import math from typing import Iterable, Tuple, Union, TYPE_CHECKING import re from dataclasses import dataclass from collections.abc import Iterable as IterColl import torch from einops import rearrange, repeat from torch import Tensor, nn from comfy.ldm.modules.attention import FeedForward, SpatialTransformer from comfy.model_patcher import ModelPatcher from comfy.model_base import BaseModel from comfy.ldm.modules.diffusionmodules.util import timestep_embedding from comfy.ldm.modules.diffusionmodules import openaimodel from comfy.ldm.modules.diffusionmodules.openaimodel import SpatialTransformer from comfy.controlnet import broadcast_image_to from comfy.utils import repeat_to_batch_size import comfy.ops import comfy.model_management from .context import ContextFuseMethod, ContextOptions, get_context_weights, get_context_windows from .adapter_animatelcm_i2v import AdapterEmbed if TYPE_CHECKING: # avoids circular import from .adapter_cameractrl import CameraPoseEncoder from .adapter_fancyvideo import FancyVideoCondEmbedding, FancyVideoKeys, initialize_weights_to_zero from .utils_motion import (CrossAttentionMM, MotionCompatibilityError, DummyNNModule, extend_to_batch_size, extend_list_to_batch_size, prepare_mask_batch, get_combined_multival) from .utils_model import BetaSchedules, ModelTypeSD from .logger import logger def zero_module(module): # Zero out the parameters of a module and return it. for p in module.parameters(): p.detach().zero_() return module class AnimateDiffFormat: ANIMATEDIFF = "AnimateDiff" HOTSHOTXL = "HotshotXL" ANIMATELCM = "AnimateLCM" PIA = "PIA" FANCYVIDEO = "FancyVideo" _LIST = [ANIMATEDIFF, HOTSHOTXL, ANIMATELCM, PIA, FANCYVIDEO] class AnimateDiffVersion: V1 = "v1" V2 = "v2" V3 = "v3" _LIST = [V1, V2, V3] class AnimateDiffInfo: def __init__(self, sd_type: str, mm_format: str, mm_version: str, mm_name: str): self.sd_type = sd_type self.mm_format = mm_format self.mm_version = mm_version self.mm_name = mm_name def get_string(self): return f"{self.mm_name}:{self.mm_version}:{self.mm_format}:{self.sd_type}" ####################### # Facilitate Per-Block Effect and Scale Control class PerAttn: def __init__(self, attn_idx: Union[int, None], scale: Union[float, Tensor, None]): self.attn_idx = attn_idx self.scale = scale def matches(self, id: int): if self.attn_idx is None: return True return self.attn_idx == id class PerBlockId: def __init__(self, block_type: str, block_idx: Union[int, None]=None, module_idx: Union[int, None]=None): self.block_type = block_type self.block_idx = block_idx self.module_idx = module_idx def matches(self, other: 'PerBlockId') -> bool: # block_type if other.block_type != self.block_type: return False # block_idx if other.block_idx is None: return True elif other.block_idx != self.block_idx: return False # module_idx if other.module_idx is None: return True return other.module_idx == self.module_idx def __str__(self): return f"PerBlockId({self.block_type},{self.block_idx},{self.module_idx})" class PerBlock: def __init__(self, id: PerBlockId, effect: Union[float, Tensor, None]=None, scales: Union[list[Union[float, Tensor, None]], None]=None): self.id = id self.effect = effect self.scales = scales def matches(self, id: PerBlockId): return self.id.matches(id) @dataclass class AllPerBlocks: per_block_list: list[PerBlock] sd_type: Union[str, None] = None #---------------------- ####################### def is_hotshotxl(mm_state_dict: dict[str, Tensor]) -> bool: # use pos_encoder naming to determine if hotshotxl model for key in mm_state_dict.keys(): if key.endswith("pos_encoder.positional_encoding"): return True return False def is_animatelcm(mm_state_dict: dict[str, Tensor]) -> bool: # use lack of ANY pos_encoder keys to determine if animatelcm model for key in mm_state_dict.keys(): if "pos_encoder" in key: return False return True def is_hellomeme(mm_state_dict: dict[str, Tensor]) -> bool: for key in mm_state_dict.keys(): if "pos_embed" in key: return True return False def has_conv_in(mm_state_dict: dict[str, Tensor]) -> bool: # check if conv_in.weight and .bias are present if "conv_in.weight" in mm_state_dict and "conv_in.bias" in mm_state_dict: return True return False def is_fancyvideo(mm_state_dict: dict[str, Tensor]) -> bool: if 'FancyVideo' in mm_state_dict: return True return False def get_down_block_max(mm_state_dict: dict[str, Tensor]) -> int: return get_block_max(mm_state_dict, "down_blocks") def get_up_block_max(mm_state_dict: dict[str, Tensor]) -> int: return get_block_max(mm_state_dict, "up_blocks") def get_block_max(mm_state_dict: dict[str, Tensor], block_name: str) -> int: # keep track of biggest down_block count in module biggest_block = -1 for key in mm_state_dict.keys(): if block_name in key: try: block_int = key.split(".")[1] block_num = int(block_int) if block_num > biggest_block: biggest_block = block_num except ValueError: pass return biggest_block def has_mid_block(mm_state_dict: dict[str, Tensor]): # check if keys contain mid_block for key in mm_state_dict.keys(): if key.startswith("mid_block."): return True return False _regex_attention_blocks_num = re.compile(r'\.attention_blocks\.(\d+)\.') def get_attention_block_max_len(mm_state_dict: dict[str, Tensor]): biggest_attention = -1 for key in mm_state_dict.keys(): found = _regex_attention_blocks_num.search(key) if found: attention_num = int(found.group(1)) if attention_num > biggest_attention: biggest_attention = attention_num return biggest_attention + 1 def get_position_encoding_max_len(mm_state_dict: dict[str, Tensor], mm_name: str, mm_format: str) -> Union[int, None]: # use pos_encoder.pe entries to determine max length - [1, {max_length}, {320|640|1280}] for key in mm_state_dict.keys(): if key.endswith("pos_encoder.pe"): return mm_state_dict[key].size(1) # get middle dim # AnimateLCM models should have no pos_encoder entries, and assumed to be 64 if mm_format == AnimateDiffFormat.ANIMATELCM: return 64 raise MotionCompatibilityError(f"No pos_encoder.pe found in mm_state_dict - {mm_name} is not a valid AnimateDiff motion module!") _regex_hotshotxl_module_num = re.compile(r'temporal_attentions\.(\d+)\.') def find_hotshot_module_num(key: str) -> Union[int, None]: found = _regex_hotshotxl_module_num.search(key) if found: return int(found.group(1)) return None _regex_hellomeme_module_num = re.compile(r'motion_modules\.