from typing import Union from torch import Tensor from collections.abc import Iterable from comfy.sd import VAE from .freeinit import FreeInitFilter from .sample_settings import (FreeInitOptions, IterationOptions, NoiseLayerAdd, NoiseLayerAddWeighted, NoiseLayerGroup, NoiseLayerReplace, NoiseLayerType, SeedNoiseGeneration, SampleSettings, NoiseCalibration, CustomCFGKeyframeGroup, CustomCFGKeyframe, CFGExtrasGroup, CFGExtras, NoisedImageToInjectGroup, NoisedImageToInject, NoisedImageInjectOptions) from .utils_model import BIGMIN, BIGMAX, MAX_RESOLUTION, SigmaSchedule, InterpolationMethod from .cfg_extras import perturbed_attention_guidance_patch, rescale_cfg_patch, set_model_options_sampler_cfg_function, set_model_options_post_cfg_function from .logger import logger class SampleSettingsNode: @classmethod def INPUT_TYPES(s): return { "required": { "batch_offset": ("INT", {"default": 0, "min": 0, "max": BIGMAX}), "noise_type": (NoiseLayerType.LIST,), "seed_gen": (SeedNoiseGeneration.LIST,), "seed_offset": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX}), }, "optional": { "noise_layers": ("NOISE_LAYERS",), "iteration_opts": ("ITERATION_OPTS",), "seed_override": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "forceInput": True}), "adapt_denoise_steps": ("BOOLEAN", {"default": False},), "custom_cfg": ("CUSTOM_CFG",), "sigma_schedule": ("SIGMA_SCHEDULE",), "image_inject": ("IMAGE_INJECT",), #"noise_calib": ("NOISE_CALIBRATION",), # TODO: bring back once NoiseCalibration is working }, "hidden": { "autosize": ("ADEAUTOSIZE", {"padding": 0}), } } RETURN_TYPES = ("SAMPLE_SETTINGS",) RETURN_NAMES = ("settings",) CATEGORY = "Animate Diff 🎭🅐🅓" FUNCTION = "create_settings" def create_settings(self, batch_offset: int, noise_type: str, seed_gen: str, seed_offset: int, noise_layers: NoiseLayerGroup=None, iteration_opts: IterationOptions=None, seed_override: int=None, adapt_denoise_steps=False, custom_cfg: CustomCFGKeyframeGroup=None, sigma_schedule: SigmaSchedule=None, image_inject: NoisedImageToInjectGroup=None, noise_calib: NoiseCalibration=None): sampling_settings = SampleSettings(batch_offset=batch_offset, noise_type=noise_type, seed_gen=seed_gen, seed_offset=seed_offset, noise_layers=noise_layers, iteration_opts=iteration_opts, seed_override=seed_override, adapt_denoise_steps=adapt_denoise_steps, custom_cfg=custom_cfg, sigma_schedule=sigma_schedule, image_injection=image_inject, noise_calibration=noise_calib) return (sampling_settings,) class NoiseLayerReplaceNode: @classmethod def INPUT_TYPES(s): return { "required": { "batch_offset": ("INT", {"default": 0, "min": 0, "max": BIGMAX}), "noise_type": (NoiseLayerType.LIST,), "seed_gen_override": (SeedNoiseGeneration.LIST_WITH_OVERRIDE,), "seed_offset": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX}), }, "optional": { "prev_noise_layers": ("NOISE_LAYERS",), "mask_optional": ("MASK",), "seed_override": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "forceInput": True}), }, "hidden": { "autosize": ("ADEAUTOSIZE", {"padding": 0}), } } RETURN_TYPES = ("NOISE_LAYERS",) CATEGORY = "Animate Diff 🎭🅐🅓/noise layers" FUNCTION = "create_layers" def create_layers(self, batch_offset: int, noise_type: str, seed_gen_override: str, seed_offset: int, prev_noise_layers: NoiseLayerGroup=None, mask_optional: Tensor=None, seed_override: int=None,): # prepare prev_noise_layers if prev_noise_layers is None: prev_noise_layers = NoiseLayerGroup() prev_noise_layers = prev_noise_layers.clone() # create layer layer = NoiseLayerReplace(noise_type=noise_type, batch_offset=batch_offset, seed_gen_override=seed_gen_override, seed_offset=seed_offset, seed_override=seed_override, mask=mask_optional) prev_noise_layers.add_to_start(layer) return (prev_noise_layers,) class NoiseLayerAddNode: @classmethod def INPUT_TYPES(s): return { "required": { "batch_offset": ("INT", {"default": 0, "min": 0, "max": BIGMAX}), "noise_type": (NoiseLayerType.LIST,), "seed_gen_override": (SeedNoiseGeneration.LIST_WITH_OVERRIDE,), "seed_offset": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX}), "noise_weight": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 10.0, "step": 0.001}), }, "optional": { "prev_noise_layers": ("NOISE_LAYERS",), "mask_optional": ("MASK",), "seed_override": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "forceInput": True}), }, "hidden": { "autosize": ("ADEAUTOSIZE", {"padding": 0}), } } RETURN_TYPES = ("NOISE_LAYERS",) CATEGORY = "Animate Diff 🎭🅐🅓/noise layers" FUNCTION = "create_layers" def create_layers(self, batch_offset: int, noise_type: str, seed_gen_override: str, seed_offset: int, noise_weight: float, prev_noise_layers: NoiseLayerGroup=None, mask_optional: Tensor=None, seed_override: int=None,): # prepare prev_noise_layers if prev_noise_layers is None: prev_noise_layers = NoiseLayerGroup() prev_noise_layers = prev_noise_layers.clone() # create layer layer = NoiseLayerAdd(noise_type=noise_type, batch_offset=batch_offset, seed_gen_override=seed_gen_override, seed_offset=seed_offset, seed_override=seed_override, mask=mask_optional, noise_weight=noise_weight) prev_noise_layers.add_to_start(layer) return (prev_noise_layers,) class NoiseLayerAddWeightedNode: @classmethod def INPUT_TYPES(s): return { "required": { "batch_offset": ("INT", {"default": 0, "min": 0, "max": BIGMAX}), "noise_type": (NoiseLayerType.LIST,), "seed_gen_override": (SeedNoiseGeneration.LIST_WITH_OVERRIDE,), "seed_offset": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX}), "noise_weight": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 10.0, "step": 0.001}), "balance_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "step": 0.001}), }, "optional": { "prev_noise_layers": ("NOISE_LAYERS",), "mask_optional": ("MASK",), "seed_override": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "forceInput": True}), }, "hidden": { "autosize": ("ADEAUTOSIZE", {"padding": 0}), } } RETURN_TYPES = ("NOISE_LAYERS",) CATEGORY = "Animate Diff 🎭🅐🅓/noise layers" FUNCTION = "create_layers" def create_layers(self, batch_offset: int, noise_type: str, seed_gen_override: str, seed_offset: int, noise_weight: float, balance_multiplier: float, prev_noise_layers: NoiseLayerGroup=None, mask_optional: Tensor=None, seed_override: int=None,): # prepare prev_noise_layers if prev_noise_layers is None: prev_noise_layers = NoiseLayerGroup() prev_noise_layers = prev_noise_layers.clone() # create layer layer = NoiseLayerAddWeighted(noise_type=noise_type, batch_offset=batch_offset, seed_gen_override=seed_gen_override, seed_offset=seed_offset, seed_override=seed_override, mask=mask_optional, noise_weight=noise_weight, balance_multiplier=balance_multiplier) prev_noise_layers.add_to_start(layer) return (prev_noise_layers,) class IterationOptionsNode: @classmethod def INPUT_TYPES(s): return { "required": { "iterations": ("INT", {"default": 1, "min": 1}), }, "optional": { "iter_batch_offset": ("INT", {"default": 0, "min": 0, "max": BIGMAX}), "iter_seed_offset": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX}), } } RETURN_TYPES = ("ITERATION_OPTS",) CATEGORY = "Animate Diff 🎭🅐🅓/iteration opts" FUNCTION = "create_iter_opts" def create_iter_opts(self, iterations: int, iter_batch_offset: int=0, iter_seed_offset: int=0): iter_opts = IterationOptions(iterations=iterations, iter_batch_offset=iter_batch_offset, iter_seed_offset=iter_seed_offset) return (iter_opts,) class FreeInitOptionsNode: @classmethod def INPUT_TYPES(s): return { "required": { "iterations": ("INT", {"default": 2, "min": 1}), "filter": (FreeInitFilter.LIST,), "d_s": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.001}), "d_t": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.001}), "n_butterworth": ("INT", {"default": 4, "min": 1, "max": 100},), "sigma_step": ("INT", {"default": 999, "min": 1, "max": 999}), "apply_to_1st_iter": ("BOOLEAN", {"default": False}), "init_type": (FreeInitOptions.LIST,) }, "optional": { "iter_batch_offset": ("INT", {"default": 0, "min": 0, "max": BIGMAX}), "iter_seed_offset": ("INT", {"default": 1, "min": BIGMIN, "max": BIGMAX}), }, "hidden": { "autosize": ("ADEAUTOSIZE", {"padding": 0}), } } RETURN_TYPES = ("ITERATION_OPTS",) CATEGORY = "Animate Diff 🎭🅐🅓/iteration opts" FUNCTION = "create_iter_opts" def create_iter_opts(self, iterations: int, filter: str, d_s: float, d_t: float, n_butterworth: int, sigma_step: int, apply_to_1st_iter: bool, init_type: str, iter_batch_offset: int=0, iter_seed_offset: int=1): # init_type does nothing for now, not until I add more methods of applying low+high freq noise iter_opts = FreeInitOptions(iterations=iterations, step=sigma_step, apply_to_1st_iter=apply_to_1st_iter, filter=filter, d_s=d_s, d_t=d_t, n=n_butterworth, init_type=init_type, iter_batch_offset=iter_batch_offset, iter_seed_offset=iter_seed_offset) return (iter_opts,) class NoiseCalibrationNode: @classmethod def INPUT_TYPES(s): return { "required": { "calib_iterations": ("INT", {"default": 1, "min": 1, "step": 1}), "thresh_freq": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.001}), }, "hidden": { "autosize": ("ADEAUTOSIZE", {"padding": 0}), } } RETURN_TYPES = ("NOISE_CALIBRATION",) RETURN_NAMES = ("NOISE_CALIB",) CATEGORY = "Animate Diff 🎭🅐🅓/sample settings" FUNCTION = "create_noisecalibration" def create_noisecalibration(self, calib_iterations: int, thresh_freq: float): noise_calib = NoiseCalibration(scale=thresh_freq, calib_iterations=calib_iterations) return (noise_calib,) class CustomCFGNode: @classmethod def INPUT_TYPES(s): return { "required": { "cfg_multival": ("MULTIVAL",), }, "optional": { "cfg_extras": ("CFG_EXTRAS",), }, "hidden": { "autosize": ("ADEAUTOSIZE", {"padding": 0}), } } RETURN_TYPES = ("CUSTOM_CFG",) CATEGORY = "Animate Diff 🎭🅐🅓/sample settings/custom cfg" FUNCTION = "create_custom_cfg" def create_custom_cfg(self, cfg_multival: Union[float, Tensor], cfg_extras: CFGExtrasGroup=None): keyframe = CustomCFGKeyframe(cfg_multival=cfg_multival, cfg_extras=cfg_extras) cfg_custom = CustomCFGKeyframeGroup() cfg_custom.add(keyframe) return (cfg_custom,) class CustomCFGSimpleNode: @classmethod def INPUT_TYPES(s): return { "required": { "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step": 