jaxmetaverse's picture
Upload folder using huggingface_hub
82ea528 verified
import os
import torch
import folder_paths
import comfy.model_management as mm
from comfy.utils import ProgressBar, load_torch_file
from einops import rearrange
from tqdm import tqdm
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
log = logging.getLogger(__name__)
from .mochi_preview.t2v_synth_mochi import T2VSynthMochiModel
from .mochi_preview.vae.model import Decoder, Encoder, add_fourier_features
from .mochi_preview.vae.vae_stats import vae_latents_to_dit_latents, dit_latents_to_vae_latents
from contextlib import nullcontext
try:
from accelerate import init_empty_weights
from accelerate.utils import set_module_tensor_to_device
is_accelerate_available = True
except:
is_accelerate_available = False
pass
script_directory = os.path.dirname(os.path.abspath(__file__))
def linear_quadratic_schedule(num_steps, threshold_noise, linear_steps=None):
if linear_steps is None:
linear_steps = num_steps // 2
linear_sigma_schedule = [i * threshold_noise / linear_steps for i in range(linear_steps)]
threshold_noise_step_diff = linear_steps - threshold_noise * num_steps
quadratic_steps = num_steps - linear_steps
quadratic_coef = threshold_noise_step_diff / (linear_steps * quadratic_steps ** 2)
linear_coef = threshold_noise / linear_steps - 2 * threshold_noise_step_diff / (quadratic_steps ** 2)
const = quadratic_coef * (linear_steps ** 2)
quadratic_sigma_schedule = [
quadratic_coef * (i ** 2) + linear_coef * i + const
for i in range(linear_steps, num_steps)
]
sigma_schedule = linear_sigma_schedule + quadratic_sigma_schedule + [1.0]
sigma_schedule = [1.0 - x for x in sigma_schedule]
return sigma_schedule
class MochiSigmaSchedule:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"num_steps": ("INT", {"default": 30, "tooltip": "Number of steps","min": 0, "max": 10000, "step": 1}),
"threshold_noise": ("FLOAT", {"default": 0.025, "min": 0.0, "max": 1.0, "step": 0.001}),
"linear_steps": ("INT", {"default": 15, "min": 1, "max": 10000, "step": 1, "tooltip": "Number of steps to scale linearly, default should be half the steps"}),
"denoise": ("FLOAT", {"default": 1, "min": 0.0, "max": 1.0, "step": 0.01}),
},
}
RETURN_TYPES = ("SIGMAS",)
RETURN_NAMES = ("sigmas",)
FUNCTION = "loadmodel"
CATEGORY = "MochiWrapper"
DESCRIPTION = "Sigma schedule to use with mochi wrapper sampler"
def loadmodel(self, num_steps, threshold_noise, denoise, linear_steps=None):
total_steps = num_steps
if denoise < 1.0:
if denoise <= 0.0:
return ([],)
total_steps = int(num_steps/denoise)
sigma_schedule = linear_quadratic_schedule(total_steps, threshold_noise, linear_steps)
sigma_schedule = sigma_schedule[-(num_steps + 1):]
sigma_schedule = torch.FloatTensor(sigma_schedule)
return (sigma_schedule, )
#region ModelLoading
class DownloadAndLoadMochiModel:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": (
[
"mochi_preview_dit_fp8_e4m3fn.safetensors",
"mochi_preview_dit_bf16.safetensors",
"mochi_preview_dit_GGUF_Q4_0_v2.safetensors",
"mochi_preview_dit_GGUF_Q8_0.safetensors",
],
{"tooltip": "Downloads from 'https://huggingface.co/Kijai/Mochi_preview_comfy' to 'models/diffusion_models/mochi'", },
),
"vae": (
[
"mochi_preview_vae_decoder_bf16.safetensors",
],
{"tooltip": "Downloads from 'https://huggingface.co/Kijai/Mochi_preview_comfy' to 'models/vae/mochi'", },
),
"precision": (["fp8_e4m3fn","fp8_e4m3fn_fast","fp16", "fp32", "bf16"],
{"default": "fp8_e4m3fn", "tooltip": "The precision to use for the model weights. Has no effect with GGUF models"},),
"attention_mode": (["sdpa","flash_attn","sage_attn", "comfy"],
),
},
"optional": {
"trigger": ("CONDITIONING", {"tooltip": "Dummy input for forcing execution order",}),
"compile_args": ("MOCHICOMPILEARGS", {"tooltip": "Optional torch.compile arguments",}),
"cublas_ops": ("BOOLEAN", {"tooltip": "tested on 4090, unsure of gpu requirements, enables faster linear ops for the GGUF models, for more info:'https://github.com/aredden/torch-cublas-hgemm'",}),
"rms_norm_func": (["default", "flash_attn_triton", "flash_attn", "apex"],{"tooltip": "RMSNorm function to use, flash_attn if available seems to be faster, apex untested",}),
},
}
RETURN_TYPES = ("MOCHIMODEL", "MOCHIVAE",)
RETURN_NAMES = ("mochi_model", "mochi_vae" )
FUNCTION = "loadmodel"
CATEGORY = "MochiWrapper"
DESCRIPTION = "Downloads and loads the selected Mochi model from Huggingface"