(\d+)\.') def find_hellomeme_module_num(key: str) -> Union[int, None]: found = _regex_hellomeme_module_num.search(key) if found: return int(found.group(1)) return None def has_img_encoder(mm_state_dict: dict[str, Tensor]): for key in mm_state_dict.keys(): if key.startswith("img_encoder."): return True return False def has_fps_embedding(mm_state_dict: dict[str, Tensor]): for key in mm_state_dict.keys(): if key.startswith("fps_embedding."): return True return False def has_motion_embedding(mm_state_dict: dict[str, Tensor]): for key in mm_state_dict.keys(): if key.startswith("motion_embedding."): return True return False def normalize_ad_state_dict(mm_state_dict: dict[str, Tensor], mm_name: str) -> Tuple[dict[str, Tensor], AnimateDiffInfo]: # from pathlib import Path # log_name = mm_name.split('\\')[-1] # with open(Path(__file__).parent.parent.parent / rf"keys_{log_name}.txt", "w") as afile: # for key, value in mm_state_dict.items(): # if key == 'module': # for inkey, invalue in value.items(): # if hasattr(invalue, 'shape'): # afile.write(f"{inkey}:\t{invalue.shape}\n") # else: # afile.write(f"{inkey}:\t{invalue}\n") # elif hasattr(value, 'shape'): # afile.write(f"{key}:\t{value.shape}\n") # else: # afile.write(f"{key}:\t{type(value)}\n") # determine what SD model the motion module is intended for sd_type: str = None down_block_max = get_down_block_max(mm_state_dict) if down_block_max == 3: sd_type = ModelTypeSD.SD1_5 elif down_block_max == 2: sd_type = ModelTypeSD.SDXL else: raise ValueError(f"'{mm_name}' is not a valid SD1.5 nor SDXL motion module - contained {down_block_max} downblocks.") # determine the model's format mm_format = AnimateDiffFormat.ANIMATEDIFF if is_hellomeme(mm_state_dict): convert_hellomeme_state_dict(mm_state_dict) if is_hotshotxl(mm_state_dict): mm_format = AnimateDiffFormat.HOTSHOTXL if is_animatelcm(mm_state_dict): mm_format = AnimateDiffFormat.ANIMATELCM if has_conv_in(mm_state_dict): mm_format = AnimateDiffFormat.PIA if is_fancyvideo(mm_state_dict): mm_format = AnimateDiffFormat.FANCYVIDEO mm_state_dict.pop("FancyVideo") # for AnimateLCM-I2V purposes, check for img_encoder keys contains_img_encoder = has_img_encoder(mm_state_dict) # remove all non-temporal keys (in case model has extra stuff in it) for key in list(mm_state_dict.keys()): if "temporal" not in key: if mm_format == AnimateDiffFormat.ANIMATELCM and contains_img_encoder and key.startswith("img_encoder."): continue if mm_format == AnimateDiffFormat.PIA and key.startswith("conv_in."): continue if mm_format == AnimateDiffFormat.FANCYVIDEO and key in FancyVideoKeys: continue del mm_state_dict[key] # determine the model's version mm_version = AnimateDiffVersion.V1 if has_mid_block(mm_state_dict): mm_version = AnimateDiffVersion.V2 elif sd_type==ModelTypeSD.SD1_5 and get_position_encoding_max_len(mm_state_dict, mm_name, mm_format)==32: mm_version = AnimateDiffVersion.V3 info = AnimateDiffInfo(sd_type=sd_type, mm_format=mm_format, mm_version=mm_version, mm_name=mm_name) # convert to AnimateDiff format, if needed if mm_format == AnimateDiffFormat.HOTSHOTXL: convert_hotshot_state_dict(mm_state_dict) # return adjusted mm_state_dict and info return mm_state_dict, info def convert_hotshot_state_dict(mm_state_dict: dict[str, Tensor]): # HotshotXL is AD-based architecture applied to SDXL instead of SD1.5 # By renaming the keys, no code needs to be adapted at all ################################ # reformat temporal_attentions: # HSXL: temporal_attentions.#. # AD: motion_modules.#.temporal_transformer. # HSXL: pos_encoder.positional_encoding # AD: pos_encoder.pe for key in list(mm_state_dict.keys()): module_num = find_hotshot_module_num(key) if module_num is not None: new_key = key.replace(f"temporal_attentions.{module_num}", f"motion_modules.{module_num}.temporal_transformer", 1) new_key = new_key.replace("pos_encoder.positional_encoding", "pos_encoder.pe") mm_state_dict[new_key] = mm_state_dict[key] del mm_state_dict[key] def convert_hellomeme_state_dict(mm_state_dict: dict[str, Tensor]): # HelloMeme is AD-based architecture for key in list(mm_state_dict.keys()): module_num = find_hellomeme_module_num(key) if module_num is not None: # first, add temporal_transformer everywhere as suffix after motion_modules.#. new_key = key.replace(f"motion_modules.{module_num}", f"motion_modules.{module_num}.temporal_transformer") if "pos_embed" in new_key: new_key1 = new_key.replace("pos_embed.pe", "attention_blocks.0.pos_encoder.pe") new_key2 = new_key.replace("pos_embed.pe", "attention_blocks.1.pos_encoder.pe") mm_state_dict[new_key1] = mm_state_dict[key].clone() mm_state_dict[new_key2] = mm_state_dict[key].clone() else: if "attn1" in new_key: new_key = new_key.replace("attn1.", "attention_blocks.0.") elif "attn2" in new_key: new_key = new_key.replace("attn2.", "attention_blocks.1.") elif "norm1" in new_key: new_key = new_key.replace("norm1.", "norms.0.") elif "norm2" in new_key: new_key = new_key.replace("norm2.", "norms.1.") elif "norm3" in new_key: new_key = new_key.replace("norm3.", "ff_norm.") mm_state_dict[new_key] = mm_state_dict[key] del mm_state_dict[key] class InitKwargs: OPS = "ops" GET_UNET_FUNC = "get_unet_func" ATTN_BLOCK_TYPE = "attn_block_type" class BlockType: UP = "up" DOWN = "down" MID = "mid" def get_unet_default(wrapper: 'AnimateDiffModel', model: ModelPatcher): return model.model.diffusion_model class AnimateDiffModel(nn.Module): def __init__(self, mm_state_dict: dict[str, Tensor], mm_info: AnimateDiffInfo, init_kwargs: dict[str]={}): super().__init__() self.mm_info = mm_info self.down_blocks: list[MotionModule] = None self.up_blocks: list[MotionModule] = None self.mid_block: Union[MotionModule, None] = None self.encoding_max_len = get_position_encoding_max_len(mm_state_dict, mm_info.mm_name, mm_info.mm_format) self.has_position_encoding = self.encoding_max_len is not None self.attn_len = get_attention_block_max_len(mm_state_dict) self.attn_type = init_kwargs.get(InitKwargs.ATTN_BLOCK_TYPE, "Temporal_Self") self.attn_block_types = tuple([self.attn_type] * self.attn_len) # determine ops to use (to support fp8 properly) self.ops = init_kwargs.get(InitKwargs.OPS, None) if self.ops is None: if comfy.model_management.unet_manual_cast(comfy.model_management.unet_dtype(), comfy.model_management.get_torch_device()) is None: self.ops = comfy.ops.disable_weight_init else: self.ops = comfy.ops.manual_cast # SDXL has 3 up/down blocks, SD1.5 has 4 up/down blocks if mm_info.sd_type == ModelTypeSD.SDXL: layer_channels = (320, 640, 1280) else: layer_channels = (320, 640, 1280, 1280) self.layer_channels = layer_channels self.middle_channel = 1280 # fill out down/up blocks and middle block, if present if get_down_block_max(mm_state_dict) > -1: self.down_blocks = nn.ModuleList([]) for idx, c in enumerate(layer_channels): self.down_blocks.append(MotionModule(c, temporal_pe=self.has_position_encoding, temporal_pe_max_len=self.encoding_max_len, block_type=BlockType.DOWN, block_idx=idx, attention_block_types=self.attn_block_types, ops=self.ops)) if get_up_block_max(mm_state_dict) > -1: self.up_blocks = nn.ModuleList([]) for idx, c in enumerate(list(reversed(layer_channels))): self.up_blocks.append(MotionModule(c, temporal_pe=self.has_position_encoding, temporal_pe_max_len=self.encoding_max_len, block_type=BlockType.UP, block_idx=idx, attention_block_types=self.attn_block_types, ops=self.ops)) if has_mid_block(mm_state_dict): self.mid_block = MotionModule(self.middle_channel, temporal_pe=self.has_position_encoding, temporal_pe_max_len=self.encoding_max_len, block_type=BlockType.MID, attention_block_types=self.attn_block_types, ops=self.ops) self.AD_video_length: int = 24 self.effect_model = 1.0 self.effect_per_block_list = None # AnimateLCM-I2V stuff - create AdapterEmbed if keys present for it self.img_encoder: AdapterEmbed = None if has_img_encoder(mm_state_dict): self.init_img_encoder() # CameraCtrl stuff self.camera_encoder: 'CameraPoseEncoder' = None # PIA/FancyVideo stuff - create conv_in if keys are present for it self.conv_in: comfy.ops.disable_weight_init.Conv2d = None self.orig_conv_in: comfy.ops.disable_weight_init.Conv2d = None if has_conv_in(mm_state_dict): self.init_conv_in(mm_state_dict) # FancyVideo fps_embedding and motion_embedding self.fps_embedding: FancyVideoCondEmbedding = None self.motion_embedding: FancyVideoCondEmbedding = None if has_fps_embedding(mm_state_dict): self.init_fps_embedding(mm_state_dict) if