|
import numpy as np
|
|
import cv2
|
|
import torch
|
|
|
|
|
|
|
|
def _dict_merge(dicta, dictb, prefix=''):
|
|
"""
|
|
Merge two dictionaries.
|
|
"""
|
|
assert isinstance(dicta, dict), 'input must be a dictionary'
|
|
assert isinstance(dictb, dict), 'input must be a dictionary'
|
|
dict_ = {}
|
|
all_keys = set(dicta.keys()).union(set(dictb.keys()))
|
|
for key in all_keys:
|
|
if key in dicta.keys() and key in dictb.keys():
|
|
if isinstance(dicta[key], dict) and isinstance(dictb[key], dict):
|
|
dict_[key] = _dict_merge(dicta[key], dictb[key], prefix=f'{prefix}.{key}')
|
|
else:
|
|
raise ValueError(f'Duplicate key {prefix}.{key} found in both dictionaries. Types: {type(dicta[key])}, {type(dictb[key])}')
|
|
elif key in dicta.keys():
|
|
dict_[key] = dicta[key]
|
|
else:
|
|
dict_[key] = dictb[key]
|
|
return dict_
|
|
|
|
|
|
def dict_merge(dicta, dictb):
|
|
"""
|
|
Merge two dictionaries.
|
|
"""
|
|
return _dict_merge(dicta, dictb, prefix='')
|
|
|
|
|
|
def dict_foreach(dic, func, special_func={}):
|
|
"""
|
|
Recursively apply a function to all non-dictionary leaf values in a dictionary.
|
|
"""
|
|
assert isinstance(dic, dict), 'input must be a dictionary'
|
|
for key in dic.keys():
|
|
if isinstance(dic[key], dict):
|
|
dic[key] = dict_foreach(dic[key], func)
|
|
else:
|
|
if key in special_func.keys():
|
|
dic[key] = special_func[key](dic[key])
|
|
else:
|
|
dic[key] = func(dic[key])
|
|
return dic
|
|
|
|
|
|
def dict_reduce(dicts, func, special_func={}):
|
|
"""
|
|
Reduce a list of dictionaries. Leaf values must be scalars.
|
|
"""
|
|
assert isinstance(dicts, list), 'input must be a list of dictionaries'
|
|
assert all([isinstance(d, dict) for d in dicts]), 'input must be a list of dictionaries'
|
|
assert len(dicts) > 0, 'input must be a non-empty list of dictionaries'
|
|
all_keys = set([key for dict_ in dicts for key in dict_.keys()])
|
|
reduced_dict = {}
|
|
for key in all_keys:
|
|
vlist = [dict_[key] for dict_ in dicts if key in dict_.keys()]
|
|
if isinstance(vlist[0], dict):
|
|
reduced_dict[key] = dict_reduce(vlist, func, special_func)
|
|
else:
|
|
if key in special_func.keys():
|
|
reduced_dict[key] = special_func[key](vlist)
|
|
else:
|
|
reduced_dict[key] = func(vlist)
|
|
return reduced_dict
|
|
|
|
|
|
def dict_any(dic, func):
|
|
"""
|
|
Recursively apply a function to all non-dictionary leaf values in a dictionary.
|
|
"""
|
|
assert isinstance(dic, dict), 'input must be a dictionary'
|
|
for key in dic.keys():
|
|
if isinstance(dic[key], dict):
|
|
if dict_any(dic[key], func):
|
|
return True
|
|
else:
|
|
if func(dic[key]):
|
|
return True
|
|
return False
|
|
|
|
|
|
def dict_all(dic, func):
|
|
"""
|
|
Recursively apply a function to all non-dictionary leaf values in a dictionary.
|
|
"""
|
|
assert isinstance(dic, dict), 'input must be a dictionary'
|
|
for key in dic.keys():
|
|
if isinstance(dic[key], dict):
|
|
if not dict_all(dic[key], func):
|
|
return False
|
|
else:
|
|
if not func(dic[key]):
|
|
return False
|
|
return True
|
|
|
|
|
|
def dict_flatten(dic, sep='.'):
|
|
"""
|
|
Flatten a nested dictionary into a dictionary with no nested dictionaries.
|
|
"""
|
|
assert isinstance(dic, dict), 'input must be a dictionary'
|
|
flat_dict = {}
|
|
for key in dic.keys():
|
|
if isinstance(dic[key], dict):
|
|
sub_dict = dict_flatten(dic[key], sep=sep)
|
|
for sub_key in sub_dict.keys():
|
|
flat_dict[str(key) + sep + str(sub_key)] = sub_dict[sub_key]
|
|
else:
|
|
flat_dict[key] = dic[key]
|
|
return flat_dict
|
|
|
|
|
|
def make_grid(images, nrow=None, ncol=None, aspect_ratio=None):
|
|
num_images = len(images)
|
|
if nrow is None and ncol is None:
|
|
if aspect_ratio is not None:
|
|
nrow = int(np.round(np.sqrt(num_images / aspect_ratio)))
|
|
else:
|
|
nrow = int(np.sqrt(num_images))
|
|
ncol = (num_images + nrow - 1) // nrow
|
|
elif nrow is None and ncol is not None:
|
|
nrow = (num_images + ncol - 1) // ncol
|
|
elif nrow is not None and ncol is None:
|
|
ncol = (num_images + nrow - 1) // nrow
|
|
else:
|
|
assert nrow * ncol >= num_images, 'nrow * ncol must be greater than or equal to the number of images'
|
|
|
|
grid = np.zeros((nrow * images[0].shape[0], ncol * images[0].shape[1], images[0].shape[2]), dtype=images[0].dtype)
|
|
for i, img in enumerate(images):
|
|
row = i // ncol
|
|
col = i % ncol
|
|
grid[row * img.shape[0]:(row + 1) * img.shape[0], col * img.shape[1]:(col + 1) * img.shape[1]] = img
|
|
return grid
|
|
|
|
|
|
def notes_on_image(img, notes=None):
|
|
img = np.pad(img, ((0, 32), (0, 0), (0, 0)), 'constant', constant_values=0)
|
|
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
|
if notes is not None:
|
|
img = cv2.putText(img, notes, (0, img.shape[0] - 4), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 1)
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
|
return img
|
|
|
|
|
|
def save_image_with_notes(img, path, notes=None):
|
|
"""
|
|
Save an image with notes.
|
|
"""
|
|
if isinstance(img, torch.Tensor):
|
|
img = img.cpu().numpy().transpose(1, 2, 0)
|
|
if img.dtype == np.float32 or img.dtype == np.float64:
|
|
img = np.clip(img * 255, 0, 255).astype(np.uint8)
|
|
img = notes_on_image(img, notes)
|
|
cv2.imwrite(path, cv2.cvtColor(img, cv2.COLOR_RGB2BGR))
|
|
|
|
|
|
|
|
|
|
def atol(x, y):
|
|
"""
|
|
Absolute tolerance.
|
|
"""
|
|
return torch.abs(x - y)
|
|
|
|
|
|
def rtol(x, y):
|
|
"""
|
|
Relative tolerance.
|
|
"""
|
|
return torch.abs(x - y) / torch.clamp_min(torch.maximum(torch.abs(x), torch.abs(y)), 1e-12)
|
|
|
|
|
|
|
|
def indent(s, n=4):
|
|
"""
|
|
Indent a string.
|
|
"""
|
|
lines = s.split('\n')
|
|
for i in range(1, len(lines)):
|
|
lines[i] = ' ' * n + lines[i]
|
|
return '\n'.join(lines)
|
|
|
|
|