def loadmodel(self, model, vae, precision, attention_mode, trigger=None, compile_args=None, cublas_ops=False, rms_norm_func="default"):
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
mm.soft_empty_cache()
dtype = {"fp8_e4m3fn": torch.float8_e4m3fn, "fp8_e4m3fn_fast": torch.float8_e4m3fn, "bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[precision]
if "fp8" in precision:
vae_dtype = torch.bfloat16
else:
vae_dtype = dtype
# Transformer model
model_download_path = os.path.join(folder_paths.models_dir, 'diffusion_models', 'mochi')
model_path = os.path.join(model_download_path, model)
repo_id = "kijai/Mochi_preview_comfy"
if not os.path.exists(model_path):
log.info(f"Downloading mochi model to: {model_path}")
from huggingface_hub import snapshot_download
snapshot_download(
repo_id=repo_id,
allow_patterns=[f"*{model}*"],
local_dir=model_download_path,
local_dir_use_symlinks=False,
)
# VAE
vae_download_path = os.path.join(folder_paths.models_dir, 'vae', 'mochi')
vae_path = os.path.join(vae_download_path, vae)
if not os.path.exists(vae_path):
log.info(f"Downloading mochi VAE to: {vae_path}")
from huggingface_hub import snapshot_download
snapshot_download(
repo_id=repo_id,
allow_patterns=[f"*{vae}*"],
local_dir=vae_download_path,
local_dir_use_symlinks=False,
)
model = T2VSynthMochiModel(
device=device,
offload_device=offload_device,
dit_checkpoint_path=model_path,
weight_dtype=dtype,
fp8_fastmode = True if precision == "fp8_e4m3fn_fast" else False,
attention_mode=attention_mode,
rms_norm_func=rms_norm_func,
compile_args=compile_args,
cublas_ops=cublas_ops
)
with (init_empty_weights() if is_accelerate_available else nullcontext()):
vae = Decoder(
out_channels=3,
base_channels=128,
channel_multipliers=[1, 2, 4, 6],
temporal_expansions=[1, 2, 3],
spatial_expansions=[2, 2, 2],
num_res_blocks=[3, 3, 4, 6, 3],
latent_dim=12,
has_attention=[False, False, False, False, False],
output_norm=False,
nonlinearity="silu",
output_nonlinearity="silu",
causal=True,
dtype=vae_dtype,
)
vae_sd = load_torch_file(vae_path)
if is_accelerate_available:
for key in vae_sd:
set_module_tensor_to_device(vae, key, dtype=vae_dtype, device=offload_device, value=vae_sd[key])
else:
vae.load_state_dict(vae_sd, strict=True)
vae.eval().to(vae_dtype).to("cpu")
del vae_sd
return (model, vae,)
class MochiModelLoader:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model_name": (folder_paths.get_filename_list("diffusion_models"), {"tooltip": "The name of the checkpoint (model) to load.",}),
"precision": (["fp8_e4m3fn","fp8_e4m3fn_fast","fp16", "fp32", "bf16"], {"default": "fp8_e4m3fn"}),
"attention_mode": (["sdpa","flash_attn","sage_attn", "comfy"],),
},
"optional": {
"trigger": ("CONDITIONING", {"tooltip": "Dummy input for forcing execution order",}),
"compile_args": ("MOCHICOMPILEARGS", {"tooltip": "Optional torch.compile arguments",}),
"cublas_ops": ("BOOLEAN", {"tooltip": "tested on 4090, unsure of gpu requirements, enables faster linear ops for the GGUF models, for more info:'https://github.com/aredden/torch-cublas-hgemm'",}),
"rms_norm_func": (["default", "flash_attn_triton", "flash_attn", "apex"],{"tooltip": "RMSNorm function to use, flash_attn if available seems to be faster, apex untested",}),
},
}
RETURN_TYPES = ("MOCHIMODEL",)
RETURN_NAMES = ("mochi_model",)
FUNCTION = "loadmodel"
CATEGORY = "MochiWrapper"
def loadmodel(self, model_name, precision, attention_mode, trigger=None, compile_args=None, cublas_ops=False, rms_norm_func="default"):
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
mm.soft_empty_cache()
dtype = {"fp8_e4m3fn": torch.float8_e4m3fn, "fp8_e4m3fn_fast": torch.float8_e4m3fn, "bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[precision]
model_path = folder_paths.get_full_path_or_raise("diffusion_models", model_name)
model = T2VSynthMochiModel(
device=device,
offload_device=offload_device,
dit_checkpoint_path=model_path,
weight_dtype=dtype,
fp8_fastmode = True if precision == "fp8_e4m3fn_fast" else False,
attention_mode=attention_mode,
rms_norm_func=rms_norm_func,
compile_args=compile_args,
cublas_ops=cublas_ops
)
return (model, )
class MochiTorchCompileSettings:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"backend": (["inductor","cudagraphs"], {"default": "inductor"}),
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
"compile_dit": ("BOOLEAN", {"default": True, "tooltip": "Compiles all transformer blocks"}),
