jaxmetaverse's picture
Upload folder using huggingface_hub
82ea528 verified
# Adapted from https://github.com/Limitex/ComfyUI-Diffusers/blob/main/nodes.py
import copy
import os
import torch
from safetensors.torch import load_file
from torchvision import transforms
from .utils import (
SCHEDULERS,
PIPELINES,
MVADAPTERS,
vae_pt_to_vae_diffuser,
convert_images_to_tensors,
convert_tensors_to_images,
prepare_camera_embed,
preprocess_image,
)
from comfy.model_management import get_torch_device
import folder_paths
from diffusers import StableDiffusionXLPipeline, AutoencoderKL, ControlNetModel
from transformers import AutoModelForImageSegmentation
from .mvadapter.pipelines.pipeline_mvadapter_t2mv_sdxl import MVAdapterT2MVSDXLPipeline
from .mvadapter.schedulers.scheduling_shift_snr import ShiftSNRScheduler
class DiffusersPipelineLoader:
def __init__(self):
self.hf_dir = folder_paths.get_folder_paths("diffusers")[0]
self.dtype = torch.float16
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"ckpt_name": (
"STRING",
{"default": "stabilityai/stable-diffusion-xl-base-1.0"},
),
"pipeline_name": (
list(PIPELINES.keys()),
{"default": "MVAdapterT2MVSDXLPipeline"},
),
}
}
RETURN_TYPES = (
"PIPELINE",
"AUTOENCODER",
"SCHEDULER",
)
FUNCTION = "create_pipeline"
CATEGORY = "MV-Adapter"
def create_pipeline(self, ckpt_name, pipeline_name):
pipeline_class = PIPELINES[pipeline_name]
pipe = pipeline_class.from_pretrained(
pretrained_model_name_or_path=ckpt_name,
torch_dtype=self.dtype,
cache_dir=self.hf_dir,
)
return (pipe, pipe.vae, pipe.scheduler)
class LdmPipelineLoader:
def __init__(self):
self.hf_dir = folder_paths.get_folder_paths("diffusers")[0]
self.dtype = torch.float16
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"ckpt_name": (folder_paths.get_filename_list("checkpoints"),),
"pipeline_name": (
list(PIPELINES.keys()),
{"default": "MVAdapterT2MVSDXLPipeline"},
),
}
}
RETURN_TYPES = (
"PIPELINE",
"AUTOENCODER",
"SCHEDULER",
)
FUNCTION = "create_pipeline"
CATEGORY = "MV-Adapter"
def create_pipeline(self, ckpt_name, pipeline_name):
pipeline_class = PIPELINES[pipeline_name]
pipe = pipeline_class.from_single_file(
pretrained_model_link_or_path=folder_paths.get_full_path(
"checkpoints", ckpt_name
),
torch_dtype=self.dtype,
cache_dir=self.hf_dir,
)
return (pipe, pipe.vae, pipe.scheduler)
class DiffusersVaeLoader:
def __init__(self):
self.hf_dir = folder_paths.get_folder_paths("diffusers")[0]
self.dtype = torch.float16
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"vae_name": (
"STRING",
{"default": "madebyollin/sdxl-vae-fp16-fix"},
),
}
}
RETURN_TYPES = ("AUTOENCODER",)
FUNCTION = "create_pipeline"
CATEGORY = "MV-Adapter"
def create_pipeline(self, vae_name):
vae = AutoencoderKL.from_pretrained(
pretrained_model_name_or_path=vae_name,
torch_dtype=self.dtype,
cache_dir=self.hf_dir,
)
return (vae,)
class LdmVaeLoader:
def __init__(self):
self.dtype = torch.float16
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"vae_name": (folder_paths.get_filename_list("vae"),),
"upcast_fp32": ("BOOLEAN", {"default": True}),
},
}
RETURN_TYPES = ("AUTOENCODER",)
FUNCTION = "create_pipeline"
CATEGORY = "MV-Adapter"
def create_pipeline(self, vae_name, upcast_fp32):
vae = vae_pt_to_vae_diffuser(
folder_paths.get_full_path("vae", vae_name), force_upcast=upcast_fp32
).to(self.dtype)
return (vae,)
class DiffusersSchedulerLoader:
def __init__(self):
self.hf_dir = folder_paths.get_folder_paths("diffusers")[0]
self.dtype = torch.float16
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"pipeline": ("PIPELINE",),
"scheduler_name": (list(SCHEDULERS.keys()),),
"shift_snr": ("BOOLEAN", {"default": True}),
"shift_mode": (
list(ShiftSNRScheduler.SHIFT_MODES),
{"default": "interpolated"},
),
"shift_scale": (
"FLOAT",
{"default": 8.0, "min": 0.0, "max": 50.0, "step": 1.0},
),
}
}
RETURN_TYPES = ("SCHEDULER",)
FUNCTION = "load_scheduler"
CATEGORY = "MV-Adapter"
def load_scheduler(
self, pipeline, scheduler_name, shift_snr, shift_mode, shift_scale