has_motion_embedding(mm_state_dict): self.init_motion_embedding(mm_state_dict) # get_unet_func initialization self.get_unet_func = init_kwargs.get(InitKwargs.GET_UNET_FUNC, get_unet_default) def init_img_encoder(self): del self.img_encoder self.img_encoder = AdapterEmbed(cin=4, channels=self.layer_channels, nums_rb=2, ksize=1, sk=True, use_conv=False, ops=self.ops) def set_camera_encoder(self, camera_encoder: 'CameraPoseEncoder'): del self.camera_encoder self.camera_encoder = camera_encoder def init_conv_in(self, mm_state_dict: dict[str, Tensor]): ''' Used for PIA/FancyVideo ''' del self.conv_in # hardcoded values, for now # dim=2, in_channels=9, model_channels=320, kernel=3, padding=1, # dtype=comfy.model_management.unet_dtype(), device=offload_device in_channels = mm_state_dict["conv_in.weight"].size(1) # expected to be 9 model_channels = mm_state_dict["conv_in.weight"].size(0) # expected to be 320 # create conv_in with proper params self.conv_in = self.ops.conv_nd(2, in_channels, model_channels, 3, padding=1, dtype=comfy.model_management.unet_dtype(), device=comfy.model_management.unet_offload_device()) def init_fps_embedding(self, mm_state_dict: dict[str, Tensor]): ''' Used for FancyVideo ''' del self.fps_embedding in_channels = mm_state_dict["fps_embedding.linear.weight"].size(1) # expected to be 320 cond_embed_dim = mm_state_dict["fps_embedding.linear.weight"].size(0) # expected to be 1280 self.fps_embedding = FancyVideoCondEmbedding(in_channels=in_channels, cond_embed_dim=cond_embed_dim) self.fps_embedding.apply(initialize_weights_to_zero) def init_motion_embedding(self, mm_state_dict: dict[str, Tensor]): ''' Used for FancyVideo ''' del self.motion_embedding in_channels = mm_state_dict["motion_embedding.linear.weight"].size(1) # expected to be 320 cond_embed_dim = mm_state_dict["motion_embedding.linear.weight"].size(0) # expected to be 1280 self.motion_embedding = FancyVideoCondEmbedding(in_channels=in_channels, cond_embed_dim=cond_embed_dim) self.motion_embedding.apply(initialize_weights_to_zero) def get_fancyvideo_emb_patches(self, dtype, device, fps=25, motion_score=3.0): patches = [] if self.fps_embedding is not None: if fps is not None: def fps_emb_patch(emb: Tensor, model_channels: int, transformer_options: dict[str]): nonlocal fps if fps is None: return emb fps = torch.tensor(fps).to(dtype=emb.dtype, device=emb.device) fps = fps.expand(emb.shape[0]) fps_emb = timestep_embedding(fps, model_channels, repeat_only=False).to(dtype=emb.dtype) fps_emb = self.fps_embedding(fps_emb) return emb + fps_emb patches.append(fps_emb_patch) if self.motion_embedding is not None: if motion_score is not None: def motion_emb_patch(emb: Tensor, model_channels: int, transformer_options: dict[str]): nonlocal motion_score if motion_score is None: return emb motion_score = torch.tensor(motion_score).to(dtype=emb.dtype, device=emb.device) motion_score = motion_score.expand(emb.shape[0]) motion_emb = timestep_embedding(motion_score, model_channels, repeat_only=False).to(dtype=emb.dtype) motion_emb = self.motion_embedding(motion_emb) return emb + motion_emb patches.append(motion_emb_patch) return patches def get_device_debug(self): return self.down_blocks[0].motion_modules[0].temporal_transformer.proj_in.weight.device def is_length_valid_for_encoding_max_len(self, length: int): if self.encoding_max_len is None: return True return length <= self.encoding_max_len def get_best_beta_schedule(self, log=False) -> str: to_return = None if self.mm_info.sd_type == ModelTypeSD.SD1_5: if self.mm_info.mm_format == AnimateDiffFormat.ANIMATELCM: to_return = BetaSchedules.LCM # while LCM_100 is the intended schedule, I find LCM to have much less flicker else: to_return = BetaSchedules.SQRT_LINEAR elif self.mm_info.sd_type == ModelTypeSD.SDXL: if self.mm_info.mm_format == AnimateDiffFormat.HOTSHOTXL: to_return = BetaSchedules.LINEAR else: to_return = BetaSchedules.LINEAR_ADXL if to_return is not None: if log: logger.info(f"[Autoselect]: '{to_return}' beta_schedule for {self.mm_info.get_string()}") else: to_return = BetaSchedules.USE_EXISTING if log: logger.info(f"[Autoselect]: could not find beta_schedule for {self.mm_info.get_string()}, defaulting to '{to_return}'") return to_return def cleanup(self): self._reset_sub_idxs() self._reset_scale() self._reset_temp_vars() if self.img_encoder is not None: self.img_encoder.cleanup() def inject(self, model: ModelPatcher): unet: openaimodel.UNetModel = self.get_unet_func(self, model) # inject input (down) blocks # SD15 mm contains 4 downblocks, each with 2 TemporalTransformers - 8 in total # SDXL mm contains 3 downblocks, each with 2 TemporalTransformers - 6 in total if self.down_blocks is not None: self._inject(unet.input_blocks, self.down_blocks) # inject output (up) blocks # SD15 mm contains 4 upblocks, each with 3 TemporalTransformers - 12 in total # SDXL mm contains 3 upblocks, each with 3 TemporalTransformers - 9 in total if self.up_blocks is not None: self._inject(unet.output_blocks, self.up_blocks) # inject mid block, if needed (encapsulate in list to make structure compatible) if self.mid_block is not None: self._inject([unet.middle_block], [self.mid_block]) del unet def _inject(self, unet_blocks: nn.ModuleList, mm_blocks: nn.ModuleList): # Rules for injection: # For each component list in a unet block: # if SpatialTransformer exists in list, place next block after last occurrence # elif ResBlock exists in list, place next block after first occurrence # else don't place block injection_count = 0 unet_idx = 0 # details about blocks passed in per_block = len(mm_blocks[0].motion_modules) injection_goal = len(mm_blocks) * per_block # only stop injecting when modules exhausted while injection_count < injection_goal: # figure out which VanillaTemporalModule from mm to inject mm_blk_idx, mm_vtm_idx = injection_count // per_block, injection_count % per_block # figure out layout of unet block components st_idx = -1 # SpatialTransformer index res_idx = -1 # first ResBlock index # first, figure out indeces of relevant blocks for idx, component in enumerate(unet_blocks[unet_idx]): if type(component) == SpatialTransformer: st_idx = idx elif type(component).__name__ == "ResBlock" and res_idx < 0: res_idx = idx # if SpatialTransformer exists, inject right after if st_idx >= 0: #logger.info(f"AD: injecting after ST({st_idx})") unet_blocks[unet_idx].insert(st_idx+1, mm_blocks[mm_blk_idx].motion_modules[mm_vtm_idx]) injection_count += 1 # otherwise, if only ResBlock exists, inject right after elif res_idx >= 0: #logger.info(f"AD: injecting after Res({res_idx})") unet_blocks[unet_idx].insert(res_idx+1, mm_blocks[mm_blk_idx].motion_modules[mm_vtm_idx]) injection_count += 1 # increment unet_idx unet_idx += 1 def eject(self, model: ModelPatcher): unet: openaimodel.UNetModel = self.get_unet_func(self, model) # remove from input blocks (downblocks) if hasattr(unet, "input_blocks"): self._eject(unet.input_blocks) # remove from output blocks (upblocks) if hasattr(unet, "output_blocks"): self._eject(unet.output_blocks) # remove from middle block (encapsulate in list to make compatible) if hasattr(unet, "middle_block"): self._eject([unet.middle_block]) del unet def _eject(self, unet_blocks: nn.ModuleList): # eject all VanillaTemporalModule objects from all blocks for block in unet_blocks: idx_to_pop = [] for idx, component in enumerate(block): if type(component) == VanillaTemporalModule: idx_to_pop.append(idx) # pop in backwards order, as to not disturb what the indeces refer to for idx in sorted(idx_to_pop, reverse=True): block.pop(idx) def inject_unet_conv_in_pia_fancyvideo(self, model: BaseModel): if self.conv_in is None: return # TODO: make sure works with lowvram # expected conv_in is in the first input block, and is the first module self.orig_conv_in = model.diffusion_model.input_blocks[0][0] present_state_dict: dict[str, Tensor] = self.orig_conv_in.state_dict() new_state_dict: dict[str, Tensor] = self.conv_in.state_dict() # bias stays the same, but weight needs to inherit first in_channels from model combined_state_dict = {} combined_state_dict["bias"] = present_state_dict["bias"] combined_state_dict["weight"] = torch.cat([present_state_dict["weight"], new_state_dict["weight"][:, 4:, :, :].to(dtype=present_state_dict["weight"].dtype, device=present_state_dict["weight"].device)], dim=1) # create combined_conv_in with proper params in_channels = new_state_dict["weight"].size(1) # expected to be 9 model_channels = present_state_dict["weight"].size(0) # expected to be 320 combined_conv_in = self.ops.conv_nd(2, in_channels, model_channels, 3, padding=1, dtype=present_state_dict["weight"].dtype, device=present_state_dict["weight"].device) combined_conv_in.load_state_dict(combined_state_dict) # now can apply combined_conv_in to unet block model.diffusion_model.input_blocks[0][0] = combined_conv_in def restore_unet_conv_in_pia_fancyvideo(self, model: BaseModel): if self.orig_conv_in is not None: model.diffusion_model.input_blocks[0][0] = self.orig_conv_in.to(model.diffusion_model.input_blocks[0][0].weight.device) self.orig_conv_in = None def set_video_length(self, video_length: int, full_length: int): self.AD_video_length = video_length if self.down_blocks is not None: for block in self.down_blocks: block.set_video_length(video_length, full_length) if self.up_blocks is not None: for block in self.up_blocks: block.set_video_length(video_length, full_length) if self.mid_block is not None: self.mid_block.set_video_length(video_length, full_length) def set_scale(self, scale: Union[float, Tensor, None], per_block_list: Union[list[PerBlock], None]=None): if self.down_blocks is not None: for block in self.down_blocks: block.set_scale(scale, per_block_list) if self.up_blocks is not None: for block in self.up_blocks: block.set_scale(scale, per_block_list) if self.mid_block is not None: self.mid_block.set_scale(scale, per_block_list) def set_effect(self, multival: Union[float, Tensor, None], per_block_list: Union[list[PerBlock], None]=None): # keep track of if model is in effect if multival is None: self.effect_model = 1.0 else: self.effect_model = multival self.effect_per_block_list = per_block_list # pass down effect multival to all blocks if self.down_blocks is not None: for block in self.down_blocks: block.set_effect(multival, per_block_list) if self.up_blocks is not None: for block in self.up_blocks: block.set_effect(multival, per_block_list) if self.mid_block is not None: self.mid_block.set_effect(multival, per_block_list) def is_in_effect(self): if type(self.effect_model) == Tensor: return True return not math.isclose(self.effect_model, 0.0) def set_cameractrl_effect(self, multival: Union[float, Tensor]): # cameractrl should only impact down and up blocks if self.down_blocks is not None: for block in self.down_blocks: block.set_cameractrl_effect(multival) if self.up_blocks is not None: for block in self.up_blocks: block.set_cameractrl_effect(multival) def set_sub_idxs(self, sub_idxs: list[int]): if self.down_blocks is not None: for block in self.down_blocks: block.set_sub_idxs(sub_idxs) if self.up_blocks is not None: for block in self.up_blocks: block.set_sub_idxs(sub_idxs) if self.mid_block is not None: self.mid_block.set_sub_idxs(sub_idxs) def set_view_options(self, view_options: ContextOptions): if self.down_blocks is not None: for block in self.down_blocks: block.set_view_options(view_options) if self.up_blocks is not None: for block in self.up_blocks: block.set_view_options(view_options) if self.mid_block is not None: self.mid_block.set_view_options(view_options) def set_img_features(self, img_features: list[Tensor], apply_ref_when_disabled=False): # img_features should only impact downblocks if self.down_blocks is not None: for block in self.down_blocks: block.set_img_features(img_features=img_features, apply_ref_when_disabled=apply_ref_when_disabled) def set_camera_features(self, camera_features: list[Tensor]): # camera features should only impact down and up blocks if self.down_blocks is not None: for block in self.down_blocks: block.set_camera_features(camera_features=camera_features) if self.up_blocks is not None: for block in self.up_blocks: block.set_camera_features(camera_features=list(reversed(camera_features))) def _reset_temp_vars(self): if self.down_blocks is not None: for block in self.down_blocks: block.reset_temp_vars() if self.up_blocks is not None: for block in self.up_blocks: block.reset_temp_vars() if self.mid_block is not None: self.mid_block.reset_temp_vars() def _reset_scale(self): self.set_scale(None) def _reset_sub_idxs(self): self.set_sub_idxs(None) class MotionModule(nn.Module): def __init__(self, in_channels, temporal_pe=True, temporal_pe_max_len=24, block_type: str=BlockType.DOWN, block_idx: int=0, attention_block_types=("Temporal_Self", "Temporal_Self"), ops=comfy.ops.disable_weight_init ): super().__init__() if block_type == BlockType.MID: # mid blocks contain only a single VanillaTemporalModule self.motion_modules: list[VanillaTemporalModule] = nn.ModuleList([get_motion_module(in_channels, block_type, block_idx, module_idx=0, attention_block_types=attention_block_types, temporal_pe=temporal_pe, temporal_pe_max_len=temporal_pe_max_len, ops=ops)]) else: # down blocks contain two VanillaTemporalModules self.motion_modules: list[VanillaTemporalModule] = nn.ModuleList( [ get_motion_module(in_channels, block_type, block_idx, module_idx=0, attention_block_types=attention_block_types, temporal_pe=temporal_pe, temporal_pe_max_len=temporal_pe_max_len, ops=ops), get_motion_module(in_channels, block_type, block_idx, module_idx=1, attention_block_types=attention_block_types, temporal_pe=temporal_pe, temporal_pe_max_len=temporal_pe_max_len, ops=ops) ] ) # up blocks contain one additional VanillaTemporalModule if block_type == BlockType.UP: self.motion_modules.append(get_motion_module(in_channels, block_type, block_idx, module_idx=2, attention_block_types=attention_block_types, temporal_pe=temporal_pe, temporal_pe_max_len=temporal_pe_max_len, ops=ops)) def set_video_length(self, video_length: int, full_length: int): for motion_module in self.motion_modules: motion_module.set_video_length(video_length, full_length) def set_scale(self, scale: Union[float, Tensor, None], per_block_list: Union[list[PerBlock], None]=None): for motion_module in self.motion_modules: motion_module.set_scale(scale, per_block_list) def set_effect(self, multival: Union[float, Tensor], per_block_list: Union[list[PerBlock], None]=None): for motion_module in self.motion_modules: motion_module.set_effect(multival, per_block_list) def set_cameractrl_effect(self, multival: Union[float, Tensor]): for motion_module in self.motion_modules: motion_module.set_cameractrl_effect(multival) def set_sub_idxs(self, sub_idxs: list[int]): for motion_module in