"compile_final_layer": ("BOOLEAN", {"default": True, "tooltip": "Enable compiling final layer."}),
"dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}),
"dynamo_cache_size_limit": ("INT", {"default": 64, "min": 0, "max": 1024, "step": 1, "tooltip": "torch._dynamo.config.cache_size_limit"}),
},
}
RETURN_TYPES = ("MOCHICOMPILEARGS",)
RETURN_NAMES = ("torch_compile_args",)
FUNCTION = "loadmodel"
CATEGORY = "MochiWrapper"
DESCRIPTION = "torch.compile settings, when connected to the model loader, torch.compile of the selected layers is attempted. Requires Triton and torch 2.5.0 is recommended"
def loadmodel(self, backend, fullgraph, mode, compile_dit, compile_final_layer, dynamic, dynamo_cache_size_limit):
compile_args = {
"backend": backend,
"fullgraph": fullgraph,
"mode": mode,
"compile_dit": compile_dit,
"compile_final_layer": compile_final_layer,
"dynamic": dynamic,
"dynamo_cache_size_limit": dynamo_cache_size_limit,
}
return (compile_args, )
class MochiVAELoader:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model_name": (folder_paths.get_filename_list("vae"), {"tooltip": "The name of the checkpoint (vae) to load."}),
},
"optional": {
"torch_compile_args": ("MOCHICOMPILEARGS", {"tooltip": "Optional torch.compile arguments",}),
"precision": (["fp16", "fp32", "bf16"], {"default": "bf16"}),
},
}
RETURN_TYPES = ("MOCHIVAE",)
RETURN_NAMES = ("mochi_vae", )
FUNCTION = "loadmodel"
CATEGORY = "MochiWrapper"
def loadmodel(self, model_name, torch_compile_args=None, precision="bf16"):
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
mm.soft_empty_cache()
dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[precision]
vae_path = folder_paths.get_full_path_or_raise("vae", model_name)
with (init_empty_weights() if is_accelerate_available else nullcontext()):
vae = Decoder(
out_channels=3,
base_channels=128,
channel_multipliers=[1, 2, 4, 6],
temporal_expansions=[1, 2, 3],
spatial_expansions=[2, 2, 2],
num_res_blocks=[3, 3, 4, 6, 3],
latent_dim=12,
has_attention=[False, False, False, False, False],
output_norm=False,
nonlinearity="silu",
output_nonlinearity="silu",
causal=True,
dtype=dtype,
)
vae_sd = load_torch_file(vae_path)
#support loading from combined VAE
if vae_sd.get("decoder.blocks.0.0.bias") is not None:
new_vae_sd = {}
for k, v in vae_sd.items():
if k.startswith("decoder."):
new_k = k[len("decoder."):]
new_vae_sd[new_k] = v
vae_sd = new_vae_sd
if is_accelerate_available:
for name, param in vae.named_parameters():
set_module_tensor_to_device(vae, name, dtype=dtype, device=offload_device, value=vae_sd[name])
else:
vae.load_state_dict(vae_sd, strict=True)
vae.to(dtype).to(offload_device)
vae.eval()
del vae_sd
if torch_compile_args is not None:
vae.to(device)
vae = torch.compile(vae, fullgraph=torch_compile_args["fullgraph"], mode=torch_compile_args["mode"], dynamic=False, backend=torch_compile_args["backend"])
return (vae,)
class MochiVAEEncoderLoader:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model_name": (folder_paths.get_filename_list("vae"), {"tooltip": "The name of the checkpoint (vae) to load."}),
},
"optional": {
"torch_compile_args": ("MOCHICOMPILEARGS", {"tooltip": "Optional torch.compile arguments",}),
"precision": (["fp16", "fp32", "bf16"], {"default": "bf16"}),
},
}
RETURN_TYPES = ("MOCHIVAE",)
RETURN_NAMES = ("mochi_vae", )
FUNCTION = "loadmodel"
CATEGORY = "MochiWrapper"
def loadmodel(self, model_name, torch_compile_args=None, precision="bf16"):
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
mm.soft_empty_cache()
dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[precision]
config = dict(
prune_bottlenecks=[False, False, False, False, False],
has_attentions=[False, True, True, True, True],
affine=True,
bias=True,
input_is_conv_1x1=True,
padding_mode="replicate"
)
vae_path = folder_paths.get_full_path_or_raise("vae", model_name)
# Create VAE encoder
with (init_empty_weights() if is_accelerate_available else nullcontext()):
encoder = Encoder(
in_channels=15,
base_channels=64,
channel_multipliers=[1, 2, 4, 6],
num_res_blocks=[3, 3, 4, 6, 3],
latent_dim=12,
temporal_reductions=[1, 2, 3],
spatial_reductions=[2, 2, 2],
dtype = dtype,
**config,
)
encoder_sd = load_torch_file(vae_path)
#support loading from combined VAE
if encoder_sd.get("encoder.layers.0.bias") is not None:
new_vae_sd = {}
for k, v in encoder_sd.items():
if k.startswith("encoder."):
