from typing import Union import torch from torch import Tensor import folder_paths import nodes as comfy_nodes from comfy.model_patcher import ModelPatcher import comfy.model_patcher import comfy.samplers from comfy.sd import load_checkpoint_guess_config from .logger import logger from .utils_model import BetaSchedules from .utils_motion import extend_to_batch_size, prepare_mask_batch from .model_injection import get_vanilla_model_patcher from .cfg_extras import perturbed_attention_guidance_patch, rescale_cfg_patch class AnimateDiffUnload: def __init__(self) -> None: pass @classmethod def INPUT_TYPES(s): return {"required": {"model": ("MODEL",)}} RETURN_TYPES = ("MODEL",) CATEGORY = "Animate Diff 🎭🅐🅓/extras" FUNCTION = "unload_motion_modules" def unload_motion_modules(self, model: ModelPatcher): # return model clone with ejected params #model = eject_params_from_model(model) model = get_vanilla_model_patcher(model) return (model.clone(),) class CheckpointLoaderSimpleWithNoiseSelect: @classmethod def INPUT_TYPES(s): return { "required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ), "beta_schedule": (BetaSchedules.ALIAS_LIST, {"default": BetaSchedules.USE_EXISTING}, ) }, "optional": { "use_custom_scale_factor": ("BOOLEAN", {"default": False}), "scale_factor": ("FLOAT", {"default": 0.18215, "min": 0.0, "max": 1.0, "step": 0.00001}) } } RETURN_TYPES = ("MODEL", "CLIP", "VAE") FUNCTION = "load_checkpoint" CATEGORY = "Animate Diff 🎭🅐🅓/extras" def load_checkpoint(self, ckpt_name, beta_schedule, output_vae=True, output_clip=True, use_custom_scale_factor=False, scale_factor=0.18215): ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name) out = load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings")) # register chosen beta schedule on model - convert to beta_schedule name recognized by ComfyUI new_model_sampling = BetaSchedules.to_model_sampling(beta_schedule, out[0]) if new_model_sampling is not None: out[0].model.model_sampling = new_model_sampling if use_custom_scale_factor: out[0].model.latent_format.scale_factor = scale_factor return out class EmptyLatentImageLarge: def __init__(self, device="cpu"): self.device = device @classmethod def INPUT_TYPES(s): return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": comfy_nodes.MAX_RESOLUTION, "step": 8}), "height": ("INT", {"default": 512, "min": 64, "max": comfy_nodes.MAX_RESOLUTION, "step": 8}), "batch_size": ("INT", {"default": 1, "min": 1, "max": 262144})}} RETURN_TYPES = ("LATENT",) FUNCTION = "generate" CATEGORY = "Animate Diff 🎭🅐🅓/extras" def generate(self, width, height, batch_size=1): latent = torch.zeros([batch_size, 4, height // 8, width // 8]) return ({"samples":latent}, ) class PerturbedAttentionGuidanceMultival: @classmethod def INPUT_TYPES(s): return { "required": { "model": ("MODEL",), "scale_multival": ("MULTIVAL",), } } RETURN_TYPES = ("MODEL",) FUNCTION = "patch" CATEGORY = "Animate Diff 🎭🅐🅓/extras" def patch(self, model: ModelPatcher, scale_multival: Union[float, Tensor]): m = model.clone() m.set_model_sampler_post_cfg_function(perturbed_attention_guidance_patch(scale_multival)) return (m,) class RescaleCFGMultival: @classmethod def INPUT_TYPES(s): return { "required": { "model": ("MODEL",), "mult_multival": ("MULTIVAL",), } } RETURN_TYPES = ("MODEL",) FUNCTION = "patch" CATEGORY = "Animate Diff 🎭🅐🅓/extras" def patch(self, model: ModelPatcher, mult_multival: Union[float, Tensor]): m = model.clone() m.set_model_sampler_cfg_function(rescale_cfg_patch(mult_multival)) return (m, )