self.motion_modules: motion_module.set_sub_idxs(sub_idxs) def set_view_options(self, view_options: ContextOptions): for motion_module in self.motion_modules: motion_module.set_view_options(view_options=view_options) def set_img_features(self, img_features: list[Tensor], apply_ref_when_disabled=False): for motion_module in self.motion_modules: motion_module.set_img_features(img_features=img_features, apply_ref_when_disabled=apply_ref_when_disabled) def set_camera_features(self, camera_features: list[Tensor]): for idx, motion_module in enumerate(self.motion_modules): #if idx == 0: motion_module.set_camera_features(camera_features=camera_features) def reset_temp_vars(self): for motion_module in self.motion_modules: motion_module.reset_temp_vars() def get_motion_module(in_channels, block_type: str, block_idx: int, module_idx: int, attention_block_types: list[str], temporal_pe, temporal_pe_max_len, ops=comfy.ops.disable_weight_init): return VanillaTemporalModule(in_channels=in_channels, block_type=block_type, block_idx=block_idx, module_idx=module_idx, attention_block_types=attention_block_types, temporal_pe=temporal_pe, temporal_pe_max_len=temporal_pe_max_len, ops=ops) class VanillaTemporalModule(nn.Module): def __init__( self, in_channels, block_type: str, block_idx: int, module_idx: int, num_attention_heads=8, num_transformer_block=1, attention_block_types=("Temporal_Self", "Temporal_Self"), cross_frame_attention_mode=None, temporal_pe=True, temporal_pe_max_len=24, temporal_attention_dim_div=1, zero_initialize=True, ops=comfy.ops.disable_weight_init, ): super().__init__() self.video_length = 16 self.full_length = 16 self.sub_idxs = None self.view_options = None # keep track of module's position in unet self.block_type = block_type self.block_idx = block_idx self.module_idx = module_idx self.id = PerBlockId(block_type=block_type, block_idx=block_idx, module_idx=module_idx) # effect vars self.effect = None self.temp_effect_mask: Tensor = None self.prev_input_tensor_batch = 0 # AnimateLCM-I2V vars self.img_features: list[Tensor] = None self.apply_ref_when_disabled = False # CameraCtrl vars self.camera_features: list[Tensor] = None self.temporal_transformer = TemporalTransformer3DModel( in_channels=in_channels, num_attention_heads=num_attention_heads, attention_head_dim=in_channels // num_attention_heads // temporal_attention_dim_div, num_layers=num_transformer_block, attention_block_types=attention_block_types, cross_frame_attention_mode=cross_frame_attention_mode, temporal_pe=temporal_pe, temporal_pe_max_len=temporal_pe_max_len, block_id=self.id, ops=ops ) if zero_initialize: self.temporal_transformer.proj_out = zero_module( self.temporal_transformer.proj_out ) def set_video_length(self, video_length: int, full_length: int): self.video_length = video_length self.full_length = full_length self.temporal_transformer.set_video_length(video_length, full_length) def set_scale(self, scale: Union[float, Tensor, None], per_block_list: Union[list[PerBlock], None]=None): self.temporal_transformer.set_scale(scale, per_block_list) def set_effect(self, multival: Union[float, Tensor], per_block_list: Union[list[PerBlock], None]=None): if per_block_list is not None: for per_block in per_block_list: if self.id.matches(per_block.id) and per_block.effect is not None: multival = get_combined_multival(multival, per_block.effect) #logger.info(f"block_type: {self.block_type}, block_idx: {self.block_idx}, module_idx: {self.module_idx}") break if type(multival) == Tensor: self.effect = multival elif multival is not None and math.isclose(multival, 1.0): self.effect = None else: self.effect = multival self.temp_effect_mask = None def set_cameractrl_effect(self, multival: Union[float, Tensor, None]): if type(multival) == Tensor: pass elif multival is None: multival = 1.0 elif multival is not None and math.isclose(multival, 1.0): multival = 1.0 self.temporal_transformer.set_cameractrl_effect(multival) def set_sub_idxs(self, sub_idxs: list[int]): self.sub_idxs = sub_idxs self.temporal_transformer.set_sub_idxs(sub_idxs) def set_view_options(self, view_options: ContextOptions): self.view_options = view_options def set_img_features(self, img_features: list[Tensor], apply_ref_when_disabled=False): del self.img_features self.img_features = img_features self.apply_ref_when_disabled = apply_ref_when_disabled def set_camera_features(self, camera_features: list[Tensor]): del self.camera_features self.camera_features = camera_features def reset_temp_vars(self): self.set_effect(None) self.set_view_options(None) self.set_img_features(None) self.set_camera_features(None) self.temporal_transformer.reset_temp_vars() def get_effect_mask(self, input_tensor: Tensor): batch, channel, height, width = input_tensor.shape batched_number = batch // self.video_length full_batched_idxs = list(range(self.video_length))*batched_number # if there is a cached temp_effect_mask and it is valid for current input, return it if batch == self.prev_input_tensor_batch and self.temp_effect_mask is not None: if self.sub_idxs is not None: return self.temp_effect_mask[self.sub_idxs*batched_number] return self.temp_effect_mask[full_batched_idxs] # clear any existing mask del self.temp_effect_mask self.temp_effect_mask = None # recalculate temp mask self.prev_input_tensor_batch = batch # make sure mask matches expected dimensions mask = prepare_mask_batch(self.effect, shape=(self.full_length, 1, height, width)) # make sure mask is as long as full_length - clone last element of list if too short self.temp_effect_mask = extend_to_batch_size(mask, self.full_length).to( dtype=input_tensor.dtype, device=input_tensor.device) # return finalized mask if self.sub_idxs is not None: return self.temp_effect_mask[self.sub_idxs*batched_number] return self.temp_effect_mask[full_batched_idxs] def should_handle_img_features(self): return self.img_features is not None and self.block_type == BlockType.DOWN and self.module_idx == 1 def should_handle_camera_features(self): return self.camera_features is not None and self.block_type != BlockType.MID# and self.module_idx == 0 def forward(self, input_tensor: Tensor, encoder_hidden_states=None, attention_mask=None, transformer_options=None): #logger.info(f"block_type: {self.block_type}, block_idx: {self.block_idx}, module_idx: {self.module_idx}") mm_kwargs = None if self.should_handle_camera_features(): mm_kwargs = {"camera_feature": self.camera_features[self.block_idx]} if self.effect is None: # do AnimateLCM-I2V stuff if needed if self.should_handle_img_features(): input_tensor += self.img_features[self.block_idx] return self.temporal_transformer(input_tensor, encoder_hidden_states, attention_mask, self.view_options, mm_kwargs, transformer_options) # return weighted average of input_tensor and AD output if type(self.effect) != Tensor: effect = self.effect # do nothing if effect is 0 if math.isclose(effect, 0.0): # do AnimateLCM-I2V stuff if needed if self.apply_ref_when_disabled and self.should_handle_img_features(): input_tensor += self.img_features[self.block_idx] return input_tensor else: effect = self.get_effect_mask(input_tensor) # do AnimateLCM-I2V stuff if needed if self.should_handle_img_features(): return input_tensor*(1.0-effect) + self.temporal_transformer(input_tensor+self.img_features[self.block_idx], encoder_hidden_states, attention_mask, self.view_options, mm_kwargs, transformer_options)*effect return input_tensor*(1.0-effect) + self.temporal_transformer(input_tensor, encoder_hidden_states, attention_mask, self.view_options, mm_kwargs, transformer_options)*effect class TemporalTransformer3DModel(nn.Module): def __init__( self, in_channels, num_attention_heads, attention_head_dim, num_layers, attention_block_types=( "Temporal_Self", "Temporal_Self", ), dropout=0.0, norm_num_groups=32, cross_attention_dim=768, activation_fn="geglu", attention_bias=False, upcast_attention=False, cross_frame_attention_mode=None, temporal_pe=False, temporal_pe_max_len=24, block_id: PerBlockId=None, ops=comfy.ops.disable_weight_init, ): super().