new_k = k[len("encoder."):]
new_vae_sd[new_k] = v
encoder_sd = new_vae_sd
if is_accelerate_available:
for name, param in encoder.named_parameters():
set_module_tensor_to_device(encoder, name, dtype=dtype, device=offload_device, value=encoder_sd[name])
else:
encoder.load_state_dict(encoder_sd, strict=True)
encoder.to(dtype).to(offload_device)
encoder.eval()
del encoder_sd
if torch_compile_args is not None:
encoder.to(device)
encoder = torch.compile(encoder, fullgraph=torch_compile_args["fullgraph"], mode=torch_compile_args["mode"], dynamic=False, backend=torch_compile_args["backend"])
return (encoder,)
#endregion
class MochiTextEncode:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"clip": ("CLIP",),
"prompt": ("STRING", {"default": "", "multiline": True} ),
},
"optional": {
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"force_offload": ("BOOLEAN", {"default": True}),
}
}
RETURN_TYPES = ("CONDITIONING", "CLIP",)
RETURN_NAMES = ("conditioning", "clip", )
FUNCTION = "process"
CATEGORY = "MochiWrapper"
def process(self, clip, prompt, strength=1.0, force_offload=True):
max_tokens = 256
load_device = mm.text_encoder_device()
offload_device = mm.text_encoder_offload_device()
try:
clip.tokenizer.t5xxl.pad_to_max_length = True
clip.tokenizer.t5xxl.max_length = max_tokens
clip.cond_stage_model.t5xxl.return_attention_masks = True
clip.cond_stage_model.t5xxl.enable_attention_masks = True
clip.cond_stage_model.t5_attention_mask = True
clip.cond_stage_model.to(load_device)
tokens = clip.tokenizer.t5xxl.tokenize_with_weights(prompt, return_word_ids=True)
try:
embeds, _, attention_mask = clip.cond_stage_model.t5xxl.encode_token_weights(tokens)
except:
NotImplementedError("Failed to get attention mask from T5, is your ComfyUI up to date?")
except:
clip.cond_stage_model.to(offload_device)
tokens = clip.tokenizer.tokenize_with_weights(prompt, return_word_ids=True)
embeds, _, attention_mask = clip.cond_stage_model.encode_token_weights(tokens)
if embeds.shape[1] > 256:
raise ValueError(f"Prompt is too long, max tokens supported is {max_tokens} or less, got {embeds.shape[1]}")
embeds *= strength
if force_offload:
clip.cond_stage_model.to(offload_device)
mm.soft_empty_cache()
t5_embeds = {
"embeds": embeds,
"attention_mask": attention_mask["attention_mask"].bool(),
}
return (t5_embeds, clip,)
#region FasterCache
class MochiFasterCache:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"start_step": ("INT", {"default": 10, "min": 0, "max": 1024, "step": 1, "tooltip": "The step to start caching, sigma schedule should be adjusted accordingly"}),
"hf_step": ("INT", {"default": 22, "min": 0, "max": 1024, "step": 1}),
"lf_step": ("INT", {"default": 28, "min": 0, "max": 1024, "step": 1}),
"cache_device": (["main_device", "offload_device"], {"default": "main_device", "tooltip": "The device to use for the cache, main_device is on GPU and uses a lot of VRAM"}),
},
}
RETURN_TYPES = ("FASTERCACHEARGS",)
RETURN_NAMES = ("fastercache", )
FUNCTION = "args"
CATEGORY = "CogVideoWrapper"
DESCRIPTION = "FasterCache (https://github.com/Vchitect/FasterCache) settings for the MochiWrapper, increases speed of sampling with cost of memory use and quality"
def args(self, start_step, hf_step, lf_step, cache_device):
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
fastercache = {
"start_step" : start_step,
"hf_step" : hf_step,
"lf_step" : lf_step,
"cache_device" : device if cache_device == "main_device" else offload_device
}
return (fastercache,)
#region Sampler
class MochiSampler:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MOCHIMODEL",),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"width": ("INT", {"default": 848, "min": 128, "max": 2048, "step": 8}),
"height": ("INT", {"default": 480, "min": 128, "max": 2048, "step": 8}),
"num_frames": ("INT", {"default": 49, "min": 7, "max": 1024, "step": 6}),
"steps": ("INT", {"default": 50, "min": 2}),
"cfg": ("FLOAT", {"default": 4.5, "min": 0.0, "max": 30.0, "step": 0.01}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
},
"optional": {
"cfg_schedule": ("FLOAT", {"forceInput": True, "tooltip": "Override cfg schedule with a list of ints"}),
"opt_sigmas": ("SIGMAS", {"tooltip": "Override sigma schedule and steps"}),
"samples": ("LATENT", ),
"fastercache": ("FASTERCACHEARGS", {"tooltip": "Optional FasterCache settings"}),
}
}
RETURN_TYPES = ("LATENT",)
RETURN_NAMES = ("samples",)