0.1}), }, "optional": { "cfg_extras": ("CFG_EXTRAS",), }, "hidden": { "autosize": ("ADEAUTOSIZE", {"padding": 0}), } } RETURN_TYPES = ("CUSTOM_CFG",) CATEGORY = "Animate Diff 🎭🅐🅓/sample settings/custom cfg" FUNCTION = "create_custom_cfg" def create_custom_cfg(self, cfg: float, cfg_extras: CFGExtrasGroup=None): return CustomCFGNode.create_custom_cfg(self, cfg_multival=cfg, cfg_extras=cfg_extras) class CustomCFGKeyframeNode: @classmethod def INPUT_TYPES(s): return { "required": { "cfg_multival": ("MULTIVAL",), "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), "guarantee_steps": ("INT", {"default": 1, "min": 0, "max": BIGMAX}), }, "optional": { "prev_custom_cfg": ("CUSTOM_CFG",), "cfg_extras": ("CFG_EXTRAS",), }, "hidden": { "autosize": ("ADEAUTOSIZE", {"padding": 0}), } } RETURN_TYPES = ("CUSTOM_CFG",) CATEGORY = "Animate Diff 🎭🅐🅓/sample settings/custom cfg" FUNCTION = "create_custom_cfg" def create_custom_cfg(self, cfg_multival: Union[float, Tensor], start_percent: float=0.0, guarantee_steps: int=1, prev_custom_cfg: CustomCFGKeyframeGroup=None, cfg_extras: CFGExtrasGroup=None): if not prev_custom_cfg: prev_custom_cfg = CustomCFGKeyframeGroup() prev_custom_cfg = prev_custom_cfg.clone() keyframe = CustomCFGKeyframe(cfg_multival=cfg_multival, start_percent=start_percent, guarantee_steps=guarantee_steps, cfg_extras=cfg_extras) prev_custom_cfg.add(keyframe) return (prev_custom_cfg,) class CustomCFGKeyframeSimpleNode: @classmethod def INPUT_TYPES(s): return { "required": { "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step": 0.1}), "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), "guarantee_steps": ("INT", {"default": 1, "min": 0, "max": BIGMAX}), }, "optional": { "prev_custom_cfg": ("CUSTOM_CFG",), "cfg_extras": ("CFG_EXTRAS",), }, "hidden": { "autosize": ("ADEAUTOSIZE", {"padding": 10}), } } RETURN_TYPES = ("CUSTOM_CFG",) CATEGORY = "Animate Diff 🎭🅐🅓/sample settings/custom cfg" FUNCTION = "create_custom_cfg" def create_custom_cfg(self, cfg: float, start_percent: float=0.0, guarantee_steps: int=1, prev_custom_cfg: CustomCFGKeyframeGroup=None, cfg_extras: CFGExtrasGroup=None): return CustomCFGKeyframeNode.create_custom_cfg(self, cfg_multival=cfg, start_percent=start_percent, guarantee_steps=guarantee_steps, prev_custom_cfg=prev_custom_cfg, cfg_extras=cfg_extras) class CustomCFGKeyframeInterpolationNode: @classmethod def INPUT_TYPES(s): return { "required": { "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}), "cfg_start": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step": 0.1}), "cfg_end": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step": 0.1}), "interpolation": (InterpolationMethod._LIST, ), "intervals": ("INT", {"default": 50, "min": 2, "max": 100, "step": 1}), "print_keyframes": ("BOOLEAN", {"default": False}), }, "optional": { "prev_custom_cfg": ("CUSTOM_CFG",), "cfg_extras": ("CFG_EXTRAS",), }, "hidden": { "autosize": ("ADEAUTOSIZE", {"padding": 0}), } } RETURN_TYPES = ("CUSTOM_CFG",) CATEGORY = "Animate Diff 🎭🅐🅓/sample settings/custom cfg" FUNCTION = "create_custom_cfg" def create_custom_cfg(self, start_percent: float, end_percent: float, cfg_start: float, cfg_end: float, interpolation: str, intervals: int, prev_custom_cfg: CustomCFGKeyframeGroup=None, cfg_extras: CFGExtrasGroup=None, print_keyframes=False): if not prev_custom_cfg: prev_custom_cfg = CustomCFGKeyframeGroup() prev_custom_cfg = prev_custom_cfg.clone() percents = InterpolationMethod.get_weights(num_from=start_percent, num_to=end_percent, length=intervals, method=InterpolationMethod.LINEAR) cfgs = InterpolationMethod.get_weights(num_from=cfg_start, num_to=cfg_end, length=intervals, method=interpolation) is_first = True for percent, cfg in zip(percents, cfgs): guarantee_steps = 0 if is_first: guarantee_steps = 1 is_first = False prev_custom_cfg.add(CustomCFGKeyframe(cfg_multival=float(cfg), start_percent=percent, guarantee_steps=guarantee_steps, cfg_extras=cfg_extras)) if print_keyframes: logger.info(f"CustomCFGKeyframe - start_percent:{percent} = {cfg}") return (prev_custom_cfg,) class CustomCFGKeyframeFromListNode: @classmethod def INPUT_TYPES(s): return { "required": { "cfgs_float": ("FLOAT", {"default": -1, "min": -1, "step": 0.001, "forceInput": True}), "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}), "print_keyframes": ("BOOLEAN", {"default": False}), }, "optional": { "prev_custom_cfg": ("CUSTOM_CFG",), "cfg_extras": ("CFG_EXTRAS",), } } RETURN_TYPES = ("CUSTOM_CFG",) CATEGORY = "Animate Diff 🎭🅐🅓/sample settings/custom cfg" FUNCTION = "create_custom_cfg" def create_custom_cfg(self, cfgs_float: Union[float, list[float]], start_percent: float, end_percent: float, prev_custom_cfg: CustomCFGKeyframeGroup=None, cfg_extras: CFGExtrasGroup=None, print_keyframes=False): if not prev_custom_cfg: prev_custom_cfg = CustomCFGKeyframeGroup() prev_custom_cfg = prev_custom_cfg.clone() if type(cfgs_float) in (float, int): cfgs_float = [float(cfgs_float)] elif isinstance(cfgs_float, Iterable): pass else: raise Exception(f"strengths_float must be either an interable input or a float, but was {type(cfgs_float).__repr__}.") percents = InterpolationMethod.get_weights(num_from=start_percent, num_to=end_percent, length=len(cfgs_float), method=InterpolationMethod.LINEAR) is_first = True for percent, cfg in zip(percents, cfgs_float): guarantee_steps = 0 if is_first: guarantee_steps = 1 is_first = False prev_custom_cfg.add(CustomCFGKeyframe(cfg_multival=float(cfg), start_percent=percent, guarantee_steps=guarantee_steps, cfg_extras=cfg_extras)) if print_keyframes: logger.info(f"CustomCFGKeyframe - start_percent:{percent} = {cfg}") return (prev_custom_cfg,) class CFGExtrasPAGNode: @classmethod def INPUT_TYPES(s): return { "required": { "scale_multival": ("MULTIVAL",), }, "optional": { "prev_extras": ("CFG_EXTRAS",), }, "hidden": { "autosize": ("ADEAUTOSIZE", {"padding": 0}), } } RETURN_TYPES = ("CFG_EXTRAS",) FUNCTION = "add_cfg_extras" CATEGORY = "Animate Diff 🎭🅐🅓/sample settings/cfg extras" def add_cfg_extras(self, scale_multival: Union[float, Tensor], prev_extras: CFGExtrasGroup=None): if prev_extras is None: prev_extras = CFGExtrasGroup() prev_extras = prev_extras.clone() patch = perturbed_attention_guidance_patch(scale_multival) def call_extras(model_options: dict[str]): return set_model_options_post_cfg_function(model_options.copy(), patch) extra = CFGExtras(call_extras) prev_extras.add(extra) return (prev_extras,) class CFGExtrasPAGSimpleNode: @classmethod def INPUT_TYPES(s): return { "required": { "scale": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 100.0, "step": 0.1, "round": 0.01}), }, "optional": { "prev_extras": ("CFG_EXTRAS",), }, "hidden": { "autosize": ("ADEAUTOSIZE", {"padding": 0}), } } RETURN_TYPES = ("CFG_EXTRAS",) FUNCTION = "add_cfg_extras" CATEGORY = "Animate Diff 🎭🅐🅓/sample settings/cfg extras" def add_cfg_extras(self, scale: