(
|
|
dtype=torch.int, device=self.diffusion_net.device
|
|
)
|
|
if do_classifier_free_guidance:
|
|
uncond_audio_emotion = torch.full_like(audio_emotion, emotion_class_num)
|
|
audio_emotion = torch.cat(
|
|
[uncond_audio_emotion.unsqueeze(0), audio_emotion.unsqueeze(0)],
|
|
dim=0,
|
|
)
|
|
|
|
uc_mask = (
|
|
torch.Tensor(
|
|
[1] * batch_size * num_images_per_prompt * 16
|
|
+ [0] * batch_size * num_images_per_prompt * 16
|
|
)
|
|
.to(device)
|
|
.bool()
|
|
)
|
|
else:
|
|
uc_mask = None
|
|
|
|
noise_pred = self.diffusion_net(
|
|
latent_model_input,
|
|
ref_features,
|
|
t,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
audio_embedding=audio_tensor,
|
|
audio_emotion=audio_emotion,
|
|
uc_mask=uc_mask,
|
|
).sample
|
|
|
|
|
|
if do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
|
|
|
|
|
if i == len(timesteps) - 1 or (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0:
|
|
progress_bar.update()
|
|
if callback is not None and i % callback_steps == 0:
|
|
step_idx = i // getattr(self.scheduler, "order", 1)
|
|
callback(step_idx, t, latents)
|
|
|
|
|
|
images = self.decode_latents(latents)
|
|
|
|
|
|
if output_type == "tensor":
|
|
images = torch.from_numpy(images)
|
|
|
|
if not return_dict:
|
|
return images
|
|
|
|
return VideoPipelineOutput(videos=images)
|
|
|