FUNCTION = "process"
CATEGORY = "MochiWrapper"
def process(self, model, positive, negative, steps, cfg, seed, height, width, num_frames, cfg_schedule=None, opt_sigmas=None, samples=None, fastercache=None):
mm.unload_all_models()
mm.soft_empty_cache()
if opt_sigmas is not None:
sigma_schedule = opt_sigmas.tolist()
steps = int(len(sigma_schedule))
sigma_schedule.extend([0.0])
logging.info(f"Using sigma_schedule: {sigma_schedule}")
else:
sigma_schedule = linear_quadratic_schedule(steps, 0.025)
if cfg_schedule is None:
cfg_schedule = [cfg] * steps
else:
logging.info(f"Using cfg schedule: {cfg_schedule}")
#For compatibility with Comfy CLIPTextEncode
if not isinstance(positive, dict):
positive = {
"embeds": positive[0][0],
"attention_mask": positive[0][1]["attention_mask"].bool(),
}
if not isinstance(negative, dict):
negative = {
"embeds": negative[0][0],
"attention_mask": negative[0][1]["attention_mask"].bool(),
}
args = {
"height": height,
"width": width,
"num_frames": num_frames,
"mochi_args": {
"sigma_schedule": sigma_schedule,
"cfg_schedule": cfg_schedule,
"num_inference_steps": steps,
},
"positive_embeds": positive,
"negative_embeds": negative,
"seed": seed,
"samples": samples["samples"] if samples is not None else None,
"fastercache": fastercache
}
latents = model.run(args)
mm.soft_empty_cache()
return ({"samples": latents},)
#endregion
#region Latents
class MochiDecode:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"vae": ("MOCHIVAE",),
"samples": ("LATENT", ),
"enable_vae_tiling": ("BOOLEAN", {"default": False, "tooltip": "Drastically reduces memory use but may introduce seams"}),
"auto_tile_size": ("BOOLEAN", {"default": True, "tooltip": "Auto size based on height and width, default is half the size"}),
"frame_batch_size": ("INT", {"default": 6, "min": 1, "max": 64, "step": 1, "tooltip": "Number of frames in latent space (downscale factor is 6) to decode at once"}),
"tile_sample_min_height": ("INT", {"default": 240, "min": 16, "max": 2048, "step": 8, "tooltip": "Minimum tile height, default is half the height"}),
"tile_sample_min_width": ("INT", {"default": 424, "min": 16, "max": 2048, "step": 8, "tooltip": "Minimum tile width, default is half the width"}),
"tile_overlap_factor_height": ("FLOAT", {"default": 0.1666, "min": 0.0, "max": 1.0, "step": 0.001}),
"tile_overlap_factor_width": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.001}),
},
"optional": {
"unnormalize": ("BOOLEAN", {"default": False, "tooltip": "Unnormalize the latents before decoding"}),
},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("images",)
FUNCTION = "decode"
CATEGORY = "MochiWrapper"
def decode(self, vae, samples, enable_vae_tiling, tile_sample_min_height, tile_sample_min_width, tile_overlap_factor_height,
tile_overlap_factor_width, auto_tile_size, frame_batch_size, unnormalize=False):
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
intermediate_device = mm.intermediate_device()
samples = samples["samples"]
if unnormalize:
samples = dit_latents_to_vae_latents(samples)
samples = samples.to(vae.dtype).to(device)
B, C, T, H, W = samples.shape
self.tile_overlap_factor_height = tile_overlap_factor_height if not auto_tile_size else 1 / 6
self.tile_overlap_factor_width = tile_overlap_factor_width if not auto_tile_size else 1 / 5
self.tile_sample_min_height = tile_sample_min_height if not auto_tile_size else H // 2 * 8
self.tile_sample_min_width = tile_sample_min_width if not auto_tile_size else W // 2 * 8
self.tile_latent_min_height = int(self.tile_sample_min_height / 8)
self.tile_latent_min_width = int(self.tile_sample_min_width / 8)
def blend_v(a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[3], b.shape[3], blend_extent)
for y in range(blend_extent):
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
y / blend_extent
)
return b
def blend_h(a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[4], b.shape[4], blend_extent)
for x in range(blend_extent):
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
x / blend_extent
)
return b
def decode_tiled(samples):
overlap_height = int(self.tile_latent_min_height * (1 - self.tile_overlap_factor_height))
overlap_width = int(self.tile_latent_min_width * (1 - self.tile_overlap_factor_width))
blend_extent_height = int(self.tile_sample_min_height * self.tile_overlap_factor_height)
blend_extent_width = int(self.tile_sample_min_width * self.tile_overlap_factor_width)