):
scheduler = SCHEDULERS[scheduler_name].from_config(
pipeline.scheduler.config, torch_dtype=self.dtype
)
if shift_snr:
scheduler = ShiftSNRScheduler.from_scheduler(
scheduler,
shift_mode=shift_mode,
shift_scale=shift_scale,
scheduler_class=scheduler.__class__,
)
return (scheduler,)
class LoraModelLoader:
def __init__(self):
self.loaded_lora = None
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"pipeline": ("PIPELINE",),
"lora_name": (folder_paths.get_filename_list("loras"),),
"strength_model": (
"FLOAT",
{"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01},
),
}
}
RETURN_TYPES = ("PIPELINE",)
FUNCTION = "load_lora"
CATEGORY = "MV-Adapter"
def load_lora(self, pipeline, lora_name, strength_model):
if strength_model == 0:
return (pipeline,)
lora_path = folder_paths.get_full_path("loras", lora_name)
lora_dir = os.path.dirname(lora_path)
lora_name = os.path.basename(lora_path)
lora = None
if self.loaded_lora is not None:
if self.loaded_lora[0] == lora_path:
lora = self.loaded_lora[1]
else:
temp = self.loaded_lora
pipeline.delete_adapters(temp[1])
self.loaded_lora = None
if lora is None:
adapter_name = lora_name.rsplit(".", 1)[0]
pipeline.load_lora_weights(
lora_dir, weight_name=lora_name, adapter_name=adapter_name
)
pipeline.set_adapters(adapter_name, strength_model)
self.loaded_lora = (lora_path, adapter_name)
lora = adapter_name
return (pipeline,)
class ControlNetModelLoader:
def __init__(self):
self.loaded_controlnet = None
self.dtype = torch.float16
self.torch_device = get_torch_device()
self.hf_dir = folder_paths.get_folder_paths("diffusers")[0]
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"pipeline": ("PIPELINE",),
"controlnet_name": (
"STRING",
{"default": "xinsir/controlnet-scribble-sdxl-1.0"},
),
}
}
RETURN_TYPES = ("PIPELINE",)
FUNCTION = "load_controlnet"
CATEGORY = "MV-Adapter"
def load_controlnet(self, pipeline, controlnet_name):
controlnet = None
if self.loaded_controlnet is not None:
if self.loaded_controlnet == controlnet_name:
controlnet = self.loaded_controlnet
else:
del pipeline.controlnet
self.loaded_controlnet = None
if controlnet is None:
controlnet = ControlNetModel.from_pretrained(
controlnet_name, cache_dir=self.hf_dir, torch_dtype=self.dtype
)
pipeline.controlnet = controlnet
pipeline.controlnet.to(device=self.torch_device, dtype=self.dtype)
self.loaded_controlnet = controlnet_name
controlnet = controlnet_name
return (pipeline,)
class DiffusersModelMakeup:
def __init__(self):
self.hf_dir = folder_paths.get_folder_paths("diffusers")[0]
self.torch_device = get_torch_device()
self.dtype = torch.float16
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"pipeline": ("PIPELINE",),
"scheduler": ("SCHEDULER",),
"autoencoder": ("AUTOENCODER",),
"load_mvadapter": ("BOOLEAN", {"default": True}),
"adapter_path": ("STRING", {"default": "huanngzh/mv-adapter"}),
"adapter_name": (
MVADAPTERS,
{"default": "mvadapter_t2mv_sdxl.safetensors"},
),
"num_views": ("INT", {"default": 6, "min": 1, "max": 12}),
},
"optional": {
"enable_vae_slicing": ("BOOLEAN", {"default": True}),
"enable_vae_tiling": ("BOOLEAN", {"default": False}),
},
}
RETURN_TYPES = ("PIPELINE",)
FUNCTION = "makeup_pipeline"
CATEGORY = "MV-Adapter"
def makeup_pipeline(
self,
pipeline,
scheduler,
autoencoder,
load_mvadapter,
adapter_path,
adapter_name,
num_views,
enable_vae_slicing=True,
enable_vae_tiling=False,
):
pipeline.vae = autoencoder
pipeline.scheduler = scheduler
if load_mvadapter:
pipeline.init_custom_adapter(num_views=num_views)
pipeline.load_custom_adapter(
adapter_path, weight_name=adapter_name, cache_dir=self.hf_dir
)
pipeline.cond_encoder.to(device=self.torch_device, dtype=self.dtype)
pipeline = pipeline.to(self.torch_device, self.dtype)
if enable_vae_slicing:
pipeline.enable_vae_slicing()
if enable_vae_tiling:
pipeline.enable_vae_tiling()
return (pipeline,)
class DiffusersSampler:
def __init__(self):
self.torch_device = get_torch_device()