__init__() self.id = block_id self.video_length = 16 self.full_length = 16 self.sub_idxs: Union[list[int], None] = None self.prev_hidden_states_batch = 0 # cameractrl stuff self.raw_cameractrl_effect: Union[float, Tensor] = None self.temp_cameractrl_effect: Union[float, Tensor] = None self.prev_cameractrl_hidden_states_batch = 0 inner_dim = num_attention_heads * attention_head_dim self.norm = ops.GroupNorm( num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True ) self.proj_in = ops.Linear(in_channels, inner_dim) self.transformer_blocks: Iterable[TemporalTransformerBlock] = nn.ModuleList( [ TemporalTransformerBlock( dim=inner_dim, num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, attention_block_types=attention_block_types, dropout=dropout, norm_num_groups=norm_num_groups, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, attention_bias=attention_bias, upcast_attention=upcast_attention, cross_frame_attention_mode=cross_frame_attention_mode, temporal_pe=temporal_pe, temporal_pe_max_len=temporal_pe_max_len, ops=ops, ) for d in range(num_layers) ] ) self.proj_out = ops.Linear(inner_dim, in_channels) self.raw_scale_masks: Union[list[Tensor], None] = [None] * self.get_attention_count() self.temp_scale_masks: Union[list[Tensor], None] = [None] * self.get_attention_count() def get_attention_count(self): if len(self.transformer_blocks) > 0: return len(self.transformer_blocks[0].attention_blocks) return 0 def set_video_length(self, video_length: int, full_length: int): self.video_length = video_length self.full_length = full_length def set_scale_multiplier(self, idx: int, multiplier: Union[float, list[float], None]): for block in self.transformer_blocks: block.set_scale_multiplier(idx, multiplier) def set_scale_mask(self, idx: int, mask: Tensor): self.raw_scale_masks[idx] = mask self.temp_scale_masks[idx] = None def set_scale(self, scale: Union[float, Tensor, None], per_block_list: Union[list[PerBlock], None]=None): if per_block_list is not None: for per_block in per_block_list: if self.id.matches(per_block.id) and len(per_block.scales) > 0: scales = [] for sub_scale in per_block.scales: scales.append(get_combined_multival(scale, sub_scale)) #logger.info(f"scale - block_type: {self.id.block_type}, block_idx: {self.id.block_idx}, module_idx: {self.id.module_idx}") scale = scales break if type(scale) == Tensor or not isinstance(scale, IterColl): scale = [scale] scale = extend_list_to_batch_size(scale, self.get_attention_count()) for idx, sub_scale in enumerate(scale): if type(sub_scale) == Tensor: self.set_scale_mask(idx, sub_scale) self.set_scale_multiplier(idx, None) else: self.set_scale_mask(idx, None) self.set_scale_multiplier(idx, sub_scale) def set_cameractrl_effect(self, multival: Union[float, Tensor]): self.raw_cameractrl_effect = multival self.temp_cameractrl_effect = None def set_sub_idxs(self, sub_idxs: list[int]): self.sub_idxs = sub_idxs for block in self.transformer_blocks: block.set_sub_idxs(sub_idxs) def reset_temp_vars(self): del self.temp_scale_masks self.temp_scale_masks = [None] * self.get_attention_count() self.prev_hidden_states_batch = 0 del self.temp_cameractrl_effect self.temp_cameractrl_effect = None self.prev_cameractrl_hidden_states_batch = 0 for block in self.transformer_blocks: block.reset_temp_vars() def get_scale_masks(self, hidden_states: Tensor) -> Union[Tensor, None]: masks = [] prev_mask = None prev_idx = 0 for idx in range(len(self.raw_scale_masks)): if prev_mask is self.raw_scale_masks[idx]: masks.append(self.temp_scale_masks[prev_idx]) else: masks.append(self.get_scale_mask(idx=idx, hidden_states=hidden_states)) prev_idx = idx return masks def get_scale_mask(self, idx: int, hidden_states: Tensor) -> Union[Tensor, None]: # if no raw mask, return None if self.raw_scale_masks[idx] is None: return None shape = hidden_states.shape batch, channel, height, width = shape # if temp mask already calculated, return it if self.temp_scale_masks[idx] != None: # check if hidden_states batch matches if batch == self.prev_hidden_states_batch: if self.sub_idxs is not None: return self.temp_scale_masks[idx][:, self.sub_idxs, :] return self.temp_scale_masks[idx] # if does not match, reset cached temp_scale_mask and recalculate it self.temp_scale_masks[idx] = None # otherwise, calculate temp mask self.prev_hidden_states_batch = batch mask = prepare_mask_batch(self.raw_scale_masks[idx], shape=(self.full_length, 1, height, width)) mask = repeat_to_batch_size(mask, self.full_length) # if mask not the same amount length as full length, make it match if self.full_length != mask.shape[0]: mask = broadcast_image_to(mask, self.full_length, 1) # reshape mask to attention K shape (h*w, latent_count, 1) batch, channel, height, width = mask.shape # first, perform same operations as on hidden_states, # turning (b, c, h, w) -> (b, h*w, c) mask = mask.permute(0, 2, 3, 1).reshape(batch, height*width, channel) # then, make it the same shape as attention's k, (h*w, b, c) mask = mask.permute(1, 0, 2) # make masks match the expected length of h*w batched_number = shape[0] // self.video_length if batched_number > 1: mask = torch.cat([mask] * batched_number, dim=0) # cache mask and set to proper device self.temp_scale_masks[idx] = mask # move temp_scale_mask to proper dtype + device self.temp_scale_masks[idx] = self.temp_scale_masks[idx].to(dtype=hidden_states.dtype, device=hidden_states.device) # return subset of masks, if needed if self.sub_idxs is not None: return self.temp_scale_masks[idx][:, self.sub_idxs, :] return self.temp_scale_masks[idx] def get_cameractrl_effect(self, hidden_states: Tensor) -> Union[float, Tensor, None]: # if no raw camera_Ctrl, return None if self.raw_cameractrl_effect is None: return 1.0 # if raw_cameractrl is not a Tensor, return it (should be a float) if type(self.raw_cameractrl_effect) != Tensor: return self.raw_cameractrl_effect shape = hidden_states.shape batch, channel, height, width = shape # if temp_cameractrl already calculated, return it if self.temp_cameractrl_effect != None: # check if hidden_states batch matches if batch == self.prev_cameractrl_hidden_states_batch: if self.sub_idxs is not None: return self.temp_cameractrl_effect[:, self.sub_idxs, :] return self.temp_cameractrl_effect # if does not match, reset cached temp_cameractrl and recalculate it del self.temp_cameractrl_effect self.temp_cameractrl_effect = None # otherwise, calculate temp_cameractrl self.prev_cameractrl_hidden_states_batch = batch mask = prepare_mask_batch(self.raw_cameractrl_effect, shape=(self.full_length, 1, height, width)) mask = repeat_to_batch_size(mask, self.full_length) # if mask not the same amount length as full length, make it match if self.full_length != mask.shape[0]: mask = broadcast_image_to(mask, self.full_length, 