row_limit_height = self.tile_sample_min_height - blend_extent_height
row_limit_width = self.tile_sample_min_width - blend_extent_width
# Split z into overlapping tiles and decode them separately.
# The tiles have an overlap to avoid seams between tiles.
comfy_pbar = ProgressBar(len(range(0, H, overlap_height)))
rows = []
for i in tqdm(range(0, H, overlap_height), desc="Processing rows"):
row = []
for j in tqdm(range(0, W, overlap_width), desc="Processing columns", leave=False):
time = []
for k in tqdm(range(T // frame_batch_size), desc="Processing frames", leave=False):
remaining_frames = T % frame_batch_size
start_frame = frame_batch_size * k + (0 if k == 0 else remaining_frames)
end_frame = frame_batch_size * (k + 1) + remaining_frames
tile = samples[
:,
:,
start_frame:end_frame,
i : i + self.tile_latent_min_height,
j : j + self.tile_latent_min_width,
]
tile = vae(tile)
time.append(tile)
row.append(torch.cat(time, dim=2))
rows.append(row)
comfy_pbar.update(1)
result_rows = []
for i, row in enumerate(tqdm(rows, desc="Blending rows")):
result_row = []
for j, tile in enumerate(tqdm(row, desc="Blending tiles", leave=False)):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = blend_v(rows[i - 1][j], tile, blend_extent_height)
if j > 0:
tile = blend_h(row[j - 1], tile, blend_extent_width)
result_row.append(tile[:, :, :, :row_limit_height, :row_limit_width])
result_rows.append(torch.cat(result_row, dim=4))
return torch.cat(result_rows, dim=3)
vae.to(device)
with torch.autocast(mm.get_autocast_device(device), dtype=vae.dtype):
if enable_vae_tiling and frame_batch_size > T:
logging.warning(f"Frame batch size is larger than the number of samples, setting to {T}")
frame_batch_size = T
frames = decode_tiled(samples)
elif not enable_vae_tiling:
logging.warning("Attempting to decode without tiling, very memory intensive")
frames = vae(samples)
else:
logging.info("Decoding with tiling")
frames = decode_tiled(samples)
vae.to(offload_device)
frames = frames.float()
frames = (frames + 1.0) / 2.0
frames.clamp_(0.0, 1.0)
frames = rearrange(frames, "b c t h w -> (t b) h w c").to(intermediate_device)
return (frames,)
class MochiDecodeSpatialTiling:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"vae": ("MOCHIVAE",),
"samples": ("LATENT", ),
"enable_vae_tiling": ("BOOLEAN", {"default": False, "tooltip": "Drastically reduces memory use but may introduce seams"}),
"num_tiles_w": ("INT", {"default": 4, "min": 2, "max": 64, "step": 2, "tooltip": "Number of horizontal tiles"}),
"num_tiles_h": ("INT", {"default": 4, "min": 2, "max": 64, "step": 2, "tooltip": "Number of vertical tiles"}),
"overlap": ("INT", {"default": 16, "min": 0, "max": 256, "step": 1, "tooltip": "Number of pixel of overlap between adjacent tiles"}),
"min_block_size": ("INT", {"default": 1, "min": 1, "max": 256, "step": 1, "tooltip": "Minimum number of pixels in each dimension when subdividing"}),
"per_batch": ("INT", {"default": 6, "min": 1, "max": 256, "step": 1, "tooltip": "Number of samples per batch, in latent space (6 frames in 1 latent)"}),
},
"optional": {
"unnormalize": ("BOOLEAN", {"default": True, "tooltip": "Unnormalize the latents before decoding"}),
},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("images",)
FUNCTION = "decode"
CATEGORY = "MochiWrapper"
def decode(self, vae, samples, enable_vae_tiling, num_tiles_w, num_tiles_h, overlap,
min_block_size, per_batch, unnormalize=True):
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
intermediate_device = mm.intermediate_device()
samples = samples["samples"]
if unnormalize:
samples = dit_latents_to_vae_latents(samples)
samples = samples.to(vae.dtype).to(device)
B, C, T, H, W = samples.shape
vae.to(device)
decoded_list = []
with torch.autocast(mm.get_autocast_device(device), dtype=vae.dtype):
if enable_vae_tiling:
from .mochi_preview.vae.model import apply_tiled
pbar = ProgressBar(T // per_batch)
for i in range(0, T, per_batch):
if i >= T:
break
end_index = min(i + per_batch, T)
logging.info(f"Decoding {end_index - i} samples with tiling...")