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"pipeline": ("PIPELINE",),
"prompt": (
"STRING",
{"multiline": True, "default": "a photo of a cat"},
),
"negative_prompt": (
"STRING",
{
"multiline": True,
"default": "watermark, ugly, deformed, noisy, blurry, low contrast",
},
),
"width": ("INT", {"default": 768, "min": 1, "max": 2048, "step": 1}),
"height": ("INT", {"default": 768, "min": 1, "max": 2048, "step": 1}),
"steps": ("INT", {"default": 50, "min": 1, "max": 2000}),
"cfg": (
"FLOAT",
{
"default": 7.0,
"min": 0.0,
"max": 100.0,
"step": 0.1,
"round": 0.01,
},
),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFFFFFFFFFFFF}),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "sample"
CATEGORY = "MV-Adapter"
def sample(
self,
pipeline,
prompt,
negative_prompt,
height,
width,
steps,
cfg,
seed,
):
images = pipeline(
prompt=prompt,
height=height,
width=width,
num_inference_steps=steps,
guidance_scale=cfg,
negative_prompt=negative_prompt,
generator=torch.Generator(self.torch_device).manual_seed(seed),
).images
return (convert_images_to_tensors(images),)
class DiffusersMVSampler:
def __init__(self):
self.torch_device = get_torch_device()
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"pipeline": ("PIPELINE",),
"num_views": ("INT", {"default": 6, "min": 1, "max": 12}),
"prompt": (
"STRING",
{"multiline": True, "default": "an astronaut riding a horse"},
),
"negative_prompt": (
"STRING",
{
"multiline": True,
"default": "watermark, ugly, deformed, noisy, blurry, low contrast",
},
),
"width": ("INT", {"default": 768, "min": 1, "max": 2048, "step": 1}),
"height": ("INT", {"default": 768, "min": 1, "max": 2048, "step": 1}),
"steps": ("INT", {"default": 50, "min": 1, "max": 2000}),
"cfg": (
"FLOAT",
{
"default": 7.0,
"min": 0.0,
"max": 100.0,
"step": 0.1,
"round": 0.01,
},
),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFFFFFFFFFFFF}),
},
"optional": {
"reference_image": ("IMAGE",),
"controlnet_image": ("IMAGE",),
"controlnet_conditioning_scale": ("FLOAT", {"default": 1.0}),
"azimuth_degrees": ("LIST", {"default": [0, 45, 90, 180, 270, 315]}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "sample"
CATEGORY = "MV-Adapter"
def sample(
self,
pipeline,
num_views,
prompt,
negative_prompt,
height,
width,
steps,
cfg,
seed,
reference_image=None,
controlnet_image=None,
controlnet_conditioning_scale=1.0,
azimuth_degrees=[0, 45, 90, 180, 270, 315],
):
num_views = len(azimuth_degrees)
control_images = prepare_camera_embed(
num_views, width, self.torch_device, azimuth_degrees
)
pipe_kwargs = {}
if reference_image is not None:
pipe_kwargs.update(
{
"reference_image": convert_tensors_to_images(reference_image)[0],
"reference_conditioning_scale": 1.0,
}
)
if controlnet_image is not None:
controlnet_image = convert_tensors_to_images(controlnet_image)
pipe_kwargs.update(
{
"controlnet_image": controlnet_image,
"controlnet_conditioning_scale": controlnet_conditioning_scale,
}
)
images = pipeline(
prompt=prompt,
height=height,
width=width,
num_inference_steps=steps,
guidance_scale=cfg,
num_images_per_prompt=num_views,
control_image=control_images,
control_conditioning_scale=1.0,
negative_prompt=negative_prompt,
generator=torch.Generator(self.torch_device).manual_seed(seed),
cross_attention_kwargs={"num_views": num_views},
**pipe_kwargs,
).images
return (convert_images_to_tensors(images),)
class BiRefNet:
def __init__(self):
self.hf_dir = folder_paths.get_folder_paths("diffusers")[0]
self.torch_device = get_torch_device()
self.dtype = torch.float32
RETURN_TYPES = ("FUNCTION",)
FUNCTION = "load_model_fn"
CATEGORY = "MV-Adapter"
@classmethod
def INPUT_TYPES(s):
return {
"required": {"ckpt_name": ("STRING", {"default": "ZhengPeng7/BiRefNet"})}
}
def remove_bg(self, image, net, transform, device):
image_size = image.size
input_images = transform(image).unsqueeze(0).to(device)
with torch.no_grad():
preds = net(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
image.putalpha(mask)
return image