float, prev_extras: CFGExtrasGroup=None): return CFGExtrasPAGNode.add_cfg_extras(self, scale_multival=scale, prev_extras=prev_extras) class CFGExtrasRescaleCFGNode: @classmethod def INPUT_TYPES(s): return { "required": { "mult_multival": ("MULTIVAL",), }, "optional": { "prev_extras": ("CFG_EXTRAS",), } } RETURN_TYPES = ("CFG_EXTRAS",) FUNCTION = "add_cfg_extras" CATEGORY = "Animate Diff 🎭🅐🅓/sample settings/cfg extras" def add_cfg_extras(self, mult_multival: Union[float, Tensor], prev_extras: CFGExtrasGroup=None): if prev_extras is None: prev_extras = CFGExtrasGroup() prev_extras = prev_extras.clone() patch = rescale_cfg_patch(mult_multival) def call_extras(model_options: dict[str]): return set_model_options_sampler_cfg_function(model_options.copy(), patch) extra = CFGExtras(call_extras) prev_extras.add(extra) return (prev_extras,) class CFGExtrasRescaleCFGSimpleNode: @classmethod def INPUT_TYPES(s): return { "required": { "multiplier": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}), }, "optional": { "prev_extras": ("CFG_EXTRAS",), }, "hidden": { "autosize": ("ADEAUTOSIZE", {"padding": 10}), } } RETURN_TYPES = ("CFG_EXTRAS",) FUNCTION = "add_cfg_extras" CATEGORY = "Animate Diff 🎭🅐🅓/sample settings/cfg extras" def add_cfg_extras(self, multiplier: float, prev_extras: CFGExtrasGroup=None): return CFGExtrasRescaleCFGNode.add_cfg_extras(self, mult_multival=multiplier, prev_extras=prev_extras) class NoisedImageInjectionNode: @classmethod def INPUT_TYPES(s): return { "required": { "image": ("IMAGE", ), "vae": ("VAE", ), }, "optional": { "mask_opt": ("MASK", ), "invert_mask": ("BOOLEAN", {"default": False}), "resize_image": ("BOOLEAN", {"default": True}), "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), "guarantee_steps": ("INT", {"default": 1, "min": 1, "max": BIGMAX}), "img_inject_opts": ("IMAGE_INJECT_OPTIONS", ), "strength_multival": ("MULTIVAL", ), "prev_image_inject": ("IMAGE_INJECT", ), }, "hidden": { "autosize": ("ADEAUTOSIZE", {"padding": 0}), } } RETURN_TYPES = ("IMAGE_INJECT",) CATEGORY = "Animate Diff 🎭🅐🅓/sample settings/image inject" FUNCTION = "create_image_inject" def create_image_inject(self, image: Tensor, vae: VAE, invert_mask: bool, resize_image: bool, start_percent: float, mask_opt: Tensor=None, strength_multival: Union[float, Tensor]=None, prev_image_inject: NoisedImageToInjectGroup=None, guarantee_steps=1, img_inject_opts=None): if not prev_image_inject: prev_image_inject = NoisedImageToInjectGroup() prev_image_inject = prev_image_inject.clone() to_inject = NoisedImageToInject(image=image, mask=mask_opt, vae=vae, invert_mask=invert_mask, resize_image=resize_image, strength_multival=strength_multival, start_percent=start_percent, guarantee_steps=guarantee_steps, img_inject_opts=img_inject_opts) prev_image_inject.add(to_inject) return (prev_image_inject,) class NoisedImageInjectOptionsNode: @classmethod def INPUT_TYPES(s): return { "required": { }, "optional": { "composite_x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), "composite_y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), }, "hidden": { "autosize": ("ADEAUTOSIZE", {"padding": 0}), } } RETURN_TYPES = ("IMAGE_INJECT_OPTIONS",) RETURN_NAMES = ("IMG_INJECT_OPTS",) CATEGORY = "Animate Diff 🎭🅐🅓/sample settings/image inject" FUNCTION = "create_image_inject_opts" def create_image_inject_opts(self, x=0, y=0): return (NoisedImageInjectOptions(x=x, y=y),)