chunk = samples[:, :, i:end_index, :, :]
frames = apply_tiled(vae, chunk, num_tiles_w = num_tiles_w, num_tiles_h = num_tiles_h, overlap=overlap, min_block_size=min_block_size)
logging.info(f"Decoded {frames.shape[2]} frames from {end_index - i} samples")
pbar.update(1)
# Blend the first and last frames of each pair
if len(decoded_list) > 0:
previous_frames = decoded_list[-1]
blended_frames = (previous_frames[:, :, -1:, :, :] + frames[:, :, :1, :, :]) / 2
decoded_list[-1][:, :, -1:, :, :] = blended_frames
decoded_list.append(frames)
frames = torch.cat(decoded_list, dim=2)
else:
logging.info("Decoding without tiling...")
frames = vae(samples)
vae.to(offload_device)
frames = frames.float()
frames = (frames + 1.0) / 2.0
frames.clamp_(0.0, 1.0)
frames = rearrange(frames, "b c t h w -> (t b) h w c").to(intermediate_device)
return (frames,)
class MochiImageEncode:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"encoder": ("MOCHIVAE",),
"images": ("IMAGE", ),
"enable_vae_tiling": ("BOOLEAN", {"default": False, "tooltip": "Drastically reduces memory use but may introduce seams"}),
"num_tiles_w": ("INT", {"default": 4, "min": 2, "max": 64, "step": 2, "tooltip": "Number of horizontal tiles"}),
"num_tiles_h": ("INT", {"default": 4, "min": 2, "max": 64, "step": 2, "tooltip": "Number of vertical tiles"}),
"overlap": ("INT", {"default": 16, "min": 0, "max": 256, "step": 1, "tooltip": "Number of pixel of overlap between adjacent tiles"}),
"min_block_size": ("INT", {"default": 1, "min": 1, "max": 256, "step": 1, "tooltip": "Minimum number of pixels in each dimension when subdividing"}),
},
"optional": {
"normalize": ("BOOLEAN", {"default": True, "tooltip": "Normalize the images before encoding"}),
},
}
RETURN_TYPES = ("LATENT",)
RETURN_NAMES = ("samples",)
FUNCTION = "encode"
CATEGORY = "MochiWrapper"
def encode(self, encoder, images, enable_vae_tiling, num_tiles_w, num_tiles_h, overlap, min_block_size, normalize=True):
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
intermediate_device = mm.intermediate_device()
from .mochi_preview.vae.model import apply_tiled
B, H, W, C = images.shape
import torchvision.transforms as transforms
normalize = transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
input_image_tensor = rearrange(images, 'b h w c -> b c h w')
input_image_tensor = normalize(input_image_tensor).unsqueeze(0)
input_image_tensor = rearrange(input_image_tensor, 'b t c h w -> b c t h w', t=B)
#images = images.unsqueeze(0).sub_(0.5).div_(0.5)
#images = rearrange(input_image_tensor, "b c t h w -> t c b h w")
images = input_image_tensor.to(device)
encoder.to(device)
print("images before encoding", images.shape)
with torch.autocast(mm.get_autocast_device(device), dtype=encoder.dtype):
video = add_fourier_features(images)
if enable_vae_tiling:
latents = apply_tiled(encoder, video, num_tiles_w = num_tiles_w, num_tiles_h = num_tiles_h, overlap=overlap, min_block_size=min_block_size)
else:
latents = encoder(video)
if normalize:
latents = vae_latents_to_dit_latents(latents)
print("encoder output",latents.shape)
return ({"samples": latents},)
class MochiLatentPreview:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"samples": ("LATENT",),
# "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
# "min_val": ("FLOAT", {"default": -0.15, "min": -1.0, "max": 0.0, "step": 0.001}),
# "max_val": ("FLOAT", {"default": 0.15, "min": 0.0, "max": 1.0, "step": 0.001}),
},
}
RETURN_TYPES = ("IMAGE", )
RETURN_NAMES = ("images", )
FUNCTION = "sample"
CATEGORY = "PyramidFlowWrapper"
def sample(self, samples):#, seed, min_val, max_val):
mm.soft_empty_cache()