1) # reshape mask to attention K shape (h*w, latent_count, 1) batch, channel, height, width = mask.shape # first, perform same operations as on hidden_states, # turning (b, c, h, w) -> (b, h*w, c) mask = mask.permute(0, 2, 3, 1).reshape(batch, height*width, channel) # then, make it the same shape as attention's k, (h*w, b, c) mask = mask.permute(1, 0, 2) # make masks match the expected length of h*w batched_number = shape[0] // self.video_length if batched_number > 1: mask = torch.cat([mask] * batched_number, dim=0) # cache mask and set to proper device self.temp_cameractrl_effect = mask # move temp_cameractrl to proper dtype + device self.temp_cameractrl_effect = self.temp_cameractrl_effect.to(dtype=hidden_states.dtype, device=hidden_states.device) # return subset of masks, if needed if self.sub_idxs is not None: return self.temp_cameractrl_effect[:, self.sub_idxs, :] return self.temp_cameractrl_effect def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, view_options: ContextOptions=None, mm_kwargs: dict[str]=None, transformer_options=None): batch, channel, height, width = hidden_states.shape residual = hidden_states scale_masks = self.get_scale_masks(hidden_states) cameractrl_effect = self.get_cameractrl_effect(hidden_states) # add some casts for fp8 purposes - does not affect speed otherwise hidden_states = self.norm(hidden_states).to(hidden_states.dtype) inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape( batch, height * width, inner_dim ) hidden_states = self.proj_in(hidden_states).to(hidden_states.dtype) # Transformer Blocks for block in self.transformer_blocks: hidden_states = block( hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, video_length=self.video_length, scale_masks=scale_masks, cameractrl_effect=cameractrl_effect, view_options=view_options, mm_kwargs=mm_kwargs, transformer_options=transformer_options, ) # output hidden_states = self.proj_out(hidden_states) hidden_states = ( hidden_states.reshape(batch, height, width, inner_dim) .permute(0, 3, 1, 2) .contiguous() ) output = hidden_states + residual return output class TemporalTransformerBlock(nn.Module): def __init__( self, dim, num_attention_heads, attention_head_dim, attention_block_types=( "Temporal_Self", "Temporal_Self", ), dropout=0.0, norm_num_groups=32, cross_attention_dim=768, activation_fn="geglu", attention_bias=False, upcast_attention=False, cross_frame_attention_mode=None, temporal_pe=False, temporal_pe_max_len=24, ops=comfy.ops.disable_weight_init, ): super().__init__() attention_blocks: Iterable[VersatileAttention] = [] norms = [] for block_name in attention_block_types: attention_blocks.append( VersatileAttention( attention_mode=block_name.split("_")[0], context_dim=cross_attention_dim # called context_dim for ComfyUI impl if block_name.endswith("_Cross") else None, query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, #bias=attention_bias, # remove for Comfy CrossAttention #upcast_attention=upcast_attention, # remove for Comfy CrossAttention cross_frame_attention_mode=cross_frame_attention_mode, temporal_pe=temporal_pe, temporal_pe_max_len=temporal_pe_max_len, ops=ops, ) ) norms.append(ops.LayerNorm(dim)) attention_blocks[0].camera_feature_enabled = True self.attention_blocks: Iterable[VersatileAttention] = nn.ModuleList(attention_blocks) self.norms = nn.ModuleList(norms) self.ff = FeedForward(dim, dropout=dropout, glu=(activation_fn == "geglu"), operations=ops) self.ff_norm = ops.LayerNorm(dim) def set_scale_multiplier(self, idx: int, multiplier: Union[float, None]): self.attention_blocks[idx].set_scale_multiplier(multiplier) def set_sub_idxs(self, sub_idxs: list[int]): for block in self.attention_blocks: block.set_sub_idxs(sub_idxs) def reset_temp_vars(self): for block in self.attention_blocks: block.reset_temp_vars() def forward( self, hidden_states: Tensor, encoder_hidden_states: Tensor=None, attention_mask: Tensor=None, video_length: int=None, scale_masks: list[Tensor]=None, cameractrl_effect: Union[float, Tensor] = None, view_options: Union[ContextOptions, None]=None, mm_kwargs: dict[str]=None, transformer_options: dict[str]=None, ): if scale_masks is None: scale_masks = [None] * len(self.attention_blocks) # make view_options None if context_length > video_length, or if equal and equal not allowed if view_options: if view_options.context_length > video_length: view_options = None elif view_options.context_length == video_length and not view_options.use_on_equal_length: view_options = None if not view_options: for attention_block, norm, scale_mask in zip(self.attention_blocks, self.norms, scale_masks): norm_hidden_states = norm(hidden_states).to(hidden_states.dtype) hidden_states = ( attention_block( norm_hidden_states, encoder_hidden_states=encoder_hidden_states if attention_block.is_cross_attention else None, attention_mask=attention_mask, video_length=video_length, scale_mask=scale_mask, cameractrl_effect=cameractrl_effect, mm_kwargs=mm_kwargs, transformer_options=transformer_options, ) + hidden_states ) else: # views idea gotten from diffusers AnimateDiff FreeNoise implementation: # https://github.com/arthur-qiu/FreeNoise-AnimateDiff/blob/main/animatediff/models/motion_module.py # apply sliding context windows (views) views = get_context_windows(num_frames=video_length, opts=view_options) hidden_states = rearrange(hidden_states, "(b f) d c -> b f d c", f=video_length) value_final = torch.zeros_like(hidden_states) count_final = torch.zeros_like(hidden_states) batched_conds = hidden_states.size(1) // video_length # store original camera_feature, if present has_camera_feature = False if mm_kwargs is not None: has_camera_feature = True orig_camera_feature = mm_kwargs["camera_feature"] # perform view options for sub_idxs in views: sub_hidden_states = rearrange(hidden_states[:, sub_idxs], "b f d c -> (b f) d c") if has_camera_feature: mm_kwargs["camera_feature"] = orig_camera_feature[:, sub_idxs, :] for attention_block, norm, scale_mask in zip(self.attention_blocks, self.norms, scale_masks): norm_hidden_states = norm(sub_hidden_states).to(sub_hidden_states.dtype) sub_hidden_states = ( attention_block( norm_hidden_states, encoder_hidden_states=encoder_hidden_states # do these need to be changed for sub_idxs too? if attention_block.is_cross_attention else None, attention_mask=attention_mask, video_length=len(sub_idxs), scale_mask=scale_mask[:, sub_idxs, :] if scale_mask is not None else scale_mask, cameractrl_effect=cameractrl_effect[:, sub_idxs, :] if type(cameractrl_effect) == Tensor else cameractrl_effect, mm_kwargs=mm_kwargs, transformer_options=transformer_options, ) + sub_hidden_states ) sub_hidden_states = rearrange(sub_hidden_states, "(b f) d c -> b f d c", f=len(sub_idxs)) weights = get_context_weights(len(sub_idxs), view_options.fuse_method) * batched_conds weights_tensor = torch.Tensor(weights).to(device=hidden_states.device).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) value_final[:, sub_idxs] += sub_hidden_states * weights_tensor count_final[:, sub_idxs] += weights_tensor # restore original camera_feature if has_camera_feature: mm_kwargs["camera_feature"] = orig_camera_feature del orig_camera_feature # get weighted average of sub_hidden_states hidden_states = value_final / count_final hidden_states = rearrange(hidden_states, "b f d c -> (b f) d c") del value_final del count_final hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states output = hidden_states return output class PositionalEncoding(nn.Module): def __init__(self, d_model, dropout=0.0, max_len=24): super().