|
import torch |
|
from PIL import Image |
|
from comfy.cli_args import args, LatentPreviewMethod |
|
from comfy.taesd.taesd import TAESD |
|
import comfy.model_management |
|
import comfy.utils |
|
from tqdm import tqdm |
|
|
|
MAX_PREVIEW_RESOLUTION = args.preview_size |
|
|
|
|
|
def preview_to_image(latent_image): |
|
latents_ubyte = (((latent_image + 1.0) / 2.0).clamp(0, 1) |
|
.mul(0xFF) |
|
).to(device="cpu", dtype=torch.uint8, non_blocking=comfy.model_management.device_supports_non_blocking(latent_image.device)) |
|
|
|
return Image.fromarray(latents_ubyte.numpy()) |
|
|
|
|
|
class LatentPreviewer: |
|
def decode_latent_to_preview(self, x0): |
|
pass |
|
|
|
def decode_latent_to_preview_image(self, preview_format, x0): |
|
preview_image = self.decode_latent_to_preview(x0) |
|
return ("GIF", preview_image, MAX_PREVIEW_RESOLUTION) |
|
|
|
|
|
class Latent2RGBPreviewer(LatentPreviewer): |
|
def __init__(self): |
|
|
|
latent_rgb_factors = [[0.1236769792512748, 0.11775175335219157, -0.17700629766423637], [-0.08504104329270078, 0.026605813147523694, -0.006843165704926019], [-0.17093308616366876, 0.027991854696200386, 0.14179146288816308], [-0.17179555328757623, 0.09844317368603078, 0.14470997015982784], [-0.16975067171668484, -0.10739852629856643, -0.1894254942909962], [-0.19315259266769888, -0.011029760569485209, -0.08519702054654255], [-0.08399895091432583, -0.0964246452052032, -0.033622359523655665], [0.08148916330842498, 0.027500645903400067, -0.06593099749891196], [0.0456603103902293, -0.17844808072462398, 0.04204775167149785], [0.001751626383204502, -0.030567890189647867, -0.022078082809772193], [0.05110631095056278, -0.0709677393548804, 0.08963683539504264], [0.010515800868829, -0.18382052841762514, -0.08554553339721907]] |
|
|
|
self.latent_rgb_factors = torch.tensor(latent_rgb_factors, device="cpu").transpose(0, 1) |
|
self.latent_rgb_factors_bias = None |
|
|
|
|
|
|
|
def decode_latent_to_preview(self, x0): |
|
self.latent_rgb_factors = self.latent_rgb_factors.to(dtype=x0.dtype, device=x0.device) |
|
if self.latent_rgb_factors_bias is not None: |
|
self.latent_rgb_factors_bias = self.latent_rgb_factors_bias.to(dtype=x0.dtype, device=x0.device) |
|
|
|
latent_image = torch.nn.functional.linear(x0[0].permute(1, 2, 0), self.latent_rgb_factors, |
|
bias=self.latent_rgb_factors_bias) |
|
return preview_to_image(latent_image) |
|
|
|
|
|
def get_previewer(): |
|
previewer = None |
|
method = args.preview_method |
|
if method != LatentPreviewMethod.NoPreviews: |
|
|
|
|
|
if method == LatentPreviewMethod.Auto: |
|
method = LatentPreviewMethod.Latent2RGB |
|
|
|
if previewer is None: |
|
previewer = Latent2RGBPreviewer() |
|
return previewer |
|
|
|
|
|
def prepare_callback(model, steps, x0_output_dict=None): |
|
preview_format = "JPEG" |
|
if preview_format not in ["JPEG", "PNG"]: |
|
preview_format = "JPEG" |
|
|
|
previewer = get_previewer() |
|
|
|
pbar = comfy.utils.ProgressBar(steps) |
|
tqdm_pbar = tqdm(total=steps, desc="Sampling", unit="it") |
|
def callback(step, x0, x, total_steps): |
|
if x0_output_dict is not None: |
|
x0_output_dict["x0"] = x0 |
|
preview_bytes = None |
|
if previewer: |
|
preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0) |
|
pbar.update_absolute(step + 1, total_steps, preview_bytes) |
|
tqdm_pbar.update(1) |
|
return callback |
|
|
|
|
|
def get_callback_fn(model, total_steps): |
|
callback = prepare_callback(model.dit, total_steps) |
|
comfy_pbar = comfy.utils.ProgressBar(total_steps) |
|
if callback is None: |
|
tqdm_pbar = tqdm(total=total_steps, desc="Sampling", unit="it") |
|
|
|
def callback_fn(args): |
|
i = args['i'] |
|
z = args['x'] |
|
if callback is not None: |
|
callback(i, z.detach()[0].permute(1,0,2,3), None, total_steps) |
|
else: |
|
comfy_pbar.update(1) |
|
tqdm_pbar.update(1) |
|
|
|
return callback_fn |
|
|
|
|