latents = samples["samples"].clone()
print("in sample", latents.shape)
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
#latent_rgb_factors = [[0.1236769792512748, 0.11775175335219157, -0.17700629766423637], [-0.08504104329270078, 0.026605813147523694, -0.006843165704926019], [-0.17093308616366876, 0.027991854696200386, 0.14179146288816308], [-0.17179555328757623, 0.09844317368603078, 0.14470997015982784], [-0.16975067171668484, -0.10739852629856643, -0.1894254942909962], [-0.19315259266769888, -0.011029760569485209, -0.08519702054654255], [-0.08399895091432583, -0.0964246452052032, -0.033622359523655665], [0.08148916330842498, 0.027500645903400067, -0.06593099749891196], [0.0456603103902293, -0.17844808072462398, 0.04204775167149785], [0.001751626383204502, -0.030567890189647867, -0.022078082809772193], [0.05110631095056278, -0.0709677393548804, 0.08963683539504264], [0.010515800868829, -0.18382052841762514, -0.08554553339721907]]
latent_rgb_factors =[
[-0.0069, -0.0045, 0.0018],
[ 0.0154, -0.0692, -0.0274],
[ 0.0333, 0.0019, 0.0206],
[-0.1390, 0.0628, 0.1678],
[-0.0725, 0.0134, -0.1898],
[ 0.0074, -0.0270, -0.0209],
[-0.0176, -0.0277, -0.0221],
[ 0.5294, 0.5204, 0.3852],
[-0.0326, -0.0446, -0.0143],
[-0.0659, 0.0153, -0.0153],
[ 0.0185, -0.0217, 0.0014],
[-0.0396, -0.0495, -0.0281]
]
# import random
# random.seed(seed)
# latent_rgb_factors = [[random.uniform(min_val, max_val) for _ in range(3)] for _ in range(12)]
# out_factors = latent_rgb_factors
# print(latent_rgb_factors)
latent_rgb_factors_bias = [-0.0940, -0.1418, -0.1453]
latent_rgb_factors = torch.tensor(latent_rgb_factors, device=latents.device, dtype=latents.dtype).transpose(0, 1)
latent_rgb_factors_bias = torch.tensor(latent_rgb_factors_bias, device=latents.device, dtype=latents.dtype)
print("latent_rgb_factors", latent_rgb_factors.shape)
latent_images = []
for t in range(latents.shape[2]):
latent = latents[:, :, t, :, :]
latent = latent[0].permute(1, 2, 0)
latent_image = torch.nn.functional.linear(
latent,
latent_rgb_factors,
bias=latent_rgb_factors_bias
)
latent_images.append(latent_image)
latent_images = torch.stack(latent_images, dim=0)
print("latent_images", latent_images.shape)
latent_images_min = latent_images.min()
latent_images_max = latent_images.max()
latent_images = (latent_images - latent_images_min) / (latent_images_max - latent_images_min)
return (latent_images.float().cpu(),)
#endregion
#region NodeMappings
NODE_CLASS_MAPPINGS = {
"DownloadAndLoadMochiModel": DownloadAndLoadMochiModel,
"MochiSampler": MochiSampler,
"MochiDecode": MochiDecode,
"MochiTextEncode": MochiTextEncode,
"MochiModelLoader": MochiModelLoader,
"MochiVAELoader": MochiVAELoader,
"MochiVAEEncoderLoader": MochiVAEEncoderLoader,
"MochiDecodeSpatialTiling": MochiDecodeSpatialTiling,
"MochiTorchCompileSettings": MochiTorchCompileSettings,
"MochiImageEncode": MochiImageEncode,
"MochiLatentPreview": MochiLatentPreview,
"MochiSigmaSchedule": MochiSigmaSchedule,
"MochiFasterCache": MochiFasterCache
}
NODE_DISPLAY_NAME_MAPPINGS = {
"DownloadAndLoadMochiModel": "(Down)load Mochi Model",
"MochiSampler": "Mochi Sampler",
"MochiDecode": "Mochi Decode",
"MochiTextEncode": "Mochi TextEncode",
"MochiModelLoader": "Mochi Model Loader",
"MochiVAELoader": "Mochi VAE Decoder Loader",
"MochiVAEEncoderLoader": "Mochi VAE Encoder Loader",
"MochiDecodeSpatialTiling": "Mochi VAE Decode Spatial Tiling",
"MochiTorchCompileSettings": "Mochi Torch Compile Settings",
"MochiImageEncode": "Mochi Image Encode",
"MochiLatentPreview": "Mochi Latent Preview",
"MochiSigmaSchedule": "Mochi Sigma Schedule",
"MochiFasterCache": "Mochi Faster Cache"
}