def load_model_fn(self, ckpt_name):
model = AutoModelForImageSegmentation.from_pretrained(
ckpt_name, trust_remote_code=True, cache_dir=self.hf_dir
).to(self.torch_device, self.dtype)
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
remove_bg_fn = lambda x: self.remove_bg(
x, model, transform_image, self.torch_device
)
return (remove_bg_fn,)
class ImagePreprocessor:
def __init__(self):
self.torch_device = get_torch_device()
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"remove_bg_fn": ("FUNCTION",),
"image": ("IMAGE",),
"height": ("INT", {"default": 768, "min": 1, "max": 2048, "step": 1}),
"width": ("INT", {"default": 768, "min": 1, "max": 2048, "step": 1}),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "process"
def process(self, remove_bg_fn, image, height, width):
images = convert_tensors_to_images(image)
images = [
preprocess_image(remove_bg_fn(img.convert("RGB")), height, width)
for img in images
]
return (convert_images_to_tensors(images),)
class ControlImagePreprocessor:
def __init__(self):
self.torch_device = get_torch_device()
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"front_view": ("IMAGE",),
"front_right_view": ("IMAGE",),
"right_view": ("IMAGE",),
"back_view": ("IMAGE",),
"left_view": ("IMAGE",),
"front_left_view": ("IMAGE",),
"width": ("INT", {"default": 768, "min": 1, "max": 2048, "step": 1}),
"height": ("INT", {"default": 768, "min": 1, "max": 2048, "step": 1}),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "process"
def process(
self,
front_view,
front_right_view,
right_view,
back_view,
left_view,
front_left_view,
width,
height,
):
images = torch.cat(
[
front_view,
front_right_view,
right_view,
back_view,
left_view,
front_left_view,
],
dim=0,
)
images = convert_tensors_to_images(images)
images = [img.resize((width, height)).convert("RGB") for img in images]
return (convert_images_to_tensors(images),)
class ViewSelector:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"front_view": ("BOOLEAN", {"default": True}),
"front_right_view": ("BOOLEAN", {"default": True}),
"right_view": ("BOOLEAN", {"default": True}),
"back_view": ("BOOLEAN", {"default": True}),
"left_view": ("BOOLEAN", {"default": True}),
"front_left_view": ("BOOLEAN", {"default": True}),
}
}
RETURN_TYPES = ("LIST",)
FUNCTION = "process"
CATEGORY = "MV-Adapter"
def process(
self,
front_view,
front_right_view,
right_view,
back_view,
left_view,
front_left_view,
):
azimuth_deg = []
if front_view:
azimuth_deg.append(0)
if front_right_view:
azimuth_deg.append(45)
if right_view:
azimuth_deg.append(90)
if back_view:
azimuth_deg.append(180)
if left_view:
azimuth_deg.append(270)
if front_left_view:
azimuth_deg.append(315)
return (azimuth_deg,)
NODE_CLASS_MAPPINGS = {
"LdmPipelineLoader": LdmPipelineLoader,
"LdmVaeLoader": LdmVaeLoader,
"DiffusersPipelineLoader": DiffusersPipelineLoader,
"DiffusersVaeLoader": DiffusersVaeLoader,
"DiffusersSchedulerLoader": DiffusersSchedulerLoader,
"DiffusersModelMakeup": DiffusersModelMakeup,
"LoraModelLoader": LoraModelLoader,
"DiffusersSampler": DiffusersSampler,
"DiffusersMVSampler": DiffusersMVSampler,
"BiRefNet": BiRefNet,
"ImagePreprocessor": ImagePreprocessor,
"ControlNetModelLoader": ControlNetModelLoader,
"ControlImagePreprocessor": ControlImagePreprocessor,
"ViewSelector": ViewSelector,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"LdmPipelineLoader": "LDM Pipeline Loader",
"LdmVaeLoader": "LDM Vae Loader",
"DiffusersPipelineLoader": "Diffusers Pipeline Loader",
"DiffusersVaeLoader": "Diffusers Vae Loader",
"DiffusersSchedulerLoader": "Diffusers Scheduler Loader",
"DiffusersModelMakeup": "Diffusers Model Makeup",
"LoraModelLoader": "Lora Model Loader",
"DiffusersSampler": "Diffusers Sampler",
"DiffusersMVSampler": "Diffusers MV Sampler",
"BiRefNet": "BiRefNet",
"ImagePreprocessor": "Image Preprocessor",
"ControlNetModelLoader": "ControlNet Model Loader",
"ControlImagePreprocessor": "Control Image Preprocessor",
"ViewSelector": "View Selector",
}