__init__() self.dropout = nn.Dropout(p=dropout) position = torch.arange(max_len).unsqueeze(1) div_term = torch.exp( torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model) ) pe = torch.zeros(1, max_len, d_model) pe[0, :, 0::2] = torch.sin(position * div_term) pe[0, :, 1::2] = torch.cos(position * div_term) self.register_buffer("pe", pe) self.sub_idxs = None self.pe: Tensor def set_sub_idxs(self, sub_idxs: list[int]): self.sub_idxs = sub_idxs def forward(self, x: Tensor, mm_kwargs: dict[str]={}, transformer_options: dict[str]=None): #if self.sub_idxs is not None: # x = x + self.pe[:, self.sub_idxs] #else: x = x + self.pe[:, : x.size(1)] return self.dropout(x) class VersatileAttention(CrossAttentionMM): def __init__( self, attention_mode=None, cross_frame_attention_mode=None, temporal_pe=False, temporal_pe_max_len=24, ops=comfy.ops.disable_weight_init, *args, **kwargs, ): super().__init__(operations=ops, *args, **kwargs) assert attention_mode == "Temporal" self.attention_mode = attention_mode self.is_cross_attention = kwargs["context_dim"] is not None self.query_dim: int = kwargs["query_dim"] self.qkv_merge: comfy.ops.disable_weight_init.Linear = None self.camera_feature_enabled = False self.pos_encoder = ( PositionalEncoding( kwargs["query_dim"], dropout=0.0, max_len=temporal_pe_max_len, ) if (temporal_pe and attention_mode == "Temporal") else None ) def extra_repr(self): return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}" def set_scale_multiplier(self, multiplier: Union[float, None]): if multiplier is None or math.isclose(multiplier, 1.0): self.scale = 1.0 else: self.scale = multiplier def set_sub_idxs(self, sub_idxs: list[int]): if self.pos_encoder != None: self.pos_encoder.set_sub_idxs(sub_idxs) def init_qkv_merge(self, ops=comfy.ops.disable_weight_init): self.qkv_merge = zero_module(ops.Linear(in_features=self.query_dim, out_features=self.query_dim)) def reset_temp_vars(self): self.reset_attention_type() def forward( self, hidden_states: Tensor, encoder_hidden_states=None, attention_mask=None, video_length=None, scale_mask=None, cameractrl_effect: Union[float, Tensor] = 1.0, mm_kwargs: dict[str]={}, transformer_options: dict[str]=None, ): if self.attention_mode != "Temporal": raise NotImplementedError d = hidden_states.shape[1] hidden_states = rearrange( hidden_states, "(b f) d c -> (b d) f c", f=video_length ) if self.pos_encoder is not None: hidden_states = self.pos_encoder(hidden_states, mm_kwargs, transformer_options).to(hidden_states.dtype) encoder_hidden_states = ( repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d) if encoder_hidden_states is not None else encoder_hidden_states ) if self.camera_feature_enabled and self.qkv_merge is not None and mm_kwargs is not None and "camera_feature" in mm_kwargs: camera_feature: Tensor = mm_kwargs["camera_feature"] hidden_states = (self.qkv_merge(hidden_states + camera_feature) + hidden_states) * cameractrl_effect + hidden_states * (1. - cameractrl_effect) hidden_states = super().forward( hidden_states, encoder_hidden_states, value=None, mask=attention_mask, scale_mask=scale_mask, mm_kwargs=mm_kwargs, transformer_options=transformer_options, ) hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) return hidden_states ############################################################################ ### EncoderOnly Version ############################################################################ class EncoderOnlyAnimateDiffModel(AnimateDiffModel): def __init__(self, mm_state_dict: dict[str, Tensor], mm_info: AnimateDiffInfo): super().__init__(mm_state_dict=mm_state_dict, mm_info=mm_info) self.down_blocks: list[EncoderOnlyMotionModule] = nn.ModuleList([]) self.up_blocks = None self.mid_block = None # fill out down/up blocks and middle block, if present for idx, c in enumerate(self.layer_channels): self.down_blocks.append(EncoderOnlyMotionModule(c, block_type=BlockType.DOWN, block_idx=idx, ops=self.ops)) def _eject(self, unet_blocks: nn.ModuleList): # eject all EncoderOnlyTemporalModule objects from all blocks for block in unet_blocks: idx_to_pop = [] for idx, component in enumerate(block): if type(component) == EncoderOnlyTemporalModule: idx_to_pop.append(idx) # pop in backwards order, as to not disturb what the indeces refer to for idx in sorted(idx_to_pop, reverse=True): block.pop(idx) class EncoderOnlyMotionModule(MotionModule): ''' MotionModule that will store EncoderOnlyTemporalModule objects instead of VanillaTemporalModules ''' def __init__( self, in_channels, block_type: str=BlockType.DOWN, block_idx: int=0, ops=comfy.ops.disable_weight_init ): super().__init__(in_channels=in_channels, block_type=block_type, block_idx=block_idx, ops=ops) if block_type == BlockType.MID: # mid blocks contain only a single VanillaTemporalModule self.motion_modules: Iterable[EncoderOnlyTemporalModule] = nn.ModuleList([EncoderOnlyTemporalModule.create(in_channels, block_type, block_idx, module_idx=0, ops=ops)]) else: # down blocks contain two VanillaTemporalModules self.motion_modules: Iterable[EncoderOnlyTemporalModule] = nn.ModuleList( [ EncoderOnlyTemporalModule.create(in_channels, block_type, block_idx, module_idx=0, ops=ops), EncoderOnlyTemporalModule.create(in_channels, block_type, block_idx, module_idx=1, ops=ops) ] ) # up blocks contain one additional VanillaTemporalModule if block_type == BlockType.UP: self.motion_modules.append(EncoderOnlyTemporalModule.create(in_channels, block_type, block_idx, module_idx=2, ops=ops)) class EncoderOnlyTemporalModule(VanillaTemporalModule): ''' VanillaTemporalModule that will only add img_features to input_tensor while respecting effect_multival ''' def __init__( self, in_channels, block_type: str, block_idx: int, module_idx: int, ops=comfy.ops.disable_weight_init, ): super().__init__(in_channels=in_channels, block_type=block_type, block_idx=block_idx, module_idx=module_idx, zero_initialize=False, ops=ops) # make temporal_transformer a dummy class that does nothing, but will allow inherited VanillaTemporalModule code to work self.temporal_transformer = DummyNNModule() @classmethod def create(cls, in_channels, block_type: str, block_idx: int, module_idx: int, ops=comfy.ops.disable_weight_init): return cls(in_channels=in_channels, block_type=block_type, block_idx=block_idx, module_idx=module_idx, ops=ops) def forward(self, input_tensor: Tensor, encoder_hidden_states=None, attention_mask=None, transformer_options=None): if self.effect is None: # do AnimateLCM-I2V stuff if needed if self.should_handle_img_features(): input_tensor += self.img_features[self.block_idx] return input_tensor # handle effect if type(self.effect) != Tensor: effect = self.effect # do nothing if effect is 0 if math.isclose(effect, 0.0): # do AnimateLCM-I2V stuff if needed if self.apply_ref_when_disabled and self.should_handle_img_features(): input_tensor += self.img_features[self.block_idx] return input_tensor else: effect = self.get_effect_mask(input_tensor) if self.should_handle_img_features(): return input_tensor*(1.0-effect) + (input_tensor+self.img_features[self.block_idx])*effect return input_tensor # since no img_features to apply, no need for weighted average